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ABSTRACT

We show that the gluon helicity inside a proton and a photon can be
deduced from a knowledge of a special combination of cross sections of
the semi-inclusive processes e + p +e + 1+ 7w+ ... and

+ ., -+ -
e +e »e +e +1+Tw+ ... Such a measurement could thus be used
to check the QCD prediction that the gluon helicity increases linearly

with Qan.
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1. Introduction

It follows from the Altarelli-Parisi [1] equations that the gluon
helicity, AG(l)(t) ==J( dxAG(x,Qz) varies as Qan, in the leading loga-
rithm approximation. ghis behavior is quite unique in strong inter-
actions, all other parton moments are either constant or decrease as
some power of Qan. It is true that in deep inelastic scattering on a
photon target an additiomal anz dependence, discovered by Witten, is
also present. Here, however, this dependence of the gluon helicity on
Zan is a result of the triple gluon coupling, a unique feature of non-
Abelian theories. Thus, a measurement of this quantity would be very
interesting, since it would help establish the relevance of such theories
in understanding strong interactions. In a previous paper [2] we showed
that the gluon helicity cannot be measured in inclusive reactions. In
this paper we show how it can be measured in semi-inclusive reactions,
at least in the parton model.

One might think that such behavior of the gluon helicity is incon-
sistent with the fact that the proton has definite helicity. This is not
the case, however, because due to angular momentum conservation, the
gluon must have a small transverse momentum. This means that orbital
angular momenta are mixed in, so that there is no reason for the heli-
city alone to be fixed.

To measure the polarized gluon distribution functions of a proton
and real photon we consider the polarized scattering processes

- - - + - -
e () +p(¥) e + v +7+ ... and e+(+) +e (d) e +e +1+0H+ ...,
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respectively. Following ref. [3], we consider the following combination
of cross sections for large transverse momentumrtwo—pion production:
dO(ﬂ+ﬂ_) + dO(ﬁ—ﬂ+) - dc(n+w+) - do(w 7 ), with the two pions in differ-
ent jets. As pointed out in ref. [3], only the subprocess shown in fig.
la contributes to the above combination of cross sections. We can thus
measure the polarized gluon distribution function of the corresponding
target. Taking then the first moment, we obtain the gluon helicity.
These two processes are discussed in sects. 3 and 4, respectively.

In sect. 2 we show how the logarithmic dependence of the gluon
helicity in Q2 follows from the Altarelli-Parisi equations and sect. 5

contains a summary.

2. Q2—Dependence of Gluon Helicity

In the proton target case, solving the Altarelli-Parisi equation

the gluon helicity is
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where
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C,® = N22;11 )
b = {11c @ - Zf}
127 2
£ - quark flavor number. (2)

The Altarelli-Parisi equations satisfied by the polarized quark,
gluon and photon distribution functions inside a photon are, respectively,
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Ne is the lepton number, and N is the number of colors. Aqi is O(aY)
and AT(x,t) = 8(x-1) + O(G.Y) (the photon helicity is assumed to be +1).

Keeping only the terms of O(uy), the above equations become
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The equation for AG remains unchanged.



Using Egqs. (3), we find the following solutions for the first moments of

Aqi and AG, in the case of photon target.

Aq(l)(t) = const.

@) = - E?:‘b‘ Cz(R)Aq(l)(to) + {Z%E C2(R)Aq(1)(t0)
- (6)
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and for the polarized photon distribution function

~a tC/2w
AT(x,t) = AF(x,tO) e 1 . (7

3. Measurement of the Polarized Gluon Distribution Function (Proton Target)

In this section we discuss how AGp(x,t) can be measured in the pro-
ton case. Fontannaz et al. [3] have suggested that AGp(x,t) can be
measured in polarized photon production of two pions in large transverse
momentum. We look at the process e+p > e+7m+7m+ ..., where the initial
electron and target proton are polarized, and the pions have large trans-

- +

verse momenta. Since Dg = Dg , only the process shown in fig. la con-

tributes to the following combination of cross sections:

do = do(n+ﬁ—) +do(nn) - do(nint) - do(nnT) .



The parton model [4] gives
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where the arrows denote the polarization of the corresponding particles

kl, k2 are the pion momenta, E, and E, the pion energies, k' the momen-

1 2

~tum of the final electron, E' the energy of the final electron,

Dg (xb,Qz) is the fragmentation function of the i-th quark, pg is the
i

gluon momentum, and pq, pa are the momenta of the quark and antiquark

(see fig. la). Also

= . = I = 2. = —_ 2- = ——-2
xbpcf k2 chq’ s = (Pg'*Q) ;u (Pg Pq) 3 € (p_-p:)

Finally, p is the momentum of the initial proton and q the momentum of
the virtual photon, and do,/(d3k'/E')dt is the differential cross section
for the subprocess e(polarized) + g(polarized) - q + q (see fig. la);

it is given by
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where wg and Ee are the gluon and initial electron energies, respectively,

-> ->
v and v their respective velocities (they are antiparallel, thus

v

oQ

->
g~ Ve‘ = 2), k is the initial electron momentum, aY the fine structure

constant, and e the running coupling constant. Following Feynman [5]

we take

2 2tus -
Q - 2 2 . (9)

t + u2 + s

Using the §-function, we carry out the X X and azimuthal angle of

X
b* “c

the final electron integrations, to obtain
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where E is the proton energy.



In the CM frame of the electron and proton
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> >
Here ¢ is the angle between k., and kZL’ q is the longitudinal momentum

1L
and 4 the energy of the virtual photon, Y5 Yo and y, are the rapidities

of the two pions and the electron, respectively. The kinematic condi-

tions are

[o~]
v
o

1 = X5 X = 0.

b* *c

- -
If kl . k21<0 the upper sign in Eqs. (l1) is taken, whereas if

E, . E >0 the lower sign is taken. In the case ¢ = 1800, Egs. (11)
L 21
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simplify to
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where if kl is parallel to k the lower sign holds, whereas if kl is

21
->
antiparallel to kZL the upper sign holds.
Thus using the forms of the fragmentation functions given in ref. [51,
a measurement of the cross section in Eq. (10) allows AGp(xa,Qz) to be

determined. The integral

1
f dx 46_(x,Q°)
0 D

will then yield the gluon helicity inside a proton.

4. Measurement of Polarized Gluon Distribution Function (Photon Target)

Just as in the proton case, we can use the process
+ - + - 2, ..
e +e Te +e + 1+ 7w+ X to measure 4G (x,Q7) inside a real photon,
+ -
e e + - , . m 2 i 2
when the initial e and e are polarized. Since Dg (x,Q7) =D (%x,Q7)

only the diagrams in fig. 3 contribute to the following combination of

cross sections:
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A= {dc(ﬂ+n—)4-do(n—n+)-do(w+n+)-dc(n_w_)}

ettt — eVt L (12)
This cross section can be written as
3 3 3, .3, '
fo 1 dPp ey dk iy 1 (410)* riﬁ] (e kW,
\] 1 -5
(2“_)12 2E1 2E2 2Ee 2E+4EE IV - +| pi-
e 17 ‘e (13)

where Ee and E 4 are the energies of the initial electron and positron,
e

respectively, Eé and E'+ the energies of the final electron and positron,
e

respectively, k and k' the momenta of the initial and final electron and

kl and ki the initial and final momenta of the positron, respectively.

P;» P, are the pion momenta and [Al denotes the antisymmetric part.

The tensor of the lower vertex is given by

Lad An

T = 21me€pvknp s (14)

[SAY

2
where p = kl-ki s, P =0 and sn is the polarization vector of the initial

positron. Ignoring the lepton mass, we have

ms = Ak ,(A=i%) . (15)

The tensor wuv is given by

- a+b *
W —a’g_:,il(—n e (@MW, (16)

. . 2 )
where eu is the photon polarization vector. Since p° = 0, only trans-

verse photons contribute to wuv'
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The tensor wab is in turn given by
_ LAl . B o
W= T (kK jé: < W5 0) |n w0, m, [5%(0) [y, >
4 (4
x am" sW prqg-p ~py-p) . (D)

Using the formulas [6d -

e*(a)e (a) = l—{R - —i—-as p}‘qn } (¢, =k _-k")
H v 2 0w peq TTHvAn !

1 2
= - + — . -
Ry 81y ooy {p alp,a, +p ) -4 pupv} , (18)

and Eqs. (l4) and (16), we obtain

[A] 2

rygtY - _ P y -
T“V (kl,kl)w g (kli-kl) q(W++ W__) . (19)
According to Eq. (17), W4+ - W__ is the cross section of polarized

electron scattering on a polarized photon. Therefore, we can calculate

it in the parton model.

Defining
do(etyt > en 7, X) ~ do(etyd > em, 7,X) s (20)
12 12
b (mym,) = 3 3
' S 4 4y
]
Ee El E2
we have
A (mow,) = ——t 1 W -W ) 21)
vy12 23(2“)9 - + - i .
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where Ee and EY are the energies of the initial electron and real
> >
photon, respectively, and vY and vy their velocities. The combination

of cross sections of interest is then given by

AY(ﬂ+ﬂ_) + Ay(ﬂ_"+) - Ay(ﬂ+ﬂ+) - AY(W—H—)

1 1 1
=f dxaj-dxb_/-dxc

+ -
1 2 2 m 2 T 2
7 86, (x,,0) 5;“ e {-in(xb,cz R >}

2
0 0 0 xbxc

(22)

wh 2. @ 2. (&) 2 2. do
x<D (x ,Q7)~-D (x,Q )}6 (p+p_-7p -p—)—(s—q)—:,’——-—— s

qi c q; ¢ g q q T a k!

E' dt
e

AGY(xa,QZ) is the polarized gluon distribution function inside a real
2 > .
photon, All quantities are the same as in sect. 3. Since p = 0, vY is

>
parallel to v, in the rest frame of the beam. As before we carry out

the d-function integration to obtain

A 1 1

= 2a N (k, + k) +q
2 2 Y12, 1 Yy 2 .2 2 peqg "1 1
d plldyld pzldyzdkldkl dye
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P1L (xc Por * x, Pl Py1)" P2 x, Pl x_ PP

+ —
< 10,0, @ 2 Z{D (x, 02 - (xb,QZ)}{DZ (x50 - 0] (XC,QZ)}
i

1 .
1

x (s-q2) 39— (23)
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2 2

o E1 + Ei E
where N2 =a T n o comes from the equivalent photon approxi-
Eq e

mation [7]. All other quantities are the same as in sect. 3. Thus a
measurement of the cross section in Eq. (23) and knowledge of the frag-

mentation functions, allows AGY(xa,QZ) to be determined. The integral

1

'/(; dx AGY(X,QZ) -

will then yield the gluon helicity inside a real photon.

There is another subprocess contributing to the cross section of
the inclusive process e+ +e - e+ +e +7m+7+ ... This is shown in
fig. 3, where the lower photon line propagates directly to the qq vertex.
Its contribution is given by Eq. (23) with AGY(xa,QZ) replaced by
AP(xa,QZ) and where dc/(d3k'/E')dt is now the cross section for
et+y>e+q+ g and is given by Eq. (8) with the gluon subscript re-
placed by y everywhere and aS(QZ) replaced by aY. Since, however,
AP(xa,Qz) = G(Xa - 1), if we do not consider the point X, = 1, this term

does not contribute.

5. Summary

We have shown that if a special combination of cross sections for
the polarized semi-inclusive processes
et+tpre+TH+TA+ ...
et st et L.
were experimentally measured, then the polarized gluon distribution

functions of a proton and a photon could be deduced from Egs. (10) and
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(23). The first moments of these distributions will then give the gluon

helicity in the proton and in the photon, and thus its logarithmic

dependence on Q2 predicted by QCD could be checked.
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Figure Captions

Fig. 1. The two diagrams contributing to the processes
e(#) +p(d) e+ T+ T+ ...
+ -
e () +e(t) > e+ e tm T

to order us.

Fig. 2. The two general two-photon diagrams for the process

+ — —
e +e -~ e+ +e + ...

Fig. 3. The two subdiagrams contributing to the two-photon process

to order as.
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