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ABSTRACT 

We propose new types of theories which combine supersymmetry and some 

new strong interaction which we generically refer to as supercolor. In 

some cases which we discuss, supercolor is identical with the familiar 

Technicolor. These theories are natural. They explain the scale of weak 

interactions and they do not require any unnatural adjustments. They pos- 

sess naturally light scalars which give mass to ordinary quarks and leptons. 

Naturalness imposes strong constraints on the U(1) gauge structure of 

the theory. These constraints appear not to be satisfied by the electro- 

weak hypercharge. If this is true then, the symmetry of the world at 

energies above -1 TeV cannot be standard SU3Cx SU2Lx U(l)y with only 

ordinary families. 
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1. Introduction 

There are two fundamental dimensional parameters in particle physics. 

These are the Fermi constant GF = 10 -5 -2 GeV and Newton's constant 

GN = 1O-38 GeVm2. Associated with the huge ratio of these numbers there 

are two problems of "naturalness". The first problem is to explain why 

their ratio is so huge. In the standard scalar models, this ratio is an 

input. Both GE and GN are introduced by hand in the theory. The second 

problem of naturalness is the great sensitivity of low energy physics to 

minute changes in the short distance bare quantities of the theory [1,2]. 

Technicolor [2] was introduced to solve these problems. However, 

Technicolor alone could not account for the current algebra masses of 

quarks and leptons. Extended Technicolor L-33 was introduced to solve this 

difficulty. In extended Technicolor theories there are no elementary 

scalar fields. All light scalars are composites of new degrees of freedom. 

Unfortunately, these theories seem to suffer from phenomenological problems 

with flavor changing neutral currents [4]. No elegant Technicolored 

analog to the ingenious GIM mechanism has been found. 

In this paper, we propose a new set of natural theories which replace 

Extended Technicolor. They are theories with elementary scalars. The 

scalars are light because they are protected by supersymmetry [5l which 

is a good symmetry down to-TeV. The fermions acquire their mass via 

Yukawa couplings to the light scalars. The scale of the supersymmetry 

breaking is determined by the scale at which a new strong interaction 

becomes strong. We call this interaction Supercolor. Supercolor may be 

different from Technicolor, since it is not necessarily involved in the 

breaking of SU(2)L@U(1)y. The characteristic scale of Supercolor can 

be as high as- 10 TeV. 
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2. Supersymmetry 

In this section we recall the obvious virtues of supersymmetric 

theories C5,61. In the standard model of electroweak interactions, the 

mass of the G and Z" boson is proportional to the expectation value of 

a scalar field 4, i.e., s N <4>. Since I$ is not protected by chiral or 

gauge symmetries from receiving a large mass, the_patural value for <$> 

is of order 10 19 GeV . The way to remedy this difficulty is to introduce 

supersymmetry. The scalars are then protected from obtaining mass by 

the chiral symmetries of their fermionic partners. Since phenomenologic- 

ally there are no scalar partners to ordinary quarks and leptons, super- 

symmetry must be spontaneously broken at a scale of the order of the weak 

interactions. Thus, rn$ will be of order Gi'. Quarks and leptons receive 

mass in this scheme via standard Yukawa couplings. This scenario as 

outlined still suffers from the first problem of naturalness since it 

does not provide an explanation for the weak interaction scale. The value 

of the weak interaction scale is put in by hand as a fundamental parameter 

in the Lagrangian. Naively these theories do not seem to suffer from the 

second problem of naturalness because scalars are protected from quadrat- 

ically divergent mass corrections. However, as shown in the next section, 

these types of models may in fact suffer from the second problem of nat- 

uralness (in some important cases), 

3. Supersymmetric U(1) problem 

The purpose of this section is to point out the existence of a very 

important class of super symmetric theories which are unnatural in the 

sense that they do not protect scalars from receiving huge linearly 

divergent masses. To be specific we will prove the following statement: 
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"Supersymmetric theories are unnatural if: (1) they contain 

a U(1) gauge multiplet [5,61: V 5 (Au,x;D), and (2) the symmetry 

V-+-V is broken by dimension-four operators (we shall call the 

operation V-t-V "parity").I' 

To prove this statement we begin by introducing left-handed chiral 

multiplets C5,6] Si : ($i,~i;Fi) with U(1) charges-ei; i = 1, 2, . . . . 

We assume that the U(1) is anomaly free, i.e., 

Consider 

to the scalar 

c e 3 0 = 
i (3.1) 

i 

now the following terms in the Lagrangian that contribute 

potential* 

&D2+D c eiOi$, + ED (3.2) 
i 

We assume that there are chiral symmetries which forbid explicit 

scalar masses. In addition, we have omitted from the scalar potential eq. 

(3.2) any terms that are proportional to Yukawa couplings. Equation (3.2) 

contains all the gauge contributions to the scalar potential. Inclusion 

of Yukawa couplings will not change any of our conclusions on quadratic 

mass divergences since the gauge and Yukawa couplings are totally unrelated. 

Another convenient expression for the scalar potential eq. (3.2) is 

obtained by integrating out the auxilary D-field: 

(3.3) 

Equation (3.3) shows that scalars have masses squared proportional to 5. 

* Note that D is the Fayet-Illiopoulos D term r-71. 
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Thus, if 5 is quadratically divergent then so are scalar masses squared. 

Note that eq. (3.3) 1 a so shows that in an anomaly free theory (eq. (3.1)), 

where there are both positive and negative charges ei, a nonvanishing 5 

always implies that the gauge symmetry is spontaneously broken whereas 

the supersymmetry is not broken. 

If the theory is symmetric under the "parity" operation D-t-D, 

then 5 vanished identically to all orders. If the "parity" operation is 

softly broken, then 5 can be at most logarithmically divergent. If however 

the "parity" operation is broken by dimension-four operators, then 5 will 

be quadratically divergent. 

Let us now give an explicit example for which "parity" is broken 

by dimension-four operators. The example consists of a U(1) gauge 

multiplet together with N left-handed chiral multiplets with charges 

ei=g (i=l, . . . . N) and a left-handed chiral multiplet with charge 
, 

eN+l 
= -gJ& 

The Lagrangian of this model is: 

N+l N+l 
9~ - 1 F2 ' ixt#x _ + i C 

4 pv--z c 
i=l i=l 

, Du+i I 
2 

N 
1 

+ifig c 
* 

- N'; 'N+lx9N+l - h.c. 
I 

+ L D2 2 
i=l 

N 

+ gD c 
i=l 

Note that the symmetry D-t-D is broken by the hard operator 

N 

0 c 
l t 

i=l 
914i - N3$N+14N+l 

(3.4) 

(3.5) 
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because for any scalar $ of a given charge there is no corresponding scalar 

of opposite charge. 

Let us now compute the one-loop corrections to 5. They are given by 

the graphs of fig. 1. From these we see that the correction 66 to 5 is 

N+l 

sg - A2 c e 
i=l i 

where A is the cutoff. As a consequence scalars in this model obtain 

quadratically divergent masses squared. 

From now on we define a U(1) to be safe if it admits a tlparitylt 

operation V-t-V which is not broken by dimension-four operators. 

It is important to notice that in the standard model with the usual 

families the electroweak hypercharge Y is not a safe U(1). To see this 

note that the hypercharge assignments of a family are 

'(I+) = '(dL) = + 

2- Y yjL) = 3 , 
4 

( ) 
GL = - 3 

yvL) = YpL) = -1; Y(ZL) = +2 (3.7) 

Thus, for each supersymmetric scalar partner of ordinary fermions, there 

is no corresponding scalar with opposite hypercharge. Note that in the 

example given in sect. 3, the U(1) gauge generator was not traceless; 

. N+l I.e., ci ei # 0. Since hypercharge is traceless, the one-loop correc- 

tions to 5, vanish. In fact, the two-loop contributions to 5 of purely 

gauge interactions also vanishes if the U(1) is anomally free. However, 

without any symmetry preventing a D 
Y 

termforhypercharge, we expect a 
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quadratically divergent 5 to be generated in higher loops. We are 
Y 

however cautioned by the knowledge that miraculous unexplained can- 
* 

cellations have been known to occur in supersymmetric theories. We 

thus remark that if no such cancellations occur, then the result is very 

important. It changes our traditional point-of-view which was to have the 

SU(3)G B SU(2)L 60 U(l)y symmetry with only standard families up to some 

extremely high energy A >z= TeV. 

What are possible solutions to this difficulty? Two possibilities 

suggest themselves: 

a) There is no gauged U(1) for energies greater than h(U1) 2 1 TeV. - 

Note that this implies the existence of problematic light momopoles C81. 

b) There are only safe U(l)'s for energies greater than Awl TeV. 

There are two ways to implement (b): 

i) Hypercharge itself is a safe U(1) due to the existence of 

three heavy right-handed families. These families are expected to be in 

the 100 GeV range since their masses carry AIL = k. 

ii) The gauge symmetry above A(U,) 2 TeV is different than 

SU(3)G 8 SU(2)L 8 uwy and contains only new safe U(l)'s. 

In the next section we elaborate on the above possibilities. 

4) Uniscale and Biscale Supersymmetric Scenarios 

In the previous section we introduced the energy scale A(U,) above 

which the theory changes. So far, the only thing that we know about 

A(U that it cannot be very much higher than the electroweak scale 
-14 

or else the scalars would get masses much larger than GF . The value of 

* We thank Dr. M. Rocek for this observation. 
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A(U,> differentiates between various Supersymmetric scenarios. Two 

possibilities suggest themselves: 

I. (Uniscale scenario) A U1 N Gi' ( > 

II. (Biscale secnario) A Ul 
( ) 

-% 
>>G l F 

Under scenario I there are two inequivalent possibilities. The 

first possibility is that the gauge group changes;bove A@,). In this 

case, there will be new gauge bosons with masses of order %. These 

bosons are potential hazards for such models since they typically mediate 

rare processes at rates comparable to those of ordinary weak interactions. 

The second possibility is that the gauge structure remains unchanged at 

A(Ul), but three new heavy right-handed generations appear. An example 

of such a model is the grand unified theory with the gauge group 0(18) 

and one chiral multiplet in the spinor representation*[91. If 0(18) 

breaks down to SP(4)TECINICoLoR B SUM B SU(2)L ~3 U(l)y at the grand 

scale and Technicolor becomes strong at-1 TeV, then there exists three 

light ordinary generations. In addition there is a quintet of left- 

handed Techni-generations and two quartets of right-handed Techni- 

generations. Thus standard hypercharge in such a model is safe, Tech- 

nicolor in this scenario breaks SU(2)L 8 U(l)y at A(U,) - GiGo In both 

cases of the uniscale scenario, supersymmetry is assumed to break at 

A@$. Clearly, much more work is required to see if a uniscale scenario 

can be viable. 

In scenario II, there are necessarily two breaking scales A(Ul) 
-g 

and GF . At A(U1) a gauge symmetry G is broken down to the standard 

* Note that the naive scheme as just outlined cannot work since SP(4)TC, 
with the given states, is unfortunately not asymptotically free. 
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su(3)c es SU(2)L @ U(l)Y. Supersymmetry in general may or may not be 

broken at A(Ul). We shall however, only discuss the case where the 

supersymmetry is broken at A@,). This is because as we shall show in - 

the next section, if the breaking at h(U1) is dynamical, then supersymme- 

try is always broken. 

As a result of the breaking of the supersymmetry at A(U1) the 

standard Higgs fields will obtain finite radiatively induced mass terms 

denoted by pk. As we shall show later on u: will be at most of order 

2 2 uh N + a1 81 A2 u ( > 1 (4.1) 

The sign of ui appears to be model dependent and Higgs dependent. 

If the sign of ui is negative, then we have the exciting possibility that 

the electroweak breaking scale is radiatively induced. If the sign 

of for all Higgs' is positive then the second scale of symmetry break- 

ing would have to be introduced as an explicit scale in the Lagrangian. 

Next we turn to a simple toy model to illustrate some of the ideas 

discussed in scenario II. 

BISCALE TOY 

We introduce an example of a biscale model. It includes the gauge 

interactions 

SU(4)PS @ SWL @ T3R (4.2) 

where SU(4)Ps is the Pati-Salam group, T3B is the third component of 

right-handed isospin and SU(2)L is the standard left-handed weak isospin. 

Weak hypercharge in this model is a linear combination of T3R and the 
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15th component of SU(4)ps, i.e., 

where 

Y = T3R + 

4 1 

1 

p15 1 = 
J24 

1 -3 1 IFa 

(4.3) 

The model is a toy since we shall omit any strong Supercolor group. As a 

result, the first breaking scale A(Ul) is put in by hand; i.e., it arises 

from vacuum expectation values of explicit scalars and their associated 

auxilary fields. 

At A(Ul> we suppose SU(4)ps Q T3R breaks down to SU(3)color 8 Y 

leaving SLJ(2)L intact. Supersymmetry also breaks at this scale. We are 

then interested in calculating quadratic mass corrections to the Higgs 

potential which arise as a result of this breaking. We shall show that 

in this example, the Higgs mass squared vanishes to order aRgi (one loop) 

and thus obtains mass only to order oRopgR 2 (two loops). 

We consider the following supermultiplets, transforming under 

sU(4)ps 8 SfJ(2)L 8 T3R, 

H' (1, 2,+%) 

S (10, 1, 1) 

3 (10, 1, -1) (4.4) 

N1 (1,1,(J) 

N2 (15, 1, 0) 
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We use the superfield formalism, where the above fields are all left- 

handed chiral superfields C5,6]. For example, S is given by 

Ba is a two-component left-handed Grassman variable, (ej~) 3 eoj~~~ crB , 

cp = u/m ($1 - i.4,) is a complex scalar, F = (l/fil(F1 + iF2) is a 

complex auxilary field and $ is a two-component Weyl spinor. The fields 

$,$,F all transform in the (lO,l,l) representation of SU(4)psb SU(2)LbT3R. 

H' are the standard Higgs doublets in a two-Higgs model. S and s are 

introduced in order to break SU(4)ps b T3R down to SU(3)= B Y. They mimic 

the supercolor condensates. N1 and N2 are necessary to construct an 

effective potential whose minimum breaks both supersyxmnetry and 

Su(4)ps b T3R C61. Finally, we shall ignore the ordinary quarks and 

leptons which transform as (4,2,0) $ (z,l,tS) for each generation. 

The Lagrangian density for the model is as follows: 

9 = go + [s+ e~p {gpvp- 2gRvR) S + S exp {-gpVp+2gRVR} S+ 

t +t N2 + NINl + H exp 

+H -t 
exp g2V2 + gRVR\ H- 

1 1 DTERM 

+ 2% "Tp SN; + 4% %Nl + ml FTERM 1 (4.5) 

where go is the Lagrangian density for the gauge multiplets. The con- 

stants, gp' gp 82 are the dimensionless couplings for the gauge inter- 

actions SU(4)ps, T3R and SU(2)L, respectively. The constants hp and s 

are arbitrary dimensionless constants and A is a parameter with dimensions 
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of mass sbuared. In units of mpLANCK we have A N 10 -28 . Nevertheless, 

the model is natural in the second sense; i.e., low-energy physics does 

not sensitively depend on minute adjustments of the bare parameters. Note 

that T3H is a "safe" U(1). This is guaranteed by the discrete symmetry 

s f-t St, H+ - H-, vp * -VP, v2 * v2 

vJ$ f-f -vp N1 * N;, N2 - N; (4.6) 

Also no additional terms can be generated via radiative corrections. 

For example, a term like H+H-Nl is forbidden by the discrete symmetry 

H+ t3 -H+ with all other fields unchanged. 

The Lagrangian density must then be expanded in terms of the component 

fields. The minimum of the scalar potential must be found and perturbation 

theory is defined by small fluctuations about the minimum. The component 

fields are defined by the following expressions: 

Matter multiplets: S : 
( 

I$~~, $,,, Fab) 

s : ( p, p, Tab) 

H+ : ( h:, #ii, f&) 

N2 : [ 

1 

z ( a2- 
ib2)p' n2p' ; (f2+ig2)p 1 

N1 : [ 

1 

Jz ( a1- 
ibl)'"l' Jz -L (fl + igl 

Gauge multiplets: VP : (VF, Xp, DP) 

(4.7) 

(4.8) 

VR : ( v;, + DR j 
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where (a,b = 1,2,3,4) E SU(4)ps, (i = 1,2) E SU(2)L and (P = 1, . . . . 15) 

labels the adjoint representation of SU(4)ps. Upon studying the scalar 
* 

potential, we find that: 

($44) = (q4”) E F f 0 

minimizes the potential with 

2F2 = _ 
hRA - 

(X+4) 

(4.9) 

(4.10) 

In addition, one linear combination of the auxilary fields obtains a 

nonvanishing vacuum expectation value; i.e., 

<?> = 15 
+ sinof = - cosclA (4.11) 

where 

tancl = r 
2 hR 
35 l 

Thus both supersymmetry and gauge symmetry are broken at the scale F. 

The remaining gauge symmetry is just SU(3)c 8 SU(2)L @ U(l)y where Y is 

defined in Eq. (4.3). 

We now want to calculate quadratic corrections to the Higgs mass. 

The relevant graphs are in fig. 2. They are obtained from the following 

terms in the Lagrangian: 

69 
gR 

HIGGS 
= ifi- gR 

2 (qh+ h+* AR- h.c.)- ifi ~($h- k* XR-h.c.) (4.12) 

- i $ (h+* 7 h+- h-* y h-)Vi + $ (h+*h++h-*h-) (VIIR) 

1 
- 3 g;($xh+- h-*h-+ ~c$;~$J~,- 2pkabiab + ;E;;;e;c:;a;;)2 

* Note that in this case F = A(U1). 
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After diagonalizing the mass matrix at the tree level, we make the 

following observation. The Higgs bosons do not receive any mass at the 

tree level. -*ab This is a result of the discrete symmetry +ab f-f Q which 

is preserved by the vacuum. We note that the Higgs boson would receive 

mass at the tree level, if the term H+H-N1 were present. 

The Higgs boson can, in principle, receive mass to one-loop level. 

Such a correction is 2 priori proportional to oRTRF2, where F f <4,,>. 

The factor of aR comes because the Higgs only couples to symmetry breaking 

effects through SLZ' Higgs (eq. (4.12)) in one-loop order. The factor gi 

comes from mixing of VR and XR in the gauge-multiplet of T3R with Vy5 and 

Xl5 in the gauge multiplet of P15 (eq. (4.3). If we were to ignore this 

mixing, then as far as the Higgs is concerned supersymmetry would be 

effectively unbroken at the one-loop level, and U: would be zero. We 

shall in fact find that pi = 0 even to one-loop order. This result follows 

directly from the fact that the following states transform as degenerate 

supermultiplets at the tree level. Consider the six supermultiplets: 

After diagonalizing the mass matrix, we obtain the following massless and 

massive multiplets: 

(4.14) 
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BP is the' gauge boson coupled to weak hypercharge. 

;44= L.. 
Jz- ( J144 - T44) 

i=; ( 
* -44 

+44+ 944 - 0 
_ -$44* - 

> 

I< 
2 2 3 2 =m ;, = ti; = 4F (gR+y gp) l 

I 

(4.15) 

XI and I),, form a massive Dirac fermion. The state B N1 = (1/2i) ($44 - Oi4 

_ 444 + 344”) is the Goldstone boson associated with broken T3R and is 

eaten by By. 

P = 11 cm =O 
--I a ,-l b nY 

nY 
is the Goldstone fermion. 

* 
44+ $44 + 544, qT4*); 2 = & (@44 - qli4+ T44 - ;44* 

a 

ij 

b" = cosa 

n I 

(4.16) 

lL2 2 2 

x 
=lJ = 

-1 A 
115 = u2 = mn = 4F2 > a iY I 

-44 nL and 7 form a massive Dirac fermion. 
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As a result of this degeneracy at the tree level and the unbroken 

discrete symmetry $I + 5* we obtain 

2 2 

"h+ = '- = 
0 

h 
(4.18) 

to one-loop order. This is strictly a one-loop result. The reason for 

this is that at the tree level the relevant particles (see multiplets in 

eqs. (4.13)- (4.17)) f ormed degenerate supermultiplets. The one-loop 

contributions are going to split this degeneracy. In fact, the amount of 

splitting will be related to the couplings of the Goldstino (see fig. 3). 

Once the degeneracy of the supermultiplets is lifted, the Higgs will 

obtain a mass of the order of 

2 
uh - r!~ oRopg;F2 (4.19) 

If u2 
h+ 

and/or p2 is negative, then the scale of weak interactions 
h- 

is radiatively induced and does not have to be introduced by hand! In 

this case 

(4.20) 

which implies that 

FzAlJ 
( > 1 - 10 TeV 

Note that the order in which the Higgs mass is induced is model 

dependent. 

5. Supercolor 

In the previous sections we outlined the advantages of supersymmetric 

theories and discussed some constraints in order that these theories 

satisfy the second criterion of naturalness. Namely, the low energy 

world in these theories is insensitive to minute changes of the high energy 
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bare quantities of the theory. These theories however do not satisfy the 

first criterion of naturalness. That is, dimensional quantities much 

smaller than the fundamental cutoff have to be introduced by hand. In 

order to solve this problem, we introduce into the preceding scenario a 

new strong interaction with new fermions carrying this strong charge. 

These new fermions and their interactions shall replace the states S, 

3, Nl and N2 (eq. (4.4)) introduced previously in order to break both 

supersymmetry and the gauge symmetry. The resulting theory does not 

explicitly contain any dimensional parameters and the huge ratio of the 

Planck scale to the weak interaction scale is naturally explained by the 

logarithmic variation of the dimensionless coupling for the new strong 

interaction. 

In this section we want to describe how the new strong interaction 

can in principle break both supersymmetry and the gauge symmetry. 

In a uniscale scenario (sect. 4) the new strong interaction is iden- 

tical with the usual Technicolor forces. In a biscale scenario (sect. 4) 

however, the first scale of symmetry breaking denoted by A(Ul> >> Gi' 

does not involve the breaking of the standard SU(2)I, 8 U(l)y weak forces. 

As a result we shall refer to this new strong force, which is responsible 

for the breaking at A(Ul) as Supercolor. 

We now wish to demonstrate how supersymmetry is broken by condensates 

which are bilinear in superfermions belonging to scalar multiplets. 

(Superfermions are the fermions that carry Supercolor in the biscale 

scenario or Technicolor in the uniscale scenario). Consider two scalar 

multiplets Sl and S2 given by 
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LF 88 $1 + Qle + Jz 1 

(5.1) 

’ s2 = Jz 92 + 4J2e + % F2ee . 

Assume now that when Supercolor becomes strong at a scale A,, 

$1 and $, condense. 

(J11J12) - A; ie 0 - - (5.2) 

It is easy to see that this condensate breaks the supersymmetry if the - 

equation of motion for the auxiliary fields is: 

F1 = F2= 0 . (5.3) 

To see this, note that by multiplying S1S2 we obtain a new scalar multi- 

plet: 

+ cp,Qe + 3 &F2+ 92F1+ ‘!yk2j@~ (5.4) 

Thus under a supersymmetry transformation parametrized by c1 we have that: 

Therefore, if Fl = F2 = 0 and <$l$,> # 0 , we have 

(5.5) 

(5.6) 

and supersymmetry is spontaneously broken. We can then identify 

(l/m OqJ, + 4,vJ,) as the Goldstone fermion associated with the breaking 

of supersymmetry. 
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So far we have shown that when the fermions contained in the two 

scalar multiplets Sl and S2 condense, supersymmetry is broken if Fl= F2= 0. 

Under what conditions is Fl = F2 = 0 satisfied? This question is easily 

answered. Notice that the kinetic energy terms of the multiplet Sl and 

S2 give rise to terms in the Lagrangian which have the form 

1" 1* 2 3 2 FlFl +-z F2F2 . (5.7) 

In order to ensure that Fl = F2 = 0, it is sufficient to require 

that no other terms containing Fl or F2 appear in the Lagrangian. This 

is easily done. Terms of the form 

sl “2) F ; ('1 l 'l)F ' ('2' '2)F (5.8) 

are forbidden by chiral and/or gauge symmetries. Such chiral symmetries 

are present in out theories since masses are not put in by hand. Similarly, 

terms of the form 

S2 3 
1 l s2 ;  s1 l s ;  ;  s1 ;  

3 
s2 (5.9) 

are forbidden by gauge symmetries in the realistic examples of interest. § 

The terms of eqs. (5.8) and (5.9) are the only ones allowed by renormal- 

izability. Thus indeed the equations of motion Fl = F2 = 0 are easy to 

satisfy. They simply follow from chiral and gauge symmetries. 

As a specific example for applying these ideas consider an 

SO(N>SC @ SU(4jps @ 3J(2)L 8 T3R group with the following chiral 

5 Our argument is exact in the limit in which the Yukawa couplings gy of 
superfermions to ordinary fermions (g, $! $ $2, $ = ordinary-fermion) 
vanish. Turning on a small Yukawa coupling will not change the results. 



-2o- 

multiplets: 

S = 
aa ( N, 4, 1, & 1 

( N, i;, 1, -4 > (5.10) 

J$ = (1, 1, 2, 2%) 

where a = 1, 2, 3, 4 is an SU(4)ps index and a,B ~1, . . . N are SO(N) 

indices. 

When the Supercolor SO(N)sc forces become strong at the scale As we 

assume that the following condensates form: * 

((S4as4@'a'~F) = A: 

((s;4S;46a8)F) = A; (5011) 

where c = 1,2,3 is the SU(3)color index. These condensates break both 

supersymmetry and the gauge symmetry SU(4)ps QD T3R down to SU(3)= B U(l)yO 

They replace the scalar multiplets Sab, gab, N1 and N2 of the example of 

sect. 4. Since supersymmetry gets broken at As, the Higgs fields h' can 

obtain masses squared proportional to Ai. In the present dynamical 

example these masses are of order 

2 2 2 
ph N "RgRAS (5.12) 

The Higgs does not receive mass at the tree level as a result of 

. the discrete symmetry Saa +S 'a+ 
a which we assume is not spontaneously 

* The breaking pattern we have just discussed does not satisfy the cri- 
teria of subgroup alignment as discussed by M. Peskin and J. Preskill 
ClOl. 
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broken. It does receive a mass squared to one loop from the graphs of 

fig. 4. This mass squared is of order 

2 2 
'h -+a m R (5.13) 

2 where m 22 
- gRAs. The various factors in eq. (5.13) are simply understood 

as follows: the factor of aR arises because we are computing to one loop 

and T3R is the only common interaction of the Higgs supermultiplet and 

the supersymmetry breaking supermultiplets S and S', 
2 ph is proportional 

to A: because As is the scale of supersymmetry breaking as well as the 

scale below which an unsafe U(1) emerges. The reason why m2 N g;A; 

instead of m2 N g;Ai is associated with the fact that all of the mass 

squared mixings of the U(l)T 
3R 

gauge boson are proportional to gR 

(see figs. 4). Again if u;?, < 0 then the weak interaction scale would 

arise by radiative corrections from the scale AS. In this case we would 

have 

G;' - J&T A, (5.14) 

or A, - 3 TeV. This implies that the color triplet Pati-Salam generators 

would have masses of order of 3 TeV. Phenomenological constraints from 

K -t ue exclude such light Pati-Salam generators Clll. Thus, if the above 

estimates are correct, this scenario with u 2 h < 0 is excluded and thus the 

scale of weak interactions has to come from a second round of Techni- 

colored dynamical symmetry breaking. In other models where the symmetry 

above As does not include SU(4)ps it is of course still possible to have 

the scenario with u: < 0 and thus a radiatively induced scale of weak 

interactions. 
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6. Closing remarks 

In this paper we outlined several new scenaria for constructing 

natural theories with elementary scalars. Scalars were protected from 

receiving ultraheavy masses by having a supersymmetry down to some energy 

scale A N .3-10 TeV. The first consequence of these scenaria was that 

the symmetry of the world above A cannot be SU(3)Fb SU(2)L b U(l)y with 

standard families. 

The most appealing scenaria of all that we have presented are the 

uniscale scenario with right-handed generations at -100 GeV and the 

biscale scenario with radiatively induces scale of weak interactions. 

We proposed scenaria combining supersymmetry with a new strong force 

(Supercolor), which would be able to explain the magnitude of the scale 

of low energy physics where supersymmetry and weak interactions are 

broken. 

Our discussion has been very general and no models have been 

offered. Therefore, we are not able to address several important issues. 

These issues include: (1) understanding why the usual particles remain 

light whereas their supersymmetric partners become heavy or unobservable, 

and (2) understanding whether rare processes (i.e., %-KS mass difference) 

are indeed supressed in spite of the several new degrees of freedom that 

can potentially be dangerous. 

Upon completion of this work, we were informed that E. Witten has 

proven the following theorem concerning the supersymmetric U(1) problem. 

If the U(1) interaction is unified at some grand scale AGm in a non- 

Abelian gauge group, then the associated D term 5 0~ does not arise. 

In view of this result, the simplest scenario consistent with our 
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philosophy is to have a grand unified theory GGUT of all ordinary 

particles, together with a Technicolored group GTC, such that the theory 

at the grand scale is GGUT 8 GTC Q SUPERSYMMETRY. A possible breaking 

scheme would involve the breaking of GGUT at AGUM N 10 15 GeV to 

SU(3), Q SLJ(2)L 8 U(l)y 8 GTC B SUPERSYMMETRY. Then GTC becomes strong 

at ATC N TeV and forms T.C. condensates @Q> which break supersymmetry 

as discussed in sect. 5. Finally, if the Higgs fzld couples directly 

to GQ it will obtain a vacuum expectation value <h> which in turn gives 

mass to ordinary fermions via standard Yukawa couplings. 

Finally, we have learned that M. Dine, W. Fischler and M. Srednicki 

are working on ideas similar to those discussed in this paper and that 

a manuscript is now in preparation. 

Acknowledgements 

We would like to thank M. Peskin and F. Wilczek for many valuable 

discussions. One of us, S.D., would also like to thank H. Georgi, 

S. Weinberg and B. Zumino for very valuable discussions and the 

Institute for Theoretical Physics at Santa Barbara for their hospitality. 

Finally, we especially thank 1;. Susskind for his invaluable support 

and participation in discussing many ideas treated in the paper. 



-24- 

References 

Cl] E. Gildener, Phys. Rev. D14 (1976) 1667; S. Weinberg, Harvard 

preprint (1976); A. Buras et al., Nucl. Phys. B135 (1978) 66. 

[21 L. Susskind, Phys. Rev. D20 (1979) 2619; S. Weinberg, Phys. Rev. 

c31 

c41 

c51 

C61 

c71 

CSI 

c91 

Cl01 

Cl11 

D13 (1976) 974 and ibid., D19 (1978) 1277. 

S. Dimopoulos and L. Susskind, Nut. Phys. BI'55 (1979) 237; 

E. Eichten and K. Lane, Phys. Lett. 90B (1980) 125. 

S. Dimopoulos and J. Ellis, CERN-TH-preprint (1980). 

J. Wess and B. Zumino, Nut. Phys. B70 (1974) 39; A. Salam and 

J. Strathdee, Nut. Phys. B76 (1974) 477. 

For a review and several references see P. Fayet and S. Ferrara, 

Physics Reports 32 (1977) 249. 

P. Fayet and J. Illiopoulos, Phys. Lett. 51B (1974) 461. 

For a review see A. D. Dolgov and Ya. B. Zeldovich, Rev. of Mod. 

Phys. 53 (1981) 1. 

E. Farhi and L. Susskind, Phys. Rev. D2O (1979) 3404. 

M. Peskin, Nucl. Phys. B175 (1980) 197; J. Presskill, Nucl. Phys. B 

(to appear). 

See for example S. Dimopoulos, G. Kane and S. Raby, Univ. of Michigan 

preprint UM-HE-80-10 (1980). 



-25- 

Figure captions 

Fig. 1. One loop contribution to SC is quadratically divergent in 

the model of sect. 3. 

Fig. 2. The graphs contributing to the one loop calculation of ui 

for the biscale toy. 

Fig. 3. One loop coupling of the Goldstino ny to the gauge multiplet 

AI,B1. 
lJ 

Fig. 4. Lowest order contributions to ui in a dynamical scheme. 

The states Y,Q and '?',a' are the fermion and scalar elements of the 

matter multiplets S and S', respectively. 



+i 

0 

-0 

ei 

3-81 4084Al 

Fig. 1 



/ ‘* -- -- -o- -c”‘%- 
(d) 

2/L BP, Br 

(e) 

-- h+ 

(f 1 

.-*.- 
% 

3-81 4084A2 

Fig. 2 



3- 81 I “Y 4084A3 

Fig. 3 



h -- 

h -- 

h-- 

4,4’ 

f- 

4,4’ 
----- 

R 9; 

3 -81 4084A4 

Fig. 4 


