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ABSTRACT 

The role of the weak effective Hamiltonian in nonleptonic physics 

is studied. The application of the short-distance technique in simple 

pole transitions in mesons is justified. The amplitude, which is pro- 

portional to the matrix element of the Hamiltonian, is shown to be 

factorizable into a product of a coefficient function (hard part) and 

a matrix element of some local operator (soft part). The proof for such 

a factorization, valid to any order in the perturbative calculation is 

given. The problems encountered in the evaluation of soft parts are 

presented. The use of a similar procedure in more complicated weak 

transitions is questioned, and a discussion of the predictive power 

of the effective Hamiltonian approach is included. 
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1. INTRODUCTION 

In the last 25 years a number of experimental data on weak non- 

leptonic processes has been collected. On the other hand, until recently 

theorists have not been in a position to make valuable predictions in 

this field of physics. Their role was mainly restricted to looking for 

most natural explanations of various experimental facts. Even then the 

advance was slow and accompanied by difficulties. A typical example for 

such efforts is the chronology of the interpretation of the AI = % 

(or "octet") rule in AS = 1 transitions. Experimental evidence for this 

selection rule by now is so strong that only the methods which provide an 

insight into the rule may securely be applied to other problems in weak 

nonleptonic physics. While the progress in the explanation of the rule 

has been achieved using arguments based on the current algebra, PCAC, and 

the color symmetries of hadron states (for baryonic transitions), there 

was no complementary interpretation of the octet dominance in terms of an 

effective interaction Hamiltonian. 192 

The concept of the effective Hamiltonian was created in purely lep- 

tonic interactions. It is based on the observation that leptonic pro- 

cesses may be quite adequately described by a localized, current X 

current type operator. A similar framework was traditionally used in the 

discussion of hadronic pr0cesses.l It was tacitly assumed that strong 

radiative corrections do not spoil the locality of the effective inter- 

action, and the analysis of nonleptonic decays was carried out in terms 

of a local Hamiltonian. Although such an approach could qualitatively 

describe nonleptonic processes, the precise explanation of the AI = '/2 
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selection rule was left to some unspecified strong-interaction dynamical 

effect. 

The situation changed when Wilson3 suggested, in the context of 

the short-distance operator product expansion, a mechanism that could 

eventually acquire stronger short-distance singularities for AI = % than 

for AI = 3/2 terms. Soon it was realized4 that t'tte proper framework for 

the short-distance expansion is the asymptotically free theory of quantum 

chromodynamics (QCD). The fact that an ever increasing number of strong- 

interaction processes has been at least partially calculable using the 

operator expansion, raised the hope that something similar might be done 

even in a weak hadronic sector. 

The pioneering works5 of Gaillard and Lee, and Altarelli and Maiani 

were quite successful. Not only was the class of QCD corrections to the 

AS = 1, AC = 0 weak Hamiltonian summed (with the help of the renormali- 

zation group (RG) equation), but also the desired result emerged: the 

octet part of the effective Hamiltonian was definitely enhanced. Al- 

though the effect was slightly too weak to account completely for the 

AI = % rule, a number of processes6-* - including decays of newly dis- 

covered heavy mesonsg, and CP-violating K-meson decayslo - have been 

analyzed since thenll by the similar technique. 

However, some caution concerning the applicability of the short- 

distance analysis in weak processes has been present all the time12, due 

to the low-energy (i.e., long-distance) character of the considered weak 

decays. The argument that the exponential damping of the weak-boson 

propagator insures the dominance of short distances may be considered 

just as a heuristic one. It comes out that the "factorization" concept 
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provides a more natural framework for the discussion of the effective 

Hamiltonian and the influence of short distances on weak processes. 

The procedure, similar to the one used in the straight QCD analy- 

sis,13 consists of two distinct steps. First, one must demonstrate that 

up to powers of the weak boson mass M (and eventually up to powers of 

heavy quark masses) the structure of momentum flow allows the weak am- 

plitude to be factorized into a "soft" part (in which momenta are typi- 

cally of the order of light quark masses), and a "hard" subprocess domi- 

nated by the large momentum (- M) flows. If such a factorization is 

possible, the soft part could be described in terms of hadronic matrix 

elements of renormalized local operators, whereas the hard part should 

be reduced to a coefficient function dependent on the large invariants 

solely. The next step then is the derivation of the RG equation for the 

coefficient functions. 

While efforts in studies of weak decays were mostly restricted to 

the calculation of anomalous dimensions required in the RG analysis, 

little was done in the explicit justification of the first step.14 One 

indirect consequence of such a situation was the lack of a unique defi- 

nition for the effective Hamiltonian, so that several different schemes 

may be traced in the current literature.16 In this work it is shown 

that no room for ambiguities is left when the correct approach is adopted. 

Although some freedom in the definition (due to the freedom in a choice 

of the renormalization and regularization scheme) remains, the form of 

the effective Hamiltonian is otherwise completely determined. 

However, the main goal of the paper is to justify the short- 

distance technique and the use of the RG analysis in the evaluation of 
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the effective nonleptonic Hamiltonian. It is not a priori clear 

whether such an analysis can be carried out in some particular 

process or not.17 For each class of processes its application has 

to be verified explicitly. In subsequent sections the short-distance 

approach is justified for the broad scale of nonleptonic processes, to 

any order in the perturbative expansion. To complete the analysis, the 

discussion of the actual predictive power of the method is included. 

The plan of the paper is as follows. In the next section the con- 

cept of the factorizability is introduced. In a one-loop example the 

conditions under which the W-boson mass dependence may be extracted from 

the amplitude by means of factorization will be examined. More precise- 

ly, the amplitude (which is proportional to the matrix element of the 

effective Hamiltonian) of a simple AS = 1, AC = 1 transition will be 

written as a coefficient function (which does not depend on the dynamics 

of the process) and of a matrix element of some local gauge-invariant 

operator. The entire M dependence is included in the coefficient func- 

tion, and the matrix element is independent of the W-boson field. Note 

that only when such a factorization is exhibited, can the RG equation 

be used to determine the form of the coefficient function. In Sec. III, 

the analysis will be extended to a two-loop consideration. While the 

factorization in one-loop approximation is rather obvious, the higher 

order corrections require more careful treatment. In this section an 

explicit proof at the two-loop level is presented. Before the general 

proof of factorizability valid to any order in the perturbative calcula- 

tion is given (in Sec. V), the AC = 0, AS = 1 and 0, processes are con- 

sidered in Sec. IV. Included is a discussion of the "second" factori- 
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zation. This tentative name is attributed to the procedure in which the 

dependence on the heavy quark masses is extracted from the amplitude. 

An immediate consequence of such an extraction is the appearance of new, 

"penguin" operators in the calculation. While the investigation in Sec. 

V definitely proves the factorizability in the sense given above, the 

disturbing problems discussed in Sec. VI do not giue too many reasons 

for optimism: it is easy to see that the dependence of weak amplitudes 

on the heavy particle masses may be determined by the RG analysis, but 

the matrix elements of resulting operators still hide the completely 

uncalculable dependence on the light quark masses, dynamics and renorma- 

lization scheme. Therefore it is unlikely that more than a suggestive 

parametrization (in terms of unknown matrix element) is achieved. Any 

insistence on the precise numerical determination of actual nonleptonic 

amplitudes is not justified at present. 

Although this paper should rather be considered as a kind of quali- 

tative analysis, whenever necessary - especially in the proof of the 

factorizability - a detailed calculation is presented. In many other 

occasions the reader is referred to the existing literature on the sub- 

ject. The standard, four-quark gauge model (with QCD, and electroweak 

coupling constants denoted by g and h, respectively) is used. However, 

the problems and conclusions would essentially be the same even in 

models with more than four flavors. The weak interactions are described 

in the renormalizable gauge. 
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11. FACTORIZABILITY IN AC = AS = 1 PROCESSES 

In this and in the following section it is shown that the effective 

AS = 1, AC = 1 weak interaction may be factorized to a "hard" and "soft" 

part, in a class of processes in which the weak interaction takes place 

between two mesons. As an example, the virtual t=nsition D o weak& (io)* 

(followed in the physical process by strong two-body decay of the pole 

particle, K* -+ KT) is considered (see Fig. 1). The intention is to show 

that the effective weak Hamiltonian can be replaced by a set of local 

operators even when QCD corrections are taken into account. More pre- 

cisely, it is claimed that the following equality is valid: 

(K*j3Cff ID) = 2 c Ci (K*l &ID) + O(f4) 
i 

(2.1) 

(M denotes the mass of the charged weak boson). The coefficients Ci in 

(2.1) are independent both on external states and dynamics of the pro- 

cess, and satisfy the RG equation. 

Note that the evaluation of the amplitude (2.1) requires the know- 

ledge of two important pieces of information. One is the probability of 

finding the proper quark-antiquark structure in the incoming (or out- 

going) meson. This information should be built in wave functions of 

physical particles. In addition, the sum of all Born diagrams for 

weak c + u ----+ s + d scattering in the perturbative QCD has to be known. 

Just at this level the factorization should be demonstrated. 

In what follows, the factorization will be explicitly proved to the 

order g4 (t wo-loop level) by a careful diagrammatic analysis. In the 
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same manner an n-loop proof may (at least in principle) be formulated. 

However, a simpler (although more formal) general proof, based on the 

theory of the renormalization of operators, exists. It will be outlined 

in Sec. V. 

It is important to emphasize that momenta of quarks inside mesons 

are in the further analysis considered to be muchsmaller than M and 

other large scales involved. (The term "short distances" should rather 

be associated with the large loop-momenta contribution, than with momenta 

of external particles). Therefore, the terms of order l/M4 give small 

corrections, and - to simplify the notation - will often be omitted in 

further expressions. 

At the quark level the relation (2.1) can be symbolically written 

as1* 

M2<Z@> 0+2+4+... c"+g2c1+g4c2+ i i i "* <@ > i 0+2+4+...' (2.2) 

(The subscripts on <%> and <di> refer to orders of g contributions). 

The meaning of the above expression is as follows. The entire QCD cor- 

rections to the weak Hamiltonian can be factorized as a product of cor- 

rections to the coefficient function(s) and corrections to the matrix 

elements of the appropriate operator(s). 

The inductive proof of the factorizability should include two steps; 

supposing that the relation (2.2) is valid to the order g 
2n-2 , one must 

show that 

(i) the order g 2n result is described by the same set of operators 
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M2<%)a, = D;<@i>2n+g2D:<@i>2n-2 + . . . + g2nD;<@i>o , (2.3) 

and that 

(ii) the coefficients Di satisfy relations 

Dt = Ci ; R = O,l,...,(n+) , (2.4) 

. I.e., coefficients remain the same as found by the lower order analysis. 

(In addition, a new coefficient D y : Ci is generated.) Only when both 

steps are confirmed, the inductive proof follows. 

It is instructive to start the analysis with the consideration of 

the lowest order corrections to the process. They are presented in 

Fig. 2. One can show that to this order 

<s> _ h2cos2e 
- 8M2 ((l + -$ ') ~'c),-,(Gd),-A 

(2.5) 
2 

+ - B 
161~~ 

(shac)v-A(;Xad)V , 

where 

A= _ +,a~a)(2ydy(dx Rn X(xyYi~~ypipj~ , (2.6) 

and 

!2nM2 +f,ydyl dx Rn O(x,y;m~,PiPj) l (2.7) 
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(A and B are contributions from Fig. 2a and 2b, respectively.) Functions 

x and $I depend on the masses of quarks m 
9' 

and external momenta p.. The 
J 

function x 
S 

in (2.6) denotes the contribution of the counterterm asso- 

ciated with the renormalization of the weak vertex in Fig. 2a. Its form 

depends on the procedure. For example, 

xs 2 x(mq,p.P. N -u2) =J 
, 

for the off-shell renormalization in a "symmetric point" u2, and 

XS 5 x(m + 0 , P.P. - -a2> 
q =J 

for the class of mass-independent renormalization schemes. One can - 

using the Fierz-rearrangement of both Lorentz and color indexes - 

reexpress (2.5) with the help of operators 

@84 = (SC cd + Ed UC) (V-A) (V-A) 
(2.8) 

@20 = (SC ud - id ;;c) (V-A)(V-A) 

transforming as components of 84 and 20 dimensional W(4) represen- - - 

tations. Equation (2.5) now reads 

cYif> = h2cos2v 1 

8M2 2 (A + $ B) 
I 

'84 

(2.9) 

Operators in (2.9), due to their color, flavor and chiral structure are 
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candidates for the operator basis on the right-hand side of the ex- 

pression (2.1). In order to show the validity of the relation (2.1), 

matrix elements of operators (2.8), i.e., the QCD corrections to the 

vertices generated by these operators, have to be found. The basic dia- 

grams are displayed in Fig. 3. Since the diagrams are divergent, one 

must define the appropriate renormalization procebre in order to absorb 

divergences. When some of the known subtraction procedures are applied, 

the renormalized result can be written as 

2 
<@84>o+2 = 1 +g 2- 

161~~ 
(A + j- B) 484 

I 
(2.10) 

2 
<@20>o+2 = l+L(A-~~)C?20 

161~~ 3 

where 

$s (like xs in (2.6)) d epends on the renormalization procedure. 

Comparing expressions (2.5)-(2.7) and (2.9)-(2.11) one finds that 

<cl%> h 
2 2 

= 0+2 cos e 3 c84<@84>o + 2 + c20<@20>o+ 2} 
8M2 i 

(2.12) 
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where 

2 
= 1 +L 

167~~ 

2 
=1+-L-- 

167~~ 

2/3 
(B - E) 

-413 

3 

(2.13) 

Thus, Eq. (2.1) is proved up to the order gL. The coefficients (2.13) 

are independent of dynamics and, for a suitable choice of the renormali- 

zation procedure, they do not even depend on the masses of quarks. 

Since coefficients (2.13) get their main contribution from the loop mo- 

menta of order M, they are sometimes referred to as a "hard" part of the 

effective Hamiltonian. 

The method presented relies on an explicit evaluation of diagrams 

and obviously cannot be convenient for the higher orders proof. Another 

method, applied already to the short-distance analysis of AS = 2 weak 

interactions by Witten,15 seems to be more helpful. It is based on a 

close correspondence between diagrams related to <jce> and <@>. 

In general, two groups of diagrams are encountered in the evaluation 

of <m. In the first group ultraviolet (UV) behavior allows the re- 

placement of the weak boson propagator (k2 a M2) -' by -1/M2, hence - in 

terms of graphs - allows the shrinkage of the propagator to a point. 

That can, for example, certainly be done for diagrams (x) and (a) in 

Fig. 2. The diagrammatic equality (c E cos 0) 

h2c2 (2x) + (2a) = - 
8M2 

[(3x) + (3a)] (+O(Mm4)) (2.14) 
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is obvious. However, this procedure does not work when applied on dia- 

grams 2(b). The shrinking of the weak propagator introduces an UV di- 

vergence in otherwise convergent integrals. (That is the consequence 

of the fact that M dependence of these diagrams is (anM)/M2 rather than 

1/M2, as may be seen from (2.7).) Fortunately, the differentiation with 

respect to external momenta improves the UV conve*ence. By simple 

power counting one can convince oneself that 

a(2b) = h2c2 - a(3b) . 
8M2 

(2.15) 

(The differentiation is symbolically denoted by a.) After the integra- 

tion, (2.15) becomes 

h2c2 (2b) = - 
8~~ 

[ (3b) + const. 1 . (2.16) 

The integration-constant term (proportional to g2>, since independent of 

momenta, must be a tree approximation matrix element15 of local operators 

(2.8). Combining (2.14)-(2.17) one gets (constant in (2.16) is denoted 

by ~~~9: 

h2c2 (2) = - 
8M2 

1 + g2c(2) x (3) 1 ' (2.17) 

This equality corresponds to the relation (2.12), derived earlier by a 

straight diagrammatic calculation. 

In the same manner, the differentiation with respect to external 

momenta improves the UV behavior of higher order corrections, and helps 

to reach the step (i) in the inductive proof. Step (ii) could not be 
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verified at the one-loop level, and it might be interesting to check it 

explicitly in a two-loop calculation. The procedure, based on the com- 

binatorics of diagrams, will be illustrated in the next section. 

III. HIGHER ORDERS CONSIDERATION 

While the passage from the tree approximationto the one-loop 

result is rather trivial, the extension to the two-loop level requires 

the justification of both steps (2.3) and (2.4), and may serve as a pro- 

totype for the general inductive proof. 

To facilitate the writing, unimportant constants and indices are 

omitted, and symbolic "diagrammatic equations" are used. However, the 

careful treatment always stands behind such simplified notations. 

It was already established, see Eq. (2.16), that diagrams in Fig. 

2b differ from those in Fig. 3b by a constant, which turns out to be 

proportional to the tree approximation matrix element (3x): 

(2b) = (3b) + g2c(2) x (3x) . (3.1) 

A class of higher order corrections (CORR) to diagrams in Fig. 2b is 

presented in Fig. 4. Superficially, diagrams (2b) in a circle denoted 

in the figure may be replaced by the diagrams on the right-hand side of 

equation (3.1). But this expectation is false; the diagrams in Fig. 4, 

otherwise convergent, would become divergent, and the relation 

CORR (2b) = CORR[(3b) + g2c(2) x (3x) , 1 (3.2) 

is not correct. However, the differentiation with respect to external 
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momenta improves the convergence. It is explained in Fig. 5. If the 

derivative (marked with an X) acts on a propagator inside the subdiagram 

(2b) (as denoted symbolically in Fig. 5a), the boson propagator - as in 

Sec. II - can be replaced by -l/M2: 

aca> [CORR(2b)] = a (.a> [COW%)] . (3.3) 
- 

When the derivative acts outside the subdiagram (as in Fig. 5b), the 

overall convergence is improved, but the convergence of the subdiagram is 

not. Therefore, the simple shrinking of the weak propagator is now for- 

bidden. However, as demonstrated by Witten,15 the momenta that flow into 

the subdiagram (2b) become upon integration of the order of external 

momenta, and one may use the relation (3.1): 

a(-b) [CORR(2b)] = a(,) [CORR(3b)] + g2c(2)a[CORR(3x)] . (3.4) 

Equalities (3.3) and (3.4), summed and integrated, give the relation 

CORR(2b) = CORR(3b) + g2c 
(2) 

CORR(3x) + g4:(4)(3x) , (3.5) 

which is now the correct form of (3.2) The last term in (3.5) is the 

integration constant. It is of the order g4, and represents the tree 

matrix element of the starting operator(s). 

The simple power counting shows that all the other two-loop cor- 

rections either give g 4 contributions to the matrix element of operators 

(2.81, or add to the integration constant (thus changing c 
(4) 

in (3.5) 

to c(~)), but leave the middle term on the right-hand side of Eq. (3.5) 

unchanged. Since the corrections to the diagram (3x) are just the order 
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gL corrections to the matrix element of the starting operator(s), 

CORR(3x) = <6>2 

. 

one gets the final result 

W>4 N <6>4 + !g2C(,)<e7>, + g4c(4)<@>o . (3.6) 

As expected, c 
(2) 

is the same constant as already found in Sec. II. 

Any other outcome would mean that the factorization does not exist. 

The elements of the analysis just described, may be of use in a 

general inductive proof. The differentiation improves the convergence 

of any n-loop diagram. It is illustrated in Fig. 6. The position of 

the differentiation mark determines what should be considered as a sub- 

diagram. As before, when the derivative acts on the "external leg" of 

the subdiagram (for which, by the assumption, (2.2) has already been 

shown), the subdiagram becomes dominated by loop momenta of the same 

order as external momenta. That enables one to express the subdiagram 

as a linear combination of matrix elements of local operators (see Fig. 

6) . The integration-constant term (independent on external momenta) is - 

due to the chiral, color and flavor structure - the tree matrix element 

of the starting operator(s), and no new operators enter the analysis. 

That completes part (i) of the inductive proof. The proof of step (ii) 

requires the careful sorting of n-loop diagrams: in the first group 

"simple" corrections to the (n-l)-loop Hamiltonian have to be classified. 

(Corrections analogous to those in Fig. 4 are called "simple"). For this 

class, just as in the two-loop calculation, one should get 
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CORR<%'>2n 2 = CORR<6'>2n 2 + CORR g2c 
[ (2)<@'2n-4 + l *' 1 

(3.7) 
+ g2n(const > x . <@> 0 * 

All other n-loop corrections should contribute either to the first, or 

to the last term on the right-hand side of (3.7),aot affecting the re- 

maining part of the expression. 

Note, by the way, that through a similar analysis one may show a 

factorizability of the electromagnetic corrections to weak AS = AC = 1 

processes. The factorizability, as far as weak interactions are con- 

sidered, has nothing to do with the specific asymptotic behavior of the 

QCD (or QED), but is rather the consequence of the renormalizabi1ity.l' 

The rough sketch given above just indicates the path which could be 

followed by the actual proof. In reality the proof of step (ii) becomes 

extremely complicated due to the variety of corrections that have to be 

taken into account when the number of loops exceeds two or three. To 

circumvent these difficulties a completely different method is used in 

Sec. V, in the general proof of the factorizability. However, the 

technique presented in the preceding and this section has the advantage 

that one can visualize what is actually done in the calculation: a weak 

interaction problem (the evaluation of <X>) is transformed into the 

"pure" QCD problem (the calculation of matrix elements <a>>. The weak 

interactions have left their trace in the chiral and flavor structure of 

operators, but the W-boson field is completely eliminated. Only the 

mass of the weak boson appears as an argument upon the value of-which 

the coefficient functions Ci depend. 
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One might wonder what the main goal of such a procedure is. The 

situation is not analogous to that encountered in the application of the 

short-distance technique in straight QCD.13 There, in the class of 

reactions at large transverse momentum q 2 the dynamics of the (hard) 

scattering process can be factorized from the physics of the hadronic 

wave function. Thus the ratio of two quantities measured at different 

energies does not depend on bound state dynamics and on the precise 

evaluation of the matrix elements (the soft part at both energies is the 

same). The characteristic example is the description of the pion form 

factor at large q2. In few cases not only the hard part, but also 

hadronic wave functions can be treated perturbatively.13 In weak 

processes matrix elements cannot be calculated and the W-boson mass - 

that plays a role of (large) q2 - is fixed, there is no possibility for 

the comparison, and the soft part cannot be removed. Although the M2- 

dependence of the coefficients can be found, as long as the QCD correc- 

tions to the operator vertices are uncalculable, nothing but a suitable 

parametrization is achieved. Such parametrization may have sense only 

if the matrix elements of various operators are expected to be of the 

same order of magnitude. Then, by comparing coefficients, the relative 

importance of operators with diverse substructure (e.g., AI = 0 and 1 

isospin changing operators), contributing to a single process, can be 

determined. Otherwise, the further improvement of the analysis must be 

looked for. The processes in which an approximate equality of matrix 

elements of operators is not expected, are studied in the next section. 
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IV. AC = 0 PROCESSES - "SECOND" FACTORIZATION 

As far as the elimination of the W-boson field is considered, the 

analysis of the factorizability for the AS = 1, AC = 0 processes does 

not differ much from the analysis in the preceding section. However, 

while in the AC = 1 case the exchange of the weak4oson always happens 

between two quark-lines, in the AC = 0 processes the weak transition may 

occur even in a single quark-line. Nevertheless, as will be shown, the 

operator basis remains similar to those found in the previous case, and 

is constructed by only two operators. 

The discussion is again restricted to virtual weak decays in the 

meson sector. The particular process to be considered is the (K-)* + rTT- 

transition, the weak part of the K" -t IT+IT- decay displayed in Fig. 7. 

The free-field result (no QCD corrections) can be described with 

the help of two operators related by their SU(4) properties to opera- 

tors (-2.8): 

@84 = [(&Us - ;iccs> + (&&I - &Cc> 1 (V-A) (V-A) 

(4.1) 

- &Ts) - - - - - (dsuu - dscc) 1 (V-A)(V-A) ' 

When higher order corrections are taken into account, a set of diagrams 

which have no precedents in Sec. II and III, may be constructed7 (see 

Fig. 8). Such new "penguin" diagrams might create a new set of local 

operators (penguin operators) not included in (4.1). However, as a 

consequence of the renormalizability, such a situation does not-occur: 

the entire contribution of penguin diagrams (in which the weak transition 
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takes place in a single quark-line) may be absorbed into the matrix 

elements of operators (4.1), and no new operator is needed in the basis. 

To illustrate this statement let me first consider the diagram in 

Fig. 9. (The degree of divergence for such a "self-energy" diagram is 

so high that even the Higgs ghost particle I$ contributes to the order 

O(l/M2).) To the lowest order, the s + d transitdon is described by the 

unrenormalized amplitude (s E sine) 

CAM h2sc ( 2 mf) -- 
[ 

2 
das NT "u - + const. - RnM2 n- 4 

x $(l - y5)s + O(M-4) . 

7 3 

(4.2) 

The residue at the pole n + 4 is proportional to (mc-mi)/M2, and no 

mass-independent renormalization scheme exists for the weak interaction 

part of the standard model. However, the renormalization constant can 

be defined as the value of the expression (4.2) calculated at some fixed 

external momentum. Since the interesting part of (4.2) is independent 

of momenta, the entire l/M2 contribution of Fig. 9 is absorbed into the 

(weak) renormalization constant 

Z N h2sc (m2 _ m2) 
[ 

2 _ ___ 
das 8M2 u c + const. - RnM2 n- 4 1 , (4.3) 

and diagrams 9 (and 8a) do not contribute to <ITI%IK'>. 

Another interesting diagram is presented in Fig. 10. While the 

&G part of this vertex correction is absorbed by the renormalization 

constant (4.3), the remainder deserves attention. The appropriate 
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matrix element, up to l/M2 terms, is 

1 2 m 
dx x(1-x)&n i 

- q2x(1-x) 

m 
C 

- q2x(l-x) 

(4.4) 

x 3 &u(l-Y5)Xas (qffqB - ga8q2)G; + O(M-4) . 
47T 

However, the result (4.4) does not have !&@I2 dependence, and that means 

that weak propagators in Fig. 10 can be shrunk to a point. In other 

words, diagrams 10 (and 8b) do not generate new operators, but rather 

contribute to matrix elements of starting operators (4.1), as indicated 

in Fig. 11. This property is the consequence of the GIM mechanism and 

of the renormalizability (the dimension-six counterterm, &aaG, is for- 

bidden in the renormalizable Lagrangian), and hence it must be fulfilled 

to any loop level (see the related discussion in Ref. 20). 

Once the possible source of new operators is eliminated, the 

analysis proceeds just as in Sec. II and III. The contribution of 

standard diagrams (analogous to those in Fig. 2) may be factorized, 

leading to the effective AS = 1, AC = 0 Hamiltonian of the form 

2 
ccYr> = hsc c84<@>84 

8M2 2 1 
+ c20< d20> 

> 
a (4.5) 

The coefficients C are the same as in (2.13). Like in the AS = AC = 1 

case, the factorization is true for any choice of both the renormaliza- 

tion scheme, and the renormalization scale. 

So far, the amplitude of the weak process is parametrized by two, 
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generally unknown, matrix elements 

< dg4> and <620> . (4.6) 

However, looking back on diagrams that determine (4.6), one finds two 

clearly distinctive classes: diagrams without (similar to those in 

Figs. 3a,b), and with (see Fig. llb) closed fermiTm loops. The former 

"standard" diagrams are expected to maintain the original left-left 

chiral structure, but the latter - due to vector coupling of the gluon 

field - must in addition have left-right parts too. Since mesons con- 

tain both left- and right-handed quarks, it is expected that diagrams 

with closed loops (being able to annihilate both components of the meson 

wave function) have an important role in the description of the process. 

Therefore, one would like to separate their contribution. According to 

the decoupling theorem,21 it may be done in certain circumstances. 

More precisely, if none of the external particles is the charm- 

quark, and if external momenta may be considered small as compared to m 
C’ 

the matrix elements (4.6) can be further factorized 

<cl?,> - c Dij<LPj> (+ O(mc2)) ’ (4.7) 

where the new operator basis { LPj) belongs to the "effective field 

theory",15'21 with only three quark flavors. The method is described 

extensively in the literature7*10*15 and here only the main idea will be 

illustrated. 

The goal of the second factorization (4.7) is explained earlier: 

two parameters (4.6) are replaced by a larger number of unknown matrix 
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elements <LPj>, but with the expectation that in the new basis hopefully 

dominant penguin operators will appear explicitly. 

The factorization (4.7) is almost evident for the "standard" dia- 

grams, and the discussion will be concentrated on the contribution of 

the diagram llb. It is easy to get (in the four-flavor theory!) 

1 rn? - q2x(1-x) 
<d 2 

84,20'Fig.llb N g o J dx x(1-x)!Ln ; 
m 

C 
- q2x(1-x) 

(4.8) 

x -L- &u(l 
4r2 

- y5)has uyaXau . 

The integral in (4.8) can be rearranged to read 

J / 
1 

'2 55 
+-is dx x(1-x)Rn - 

0 rn2 
L (4.9) 

1 

+ g2 s 

m2 
dx x(1-x)Rn u 

- q2x(1-x) 
+ O(mc2) , 

0 73 

where r s is some constant (independent of external momenta), the inter- 

pretation of which will become clear in the following. The first term 

in the decomposition (4.9) may be considered as an order-g2 correction 

to the (mc-dependent) coefficient function D in (4.7), and the second 

term as an appropriately renormalized g2 correction to the matrix 

element of operators 

(&;d f :d;u) (V-A)(V-A) ' 
(4.10) 
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in a theory with only three quark flavors. In such an interpretation 

2 characterizes the renormalization scheme. Like $s and xs before 

(see Sec. II), 'cs may be either dependent, or independent on masses of 

(light) quarks. 

The appearance of the renormalization function rs implicitly signals 

the presence of the new component in the basis ofrenormalized operators. 

The new term has a form [see (4.8) and (4.9)1 characteristic for penguin 

operators: 

(dXs) v&~~)V - (4.11) 

Note that the elimination of the charm-quark field in the course of the 

second factorization made the GIM mechanism inoperable, and penguin 

diagrams (Fig. 11) divergent. Consequently, new counterterms had to be 

introduced (or in other words, new operators were admixed) in the re- 

normalization procedure, and the goal of the second factorization was 

achieved: penguin operators (4.11) emerged explicitly in the basis csl). 

Higher order contributions to AS = 1, AC = 0 processes will be dis- 

cussed in context of the general proof of the factorizability, in the 

next section, and this section will be concluded with a brief analysis 

of the AS = 0, AC = 0 weak interactions. 

The new feature is that even the neutral currents can contribute to 

AS = AC = 0 processes, considerably increasing the operator basis 

already in the free-field limit.6 In addition to 84 and 20 terms, the - - 

basis contains operators transforming as 15- - and l-dimensional represen- 

tations. Furthermore, due to the fact that neutral currents in the 
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standard model are coupled to the left- as well as to the right-handed 

quarks, the operators with mixed left-right chirality emerge even before 

the QCD corrections are introduced. That affects substantially the 

higher order calculation. For example, at the one-loop level the leading 

contribution of the penguin-like diagrams in Fig. 12 is not of the order 

l/M2 [compare with (4.4)1, but of the order (anM2*M2. Thus the shrink- 

ing of weak propagators is forbidden, and diagrams in Fig. 12 must be 

related to matrix elements of the new, penguin operator (compare with the 

different situation in Fig. 11). In other words, already the extraction 

of the weak boson masses introduces the penguin operators in the effective 

Hamiltonian. (In the previous example those operators appeared only when 

the charm-quark mass was extracted from the amplitude.) 

From the technical point of view the analysis becomes extremely in- 

volved, but no new concepts are required and the procedure suggested 

throughout this work suffices for the proof of the factorizability even 

in this case. 

V. GENERAL PROOF OF FACTORIZABILITY 

The "diagrammatic" analysis given in previous sections raised a 

hope that the factorization might really be done for weak transitions 

discussed so far. Furthermore, throughout the analysis the very concept 

of the effective interaction became more plausible and understandable. 

The same technique will therefore serve in the next section as the basis 

for the discussion on the applicability of the factorization in-non- 

leptonic processes. However, one must be aware of problems arising 
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when an attempt is made to transmute the sketch of the inductive proof, 

given at the end of Sec. III, to the rigorous and general proof. In 

order to circumvent difficulties, another method will be used in this 

section. It is based on the close relationship between the theory of 

the renormalization of operators22 (TRO), and the factorizability. 

Since the TRO is already known to be valid to any4loop order, such an 

approach seems to be more convenient for a general proof. 

It is useful to start the analysis by forgetting weak interactions 

for a moment, and concentrating the attention to the straight QCD problem 

of the renormalization of operators. The objects under consideration in 

a TRO are Green's functions involving insertions of operators. In gene- 

ral an operator will mix with other operators in a renormalization pro- 

cedure. However, a simpler example of multiplicatively renormalizable 

operators [such as operators (2.8)1 suffices for the purpose of the 

introductory discussion. 

To remove the divergences in Green's functions (GF) of some opera- 

tor, one has to add counterterms to the Lagrangian in such a way that 

counterterms cancel poles in GF.22 As far as GF with only one insertion 

of a multiplicatively renormalizable operator are considered, the TRO 

proves to any loop order that one and only one counterterm is needed. 

Furthermore, the right regularization procedure - which isolates the 

infinities appearing in individual diagrams - has to be chosen. In prin- 

ciple, any regularization, as long as it preserves the gauge symmetries 

of the theory, may be adopted. The suitable choice of the regularization 

will be the main step in the following proof. 

The basic source of interesting divergences (i.e., of divergences 
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that cannot be removed by the QCD renormalization of fields and coupling 

constants) is the vertex in which an operator is placed. To be more 

concrete, operators (2.8) are examined. The Feynman rule for the vertex 

corresponding to one of the operators in (2.8) is typically of the form 

{ Y$l - Y5) l-2 Al - Y,) 3-4, 1 t 1 
, (5.1) 

where indices denote quark-lines along which the vertex has to be read. 

Let me now consider diagrams in which (~5.1) is replaced by the following 

non-local vertex: 

- y5))l-2{yP(1 - Y5))3-4 q21 -A2 
* (5.2) 

Here A is some parameter, and q is the momentum flowing through the 

vertex from quark lines l-2 to lines 3-4. (In general q is the function 

of external as well as of loop momenta.) For small values of q2, vertex 

(5.2) exhibits the same behavior as vertex (5.1), but when q2 grows and 

becomes larger than A2, the expression (5.2) turns off. On the other 

hand, as A2 -t a, the original W divergence is rediscovered. Then it 

follows that A in (5.2) is the regularization parameter which plays a 

role of a W cutoff. 

In the actual theory, only the diagrams with the vertex (5.1) 

appear. However, through the regularization procedure, to any diagram 

with the vertex (5.1) another diagram with the vertex (5.2) may be re- 

lated. That is illustrated in Fig. 13. In Fig. 14, the statement of 

the renormalizability is explained: the divergent part (when A~+ m) 

of diagrams on the left-hand side of the picture can be isolated in a 
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constant multiplying the remaining, finite, A-independent part. 

Figure 15 illustrates the crucial step in the proof. One considers 

a regularized vertex for the sum of operators @ 84 and @20, 

@  = 3 (@84 + @20> = =d(V A) (V-A) . (5.3) 

It is easy to see that the regularized vertex corresponding to the ope- 

rator (5.3) describes exactly the AS = AC = 1 interactions in a theory 

with a weak boson of mass A. Consequently, the right-hand side of Fig. 

15 corresponds to ( XAS = bc = l), provided that A is replaced by M. By 

comparison of Figs. 13, 14 and 15, the following relation can be derived: 

M2<&? 
M2,(piPj) 

N Zii(M2) x ren<d 84'(pipj) 
(5.4) 

+ Z;i(M2) x ren<@ > 
2o (PiPj) 

+ O(M-2) . 

Note again that the left-hand side of the relation (5.4) represents 

properly regularized (with a "cutoff" A = M), but unrenormalized four- 

quark 1PI Green's function with the insertion of the operator (5.3). 

However, the relation (5.4) is just the required proof of the factoriza- 

bility: matrix elements of the effective Hamiltonian are written in the 

operator basis (2.8). While the similar result has already been derived 

at the two-loop level [compare with (3.6)1 , the factorization (5.4) is 

now valid, according to the TRO, to any loop order in the perturbation 

theory. 

To summarize, the renormalization of two particular gauge invariant 



-29- 

operators listed in (2.8) is considered. The insertion of an operator 

in a GF creates divergences, yet a well-defined procedure of the renor- 

malization exists.22 In order to deal with divergent quantities, a 

procedure relating finite (but procedure dependent) expressions to all 

infinite quantities is established. This regularization procedure is 

selected very carefully: it is designed in such &way that it repro- 

duces the original divergences when the regularization parameter tends 

to infinity, but imitates the weak interaction theory when the parameter 

takes a finite value of the weak boson mass. Thus, GF with operator in- 

sertions are in a unique manner related to GF with a (-single) W-boson 

exchange. However, the matrix elements of the effective Hamiltonian may 

be expressed with the help of such GF, and one finally finds that <Z@> 

can be factorized in the operator basis (@84, 020}. Moreover, the facto- 

rization coefficients correspond to renormalization constants of opera- 

tors evaluated at the finite value A = M. 

Let me now consider the AS = 1, AC = 0 transitions. The first step 

in the proof of the factorizability for these transitions is as simple 

as it was for the AS = AC = 1 processes. The new feature, however, ap- 

pears when the next step - the second factorization - is examined. Let 

me remind the reader that the goal of the second factorization is to 

reexpress the matrix elements of certain operators in the four-flavor 

theory, with the help of an operator basis in the three-flavor theory. 

In the sense of the previous discussion, first the renormalization of 

operators in the QCD with only three flavors has to be analyzed. Inte- 

resting operators are those mixing with the operator (4.10) in the 

renormalization procedure. 
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It turns out that (quadratically divergent) diagrams with closed 

quark loops, created by (4.10), remain divergent even after the operator 

vertex is rearranged according to (5.2). (See Fig. 16. For simplicity, 

the procedure is illustrated at the one-loop level.) Therefore another 

regularization parameter has to be introduced. The purpose is the same 

as before - to choose the regularization scheme Lsuch a way that, to a 

certain limit, the underlying weak theory emerges explicitly. The fol- 

lowing procedure fulfills this requirement: the u-quark propagators 

appearing in a diagram with a closed quark loop originated from the 

operator (4.10) have to be replaced throughout the regularization pro- 

cedure, according to the instruction 

lJ(tii - mu)-l -t n(gi - mu)-l - ?(tii - P)-' . (5.5) 
i 

Here pi is the momentum flowing through the i-th fragment of the up- 

quark loop (in general, pi is a function of external and loop momenta), 

while p is the new regularization parameter. It is clear that the p -t 00 

limit reproduces the original divergences of the three-flavor theory. 

However, for any finite value of the regularization parameter, (5.5) is 

nothing but the "GIM mechanism" in the four-quark model with the heavy 

quark of the mass p. A simple combinatorics now leads to the proof of 

the second factorizability (4.7): matrix elements (4.6) may be reexpres- 

2 sed (to the accuracy l/me) in the three-flavor operator basis, to any 

given order in the perturbation theory. 

So far, it was tacitly assumed that the selected regularization 

procedure preserved the global and local gauge symmetries. One intuitive- 
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ly feels that such an assumption is justified, at least to the leading 

order in M and m : 
C 

the regularization is chosen in such a way that the 

features of the standard electroweak theory, known to obey the gauge- 

invariance, are imitated. 

In this section the factorizability (including the "second" one) 

has been proved to any loop-order. However, the we formal character 

of the proof has pushed the real physical problems into the background. 

As already mentioned, the discussion on the applicability in the next 

section is based on the "more physical" diagrammatic approach adopted 

in Sets. II - IY. 

VI. CRITICAL LOOK ON THE APPLICATION 

In the preceding sections several weak virtual transitions in 

mesons were discussed. It was shown that the processes really exhibited 

specific short-distance behavior, and that the factorization could be 

carried out. Once the factorizability is proven (and only then), it is 

quite easy to show that coefficient functions satisfy a renormalization 

group equation. For example, the coefficients Ci (i = 84,20) in (2.12) 

and (4.5) obey, in a mass-independent renormalization scheme, the 

equation 

[ CJ & + B(g) & - vi(g)]Ci(M/w) = 0 Y (6.1) 

for any value of the parameter o (the "renormalization point"). However, 

the mass-independent scheme is not the unique choice. For some- other 

renormalization procedure the additional terms might appear in (6.1) and 
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the RG equation would have different form and solutions. Yet the dif- 

ferences in Ci are compensated for by the differences emerging in the 

calculation of the matrix elements of operators. In principle Eq. (6.1) 

may be solved to any order of accuracy. (In reality the calculation is 

mostly restricted to the leading logarithmic approximation. See, how- 

ever, Ref. 23.) Therefore, the coefficients Ci [and Di - see Eq. (4.7)] 

are from now on treated as known, and attention will be concentrated on 

the matrix elements. 

In the course of this paper it was emphasized that by doing factori- 

zation the main problem of the analysis was shifted from the weak inter- 

actions to the straight QCD regime. A certain class of radiative cor- 

rections to the W-boson exchange was summed, but strong corrections re- 

lated to the vertices generated by operators remained undetermined. 

This problem was already known to the authors of the pioneering works on 

the subject. However, the progress in the description of hadrons by 

quark-model wave functions turned suspicion into hope. Indeed, conside- 

rable success in accounting for many properties of hadrons (in particu- 

lar static) was achieved in this framework.24y25 Therefore it might seem 

that the quark wave functions provide the solution to the problem of cal- 

culation of operator matrix elements. Yet at present their application 

in nonleptonic physics seems to be justified only in rough estimates and 

one still does not have a suitable basis for precise numerical calcula- 

tions. This conclusion emerges from the following observation. While 

the real matrix elements crucially depend on both the renormalization 

parameter and the renormalization procedure, the accessible wave func- 

tions (for example in the bag24 - or in the harmonic oscillator - 



-33- 

mode125) are totally insensitive on the variation of those elements. 

Arguments that some choice of the procedure might describe the physics 

more adequately than some other, have by now no solid confirmation. It 

is hard to imagine any substantial progress before the renormalization 

dependence is built in the wave functions. 

Up to this point simple, virtual, two-body mson transitions have 

been considered. The problems concerning the calculation become even 

more significant when more complicated transitions are taken into ac- 

count. One example is displayed in Fig. 17. The factorization may again 

be achieved by the method used in previous sections. However, not only 

the renormalization procedure dependence, but the momentum and light 

quark mass dependence, and even the chiral and color structure of the 

expression in square brackets (Fig. 17) remain now unknown. (The analo- 

gous problems are encountered in the analyses of the three-body meson 

and baryon decays; see for an axample Fig. 18.) In all such transitions 

a four-quark operator is "forced" to describe a process in which six or 

more quarks take place. The approximation in which the quark not inter- 

acting with the weak boson is considered as a mere "spectator" might help 

to lessen the problem, however, new data (especially for the D-meson 

decays) cast considerable doubt2 on this popular approach. 

Let me look at another aspect of the problem. The "direct" appli- 

cation of the weak Hamiltonian is by no means the only way by which the 

nonleptonic decays in terms of the effective interaction are treated. 

While the considered virtual transitions represent the so-called pole 

contribution, at least two other distinctive types of theoretical con- 

tributions can be isolated. The first one is based on the current 
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algebra analysis.' By reducing the pion field via PCAC in a process 

A + B + 7~ one is left with the rotated Hamiltonian between states A and 

B. Schematically 

<BITIx[A> -+ const. x <B($?IA> . (6.2) 

Thus a matrix element of the Hamiltonian between baryon (or meson) 

states emerges and the analysis corresponds to the analysis of the pole 

contributions (Sets. II - V). 

Another type of contribution is related to the operator structure 

of the effective Hamiltonian. It is the "separable" contribution,7 

following from the assumption that the four-quark operator can be written 

as a product of two quantities ("currents") bilinear in quark fields. 

For example, if the operator 157 = (ab)(cd) contributes (via an effective 

Hamiltonian) to a transition A + B + 71, the assumption is that the 

separation 

<B?~~G\A> N <Bj(ab)(A><nI (cd) IO> (6.3) 

can be done. The assumption (6.3) bears far-reaching consequences. 

Namely, as shown elsewhere,7y8~10 without separable contributions [based 

on (6.3)1 it is almost impossible to describe successfully the decays of 

the kaon and hyperons. Therefore, it is worthwhile to examine how the 

assumption (6.3) fits the factorization picture developed by now. 

Let me remind the reader on the meaning of brackets around an ope- 

rator in a factorized result. <@> denotes the renormalized contribu- 

tion of all-order QCD radiative corrections to the vertex generated by 

the operator 8. That means that <d> carries the information on the 
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subtraction scheme used in the course of the renormalization. Imagine 

now that the operator may be written as a product of two other operators, 

d= 9..?%?. Let me consider the product 

<P> <a!> . (6.4) 

Each operator in (6.4) has now its own renormalization-procedure subtrac- 

tion scheme. Even more, these schemes are completely unrelated to the 

scheme used in the evaluation of <d>. This fact can be represented 

pictorially. In general the diagram in Fig. 19 cannot be cut through 

the operator vertex. Vertices on the right-hand side acquire, by the 

renormalization, the counterterms which cannot be brought into relation 

with the counterterm belonging to the operator don the left-hand side. 

It must be concluded that the separation (6.3) might easily be ill- 

defined. In other words, (6.3) is correct just to some level of approxi- 

mation. The gluon corrections that "bridge" the operator (as the one in 

Fig. 19) are of the greatest importance in the estimate of the validity 

of the separation (6.3). The more important these corrections are, the 

less confident the relation (6.3) is. Unfortunately, no real attempt to 

elucidate this problem has been described so far in the literature. 26 

VII. CONCLUSION 

An increasing number of papers using the effective weak Hamiltonian 

and the short-distance technique in calculations of nonleptonic decay 

rates, of both mesons and baryons, has intensified the necessity for an 

explicit proof of the factorizability. The main part of the present 
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paper is addressed to this problem, and the proof valid to any order is 

achieved. By the same method it is easy to prove that the factorization 

(as far as under this name the isolation of the W-boson and heavy quark 

masses from the amplitude is considered) may be done even for more 

complicated non-valence Fock states (i.e., qqG, qqqq~,...) of mesons and 

baryons. 

Despite this attractive feature, the problem of applicability still 

seems to be far from the solution. The part of QCD corrections in the 

amplitude can be definitely summed and incorporated into the coefficients 

of the operators; but at present there is no way to take into account the 

remaining corrections confined in the matrix elements of operators. The 

analyses exploring the quark-model wave functions may be used in a rough 

estimate of the matrix elements, but a more pretentious application does 

not seem to be justified. A suggestive parametrization is achieved by 

the factorization, but that sheds little light on the problem: as long 

as more reliable wave functions sensitive on the details of the renorma- 

lization procedure are not accessible, the predictive power will be 

small. Presumably, the ability to produce more realistic wave functions 

will be improved with time. In the mean time an immediate application 

of the concept of the effective Hamiltonian might be tried in a calcula- 

tion depending more on experimental data. One should investigate and 

understand more properly the reliability and the range of applicability 

of the separation indicated in (6.3). Then, if such a separation proves 

reasonable, the unknown matrix elements of operators and the measured 

(rather than calculated) weak formfactors could be brought into-rela- 

tion, and the semiempirical calculation might be feasible. 
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Another possibility is that a completely new approach, not neces- 

sarily based on the effective Hamiltonian, should be devised. 27 Anyhow, 

the optimism regarding the understanding of the AI = % rule, and - more 

generally - the calculability of nonleptonic amplitudes in terms of the 

operator expansion, seems to be premature. There is still a lot to be 

done before an ultimate and successful concept emeses. 
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FIGURE CAPTIONS 

Fig. 1. Do -+ KIT process. The interesting part is the weak virtual 

transition Do + E". Z' denotes the effective weak Hamiltonian. 

Fig. 2. Lowest order corrections to the considered AC = AS = 1 process: 

(4 - a tree diagram; (a) - vertex corrections; (b) box 

diagrams. The curly line corresponds to the weak boson (W), 

and the dashed line to the gluon (G). 

Fig. 3. Lowest order corrections to the operator vertices. 

Fig. 4. Higher order corrections to diagrams 2(b). 

Fig. 5. The effect of the differentiation (marked with an X sign). The 

derivative acts on (a) quark propagators inside the subdiagrams, 

and (b) external legs of the subdiagrams. 

Fig. 6. The differentiation of an n-loop diagram. 

Fig. 7. K" + IT'IT- decay. The interesting weak transition is enclosed. 

Fig. 8. "Penguin" diagrams, in which the weak transition takes place in a 

single quark-line. 
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Fig. 9. s + d transition in the lowest order in weak interactions. 

Fig. 10. s + dG transition, related to Fig. 8b. 

Fig. 11. Diagram (a) does not generate new operators. As indicated in 

(b) it may be related to matrix element-f operators (4.1). 

In the three-flavor theory only the up-quark contributes in 

the loop. 

Fig. 12. AS = AC = 0 processes. There is no GIM mechanism, and diagrams 

on the left-hand side generate the penguin operator on the right. 

Fig. 13. Diagrams with a local vertex are, in the course of the regula- 

rization, replaced by diagrams with a nonlocal vertex (denoted 

by a small circle). 

Fig. 14. The scheme for the renormalization. 

Fig. 15. For the certain value of the regularization parameter weak 

interactions are rediscovered. B stands for (@S4 + @jo)/2. 

The result is true in the leading order in M2. 

Fig. 16. The regularization procedure in the three-quark theory. 

LP stands for the operator (4.10). 

Fig. 17. The prototype of a weak transition in a baryon. The effect 

of the factorization is indicated. 



-44- 

Fig. 18 The factorization for a three-body meson decay. 

Fig. 19. The failure of the separability. 
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