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ABSTRACT 

An analysis of a model for the generation of leptonic mass that 

considered only symmetric solutions is extended to include the possibility 

of asymmetric solutions. This possibility arises from a breakdown of a 

permutation symmetry between muon and electron. This broken symmetry 

also furnishes in a natural way a quantum number which distinguishes 

muons from electrons. A numerical study of the solutions of the extended 

model is performed, and it is shown that indeed their structure has a 

region with asymmetric solutions. The observed n- e mass ratio lies 

within the range of estimates using this model, but the mass splitting 

estimates thus obtained are seen to be very sensitive to computational 

errors as well as assumptions about unknown non-QED physics. The reasons 

for this sensitivity and sources of these errors are discussed. By an 

extrapolation of the model beyond the T, a new yet heavier lepton is 

predicted, and a comparison is made to those predicted by some other 

models. Experimental tests of these predictions should be possible 

using coming generations of accelerators. 
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1. INTRODUCTION 

Recently a self-consistent model for the generation of leptonic 

mass was proposed,l hereafter referred to as I. In I, symmetric solu- 

tions (equal masses) were studied. Since the work herein is an extension 

of I to investigate the possibility of asymmetric solutions (unequal 

masses) a brief review of I is in order. - 

The basis of I is the fact point out by Heisenberg and co-workers2 

that since the equations of quantum field theory are nonlinear, symme- 

tries present in those equations may not be manifest in their solutions. 

Developing this idea along different lines, it has been proposed3 that 

a dynamical symmetry breaking could lead to self-consistent solutions 

with nonzero fermion mass. A fermion model with dynamically generated 

physical masses was considered by Baker and Johnson,4 who found that 

consistency required a null bare mass. While this scheme breaks the 

formal y5 invariance that obtains in a QED having fermions described by 

the massless Dirac equation, it has been shown' that the breaking of 

this y5 symmetry is immune to the Goldstone boson dilemma.6 

In the formulation in I, then, it was assumed that the bare lepton 

masses are zero, the physical masses being totally dynamic, deriving 

from the QED self-interaction. This assumption leads to the self- 

consistency equation 

6m i -= 1 (1) 
mi 

which is to be satisfied by the (approximations to) 6mi; the QED self- 

masses. Eq. (l), of course, applies only to the charged leptons. It is 

worth mentioning that since leptonic mass in this model is due to the 
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self-interactions of electric charge, the observed fact that neutrinos 

are massless, or nearly so, finds a natural explanation: they are 

electrically neutral. 

Figure 1 shows a graphic depiction of the general functional expres- 

sion 7 for fermion self-mass. In terms of renormalized quantities, a 

self-consistent perturbation expansion for the QED self-mass was 
- 

developed, and it was shown that a sum of graphs containing vacuum 

polarization loops diverges before the momenta reach infinity. This 

causes a singularity in the (completely renormalized) photon propagator 

(which point we use to define the "Landau mass" ML' f irst found 

by Landau and his co-workers,* who used a somewhat different analysis. 

This difficulty, i.e., a non-Bore1 summable set of graphs,g has also 

been shown to exist in the perturbation expansion for the anomalous 
10 

magnetic moment. 

Within the above framework, there appears to be no obvious means 

to eliminate this singularity in the complete photon propagator;ll 

renormalization circumvents the difficulty without addressing it. 

(Of course, the grand unification schemes offer another possible 

resolution of this difficulty. The motivation for not pursuing this 

avenue was discussed in I.) Accordingly, the Landau singularity is a 

feature of the model in I as well as in its extension here. It is 

tacitly accepted that this singularity is a mathematical abstraction 

of physical aspects of point-like fermions. 

It was shown in I that self-consistent solutions for a dynamically 

generated leptonic mass could be obtained by utilizing an abrupt or 

"hard" ultraviolet cutoff put in by hand just below the Landau singularity. 

In order to eliminate this arbitrary cutoff and still to obtain convergent 
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expressions, it was assumed that the functional form of the complete photon 

propagator is the same above the Landau singularity as it is below and that 

there is a physical cutoff at the Landau singularity. The use of this 

(phenomenological) cutoff implies that there is structure to the electronic 

charge with a scale of the Landau length (%/MLc). Landau and his collabora- 

tors* long ago considered such structure as a possibility; unfortunately, 

structure on this scale (m1O-33 cm) is well belowqresent experimental 

observability12 and hence resides in the realm of theoretical speculation. 

Nevertheless, this concept has received considerable attention, in parti- 

cular in connection with the gravitational interaction.13 

In this formulation, then, the momentum integrations in the expres- 

sions for the self-mass are extended to infinity. Using analytic contin- 

uation to extend the domain of the expression for the photon propagator 

assumes that the functional form found by summation of the perturbation 

series, which is (presumed to be) valid below the Landau singularity 

(or Landau mass) is of greater significance as a solution to the problem 

than the original series itself. This pholosophy is in the same vein 

as that employed in Borel's method of summation.l'+ Thus, while the per- 

turbation expansion is clearly not a complete solution to the self-mass 

problem, it furnished the mathematical basis for this model which offers 

a possibility of solution. 

Following these ideas, the perturbation expansion for leptonic self- 

mass was converted to a series in which the order ny denotes the number 

of photons, each photon carrying (an approximation to) its own vacuum 

polarization. In the limit when n = 00, 
Y 

the graphs of this expansion 

can be put into a one-to-one correspondence with the graphs of the usual 

expansion in which the order or power of the electron charge, n, = Q). 
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In this new series, however, the Landau singularity is contained in the 

(dressed) photon propagator, but with the above assumptions its divergence 

is now under control. Thus, this formulation for the self-mass is well 

defined since there is an effective, self-consistent ultraviolet cutoff 

and the non-Bore1 summability problem (or Landau singularity) is not 

evident in the other divergent quantities of QED, i.e., the fermion 

propagator and the vertex function. 

Using a leading log approximation , good agreement with the Landau 

result was obtained with one photon, dressed as in Fig. 2a. A two- 

photon self-mass calculation was also carried out in I (see Fig. 2b), 

giving results which were qualitatively the same as, and quantitatively 

close to, the one photon calculation. It is conjectured that higher 

order expansions with additional photons would exhibit no further 

qualitative changes , quantitatively converging to a final result. 

It was shown that self-consistency in this model requires that ML 

be in the neighborhood of the Planck mass Mp C(%c/G)' N 10" GeV/c21,15 

probably on the high side. In addition, an estimate (of = 7) for the 

value of the hadronic R in e+e- annihilations was derived. This estimate 

is consistent with present data,16 and anticipates the discovery of some 

new quarks and/or heavy leptons. 

2. THE MUON-ELECTRON SYMMETRY 

In the context of this model, we are now ready to pursue the idea 

of Baker and Glashow,17 that the p- e mass splitting could be associated 

with a (second) symmetry breakdown. The symmetry in question is a permu- 

tation symmetry. As in I, it is assumed (as did Baker and Glashow) that 

the Langrangian and Hamiltonian are of standard QED form, symmetric in 
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the bare (massless) muon and electron wave functions. (The only known 

physical difference between muon and electron is their rest mass.) Thus 

the operator P, permuting muon and electron, leaves the Hamiltonian H 

invariant. That is, 

[P,H]=O . (2) 

It has been shownl* that Eq. (2) results iu conservation law; 

the eigenvalues of P are constants of the motionlg yielding a quantum 

number (+ 1) which distinguishes muon from electron. This law forbids 

reactions containing vertices such as those shown in Fig. 3. In this 

regard, it is relevant to note that it has been established20 that 

the process u+ -t e+u is highly forbidden; its branching ratio is 

< 1.9 x 10 -10 . 

Bui-Duy, who has studied a model incorporating the idea of a permu- 

tation symmetry, 21 has shown that Eq. (2) holds for both symmetric and 

asymmetric solutions, and that no transitions are possible between 

these two regimes. He has pointed out that when a discrete symmetry, 

such as the permutation symmetry assumed here, is broken, one does not 

generate any Goldstone bosons, which have been shown to be associated 

with the breaking of a continuous symmetry.6'22 

3. THE COUPLED EQUATIONS 

Baker and Glashow pointed outI that the self-consistent, self- 

mass equations for the muon and for the electron are coupled through the 

masses of the fermions in the vacuum polarization loops. Since the 

initial Lagrangian is symmetrical in muon and electron, the resulting 

solutions for the electron mass and the muon mass will be of identical 
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form, the muon mass being one of the parameters in the electron solution 

and vice versa. Therefore, if using this formulation one arrives at a 

solution for the electron mass 

me = M(m,,,B) , (3) 

where M is some functional form and I3 stands for all other parameters 

which enter the problem. Then from the symmetricZiJFformulation of the 

problem, the same solution will also apply to the muon, i.e., 

m,, = M(m,,B) , (4) 

The principle of self-consistency applied to the function M means 

that the appropriate solutions to the two-fermion mass-generation prob- 

lem will be given at the intersection points of the lines determined 

by Eqs. (3) and (4) plotted on a graph with me and m as coordinate 1-1 
axes. Thus, from the permutation symmetry of the original Lagrangian, 

one expects that symmetric solutions with m = me can be found. Fr 
The definition 

(5) 

where c1 s l/137 is the fine structure constant, enables the more con- 

venient (dimensionless) parameters Si to be used in place of mi. As in 

I, A is placed at the ultraviolet cutoff. aen convergence is obtained 

by means of a hard cutoff, A is just below ML. When a (phenomenological 

form of a) physical cutoff is used, A = ML. 

Equation (5) enables us to replace Eqs. (3) and (4) by 

and 
51 = F 5, ( ) 

(6) 
5, = F(E1) , 
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where the function F is appropriately derived from the function M, and 

notation of the parameters S is suppressed. The symmetric solutions are, 

ofcourse, characterized by 5, = 52. 

In the case of interest in this paper, where the symmetry is a 

simple permutation symmetry, the disposition of the self-consistent 

solutions is easily visualized graphically by using what we shall call 

the mirror plot. In Fig. 4a, 6, = const. (independent of 52) is plotted, 

which is the result given by the usual second-order perturbation calcu- 

lation (which uses only the first graph on the right-hand side of the 

equation shown in Fig. 2a: no vacuum polarization and hence no coupling). 

The same coordinate system, but where the roles of abscissa and ordinate 

are reversed (by reflection in the 45' symmetry axis), can also be 

employed for 5, = const. Such a curve is also plotted in Fig. 4a where 

the intersection of the two lines (on the symmetry axis) yields the 

symmetric solution (c, = $2). As is seen below, when one goes to higher- 

order calculastioks., one gets a functional dependence of 5, upon 52 such 

that 5, diminishes as 5, increases. Curves schematically depicting this 

functional dependence are plotted in Fig. 4b. Again, of course, the 

symmetric solution is on the symmetry axis. 

Now as mentioned above, asymmetric solutions are also possible; 

one can imagine a functional dependence such that 5, = F(c2) and 

52 = F(cl) intersect at points other than on the symmetry axis. These 

additional intersection points are also self-consistent solutions to 

the problem, but are asymmetric. In Fig. 4c a function F that displays 

both symmetric and asymmetric solutions is plotted. These solutions 

may be stable, unstable or degenerate (as defined below). 
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If there are self-consistent solutions, a simple criterion for their 

stability based upon self-consistency (rather than energy) may be devel- 

oped.23 One first imagines that a small perturbation temporarily moves 

the physical system away from the point of self-consistent solution. 

To represent this occurrence mathematically, one chooses a point (Ei,E;) 

on the 51 = F(S2) curve, say, near to but off of the intersection point 

in question. To test for (self-consistent) stability one then itera- 

tively calculates E2 = F(ci), 5, = F[F(ci)], etc. One will be led by 

this procedure either toward the intersection point or away from it, 

independent of the side on which (Ei,ci) was chosen. If such iterations 

lead one toward the intersection point, then that point shall be defined 

as stable; if they lead one away from the intersection point, then it 

shall be defined as unstable. 

If we consider the symmetric solution, we see that if, on the 

symmetry axis, 

d51 dF(S2) 
-= 
dE2 d<, ' -I ) (7) 

then such an iterative calculation will lead one towards the symmetric 

solution point, and that solution will be stable. Conversely, if 

dC1/dS2 < -1, the solution will be unstable. If dcl/dS2 = -1, the 

solution will be called degenerate. 

This criterion for stability can be applied in general to any 

intersection on the mirror plot, At the intersection point (5,,c2) 

one needs only to determine the sign of the quantity 
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Q E g 1 -- 
dF 

E= 5, z c= 5, 

(8) 

Q > 0 + stable , 

Q<O + unstable , (9) 
and 

Q = 0 -t degenerate . - 

Equation (9) will be employed below as the criterion for stability. 

It can be seen that this criterion dictates that the stability of 

adjacent solutions in the mirror plot will alternate. 

4. DEGENERATE SOLUTIONS 

As discussed in Sec. 1, the symmetric solutions of the model in I 

were studied using a perturbation expansion in which the order n denoted 
Y 

the number of photons, each photon carrying an approximation to its own 

vacuum polarization. Covergent expressions were obtained by analytically 

continuing the functional form of the photon propagator beyond the 

Landau singularity and employing a "soft" physical cutoff at ML. 

A Lorentz-invariant mathematical form was used to phoenmenologically 

represent this cutoff, and the resulting integral was evaluated using 

the principal value prescription. 

We wish to maintain these features for the study of the asymmetric 

solutions. Unfortunately, the integral of the self-consistency equation 

using the Lorentz-invariant cutoff cannot be integrated in closed form. 

However, the slope of the function F(c) is obtainable analytically. 

This slope reveals information about the stability of the solutions 

and, as it turns out, about the function F(S) as well. 
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In Appendix B it is shown that in this formulation one obtains a 

slope of the form 

dF dS1 
dS=q= -1+y , (B-23) 

where E' is a divergent quantity going like lim l/n, and R represents 
W-0 

the (effective) number of "hadronic"24 point-like fermions which couple 
- 

to the photon. Thus, in the limit with n = 0, 

d5 
dS2 = -l 

. (10) 

It is pointed out in Appendix B that this result is independent of 

the details of the form of the (phenomenological) Lorentz-invariant 

cutoff; it need only be continuous across the Landau singularity, 

which on physical grounds is just what one would expect. It is also 

shown that this result is independent of the value of dimensionless 

parameter A', where A' is defined by Eq. (B-12). Thus, assuming that 

(as indicated by the analysis in I) higher order estimates of the leptonic 

self-mass merely alter somewhat the requisite value of A', Eq. (10) is 

valid to all orders of n 
Y' 

Since Eq. (10) is true in general, for 5, # 5, as well as for 

5, = 52% in this approximation 5, = F(c2) and E, = F(S1) plot as straight 

lines on the mirror plot, perpendicular to the symmetry axis, And since 

these lines must coincide at the point 5, = &Y,, they coincide everywhere. 

By the criterion of Eq. (9), therefore, in their limiting form, the 

solutions to the coupled, self-consistent self-mass equations are 

degenerate everywhere, forming a continuous set. 
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This degeneracy arises because, in essence, the slope calculation 

is dominated by divergence of the integrand at the Landau singularity, 

In the limit, A' is a function only of the sum (5' + c2), which occurs 

in the denominator of the vacuum polarization integral, and which speci- 

fies the location of the Landau singularity, While this (El + c2) sym- 

metry is permutation symmetric, it goes beyond what is required in gener- - 
al from the original specification of permutation symmetry of the 

Lagrangian. It follows, then, the (cl + c2) symmetry can be broken; as 

is discussed below, this leads to discrete solutions. 

5. DISCRETE SOLUTIONS 

One can see that if, as one approaches the limiting (degenerate) 

form of F, the (cl + E2) symmetry found above is broken, even infinites- 

imally, then the solutions to the coupled self-mass equation will be 

discrete. It follows that effects that are of negligible consequence 

for the symmetric solutions can be crucial for the asymmetric solutions; 

the degeneracy in the limiting form of F entails a sensitivity to any 

effect, no matter how small, that breaks the (El + c2) symmetry. 

This sensitivity precludes for this model the standard method for 

solving the coupled mass problem: i.e,, calculating order-by-order in 

n e and examining the mirror plot of the resultant function F; since the 

Landau singularity is associated with the sum of an infinite number of 

vacuum polarization graphs, one anticipates that ne would have to be 

taken to a very large number before features relevant to the possibili- 

ties of asymmetric solutions would appear. (Furthermore, to be-usable 

this very high order quasi-divergent calculation would have to be 

carried out to infinitesimal accuracy!) On the other hand, by using 
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the limiting form as a reference solution and correcting it only by 

those effects which break the (cl + c2) symmetry, the prohibitive but 

irrelevant complications associated with the standard high-order calcula- 

tions can be obviated, 

For the purposes of analysis, the approach to the limiting form 

will be studied by imagining that our self-mass calculation is being 
-3 performed in a cubical box of side B and volume V= B . In this situation, 

the (effective) number of fermion phase space states N (including a fac- 

tor 2 for both spin orientations) which are available for the intermed- 

iate state integrations is 8r/3(BA/h)3 where h is Planck's constant. 

Thus for a large but finite box, N is a large but finite number. This 

step furnishes a (physically relevant) small parameter, l/N, in which 

to expand the discrepancy A between the limiting or (6, + c2) symmetric 

form and the actual function F as it approaches this limiting form. 

In Appendix C, by expanding A in a power series in l/N [cf. 

Eq. (C-5)1, it is shown that indeed discrete solutions exist and that 

they are stable and independent of N as N (and V) -t ~0. [For Eq. (C-5) 

to be valid it is, of course, required that the symmetry breaking effects 

that comprise A each vanish like l/N as N + a; it is argued below that 

this is the case.1 Therefore, in the limit as N + 00, we recover the 

(appearance of) a continuous set of solutions, but at the same time have 

in actuality a set of stable discrete solutions. Subsequent numerical 

investigations discussed in Sec. 7 show that, in fact, there is (inde- 

pendent of N) a region containing stable asymmetric solutions to the 

coupled self-mass problem. 
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6. BREAKING THE 5, + c2 SYMMETRY 

A. The ny =l Approximation 

In deciding where to look for (5, + c2) symmetry breaking effects, 

we first recall that the coupling of the self-mass equations occurs only 

through the masses of the fennions in the vacuum polarization loops in 

the photon lines. We next note that the (6, + c2) symmetry has been 

shown to exist for the n 
Y = 1 approximation (and evidently exists for 

all orders of nr>. Thus, it is appropriate to study the n Y 
= 1 approxi- 

mation for (cl + 5,) symmetry breaking. We argue further that the 

omission of consideration of the vertex function Yu and the fermion 

propagator Si (See Fig. l), which come into play in the higher order 

approximations, does not lead to significant error because the Ward 

identity25 dictates that renormalization effects due to these two 

functions cancel exactly to all orders. Any effects associated with 

photon lines internal in TV and Si must therefore (tend to mutually 

cancel and) be inferior to those which are found in the photon propaga- 

tor Di already under direct scrutiny (See Figs. 1 and 2a) in the n = 1 Y 
approximation. (An important exception to this conclusion is investi- 

gated in Sec. 6C(2).) 

In looking at the A' of Eq. (B-13), which is derived from the 

nY 
= 1 self-mass integral, we anticipate that (6, + 6,) symmetry breaking 

effects can enter through: (1) the (lower) limits y min and yol, (2) pas- 

sible variations of the functional form of the integrand over the range 

of integration, and (3) modifications of the integral in the neighbor- 

hood of yL = 1. In the sections that follow, effects which break the 
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(cl + c,> symmetry are indeed found which respectively fall into these 

catagories: the fermion mass damping effect; the first Pauli effect, and 

the second Pauli effect. 

B. The Fermion Mass Damping Effect 

The fermion mass damping effect comes about because for small photon 

momentum vacuum polarization loops tend to become inoperative or damped 

out by the mass of the fermions in those loops. This damping, which is 

intuitively expected, derives from the one in the argument of the loga- 

rithm in the expression for the one loop vacuum polarization integral 

[see Eq. (A-4)1. It can be seen from Eq. (B-22) that this effect, which 

leads to a curvature or nonlinearity26 in F(c), is active when n of the 

principal value prescription # 0, and furthermore that it goes to zero 

in proportion to n. This proportionality to n is important because 

through the second Pauli effect (Sec. 6C(3), below) it leads to a propor- 

tionality to the parameter l/N, as is required for the validity of the 

expansion of Eq. (C-5). 

In Appendix A, the fermion mass damping effect is included in the 

hard cutoff approximation by dropping from the integral the contribution 

.th of loops of the 1 type of fermion when the photon K2 < m:; expressions 

for A in this approximation are given there for four regions of the 

mirror plot. For simpler calculations, these hard cutoff solutions will 

be used in the numerical analysis of Sec. 7, in which is investigated 

the structure of the solutions. 
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C. The Pauli Exclusion Principle 

(1) A Brief Review 

Since in this model proper treatment of the Pauli Exclusion princi- 

ple plays a crucial role in the generation of mass splittings, it is 

useful to review briefly how the various electron self-mass calculations 
- 

take the Pauli exclusion principle into account. 

While the classical electromagnetic energy of an electron diverges 

linearly, Weisskopf27 showed that a calculation using the Dirac positron 

theory diverges only logarithmically. This reduction in the severity of 

the divergence occurs because the presence of the electron in question 

perturbs the vacuum energy through the Pauli exclusion principle. In 

brief, vacuum fluctuations having intermediate states identical to that 

of the original electron are precluded by the Pauli exclusion principle, 

and hence their energy must be subtracted from that of the unperturbed 

vacuum. This subtraction removes the most severe divergences associated 

with the "one electron theory," leaving only a logarithmic ultraviolet 

divergence in the (second order) self-mass calculation. 

Following Weisskopf's approach, in time-ordered perturbation theory2* 

one thus calculates the energy of the graph shown in Fig. 5a and subtracts 

the energy of the appropriate piece of the graph shown in Fig. 5b. One 

of the beauties of the Feynman diagrammatic formulation is that the 

graph in 5c is numerically equal, but opposite in sign, to (the appro- 

priate piece of) that in 5b, enabling one to combine the time-ordered 

graphs in Figs. 5a and 5c (instead of those in Figs. 5a and 5b) to obtain 

the standard single second-order self-energy graph given in Fig. 5d; 
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it is simpler to forget about the vacuum bubble in Fig. 5b and just 

apply the Feynman rules to the graph of Fig. 5d to get the second-order 

contribution to the proper electron self-mass.2g 

It was emphasized by Feyn.man30 long ago, in his discussion of the 

diagrammatic method for calculating QED processes, that the effects of 

the Pauli exclusion principle in the intermediat%states are automatic- 

ally taken into account. He recognized that whenever one used what are 

now known as the Feynman rules for calculating a graph (to some order 

in e) of a process, one erroneously included certain time ordered pieces 

of that graph which actually should be omitted because of the Pauli 

exclusion principle. He pointed out, however, that this error doesn't 

really matter, because there is always another graph of the same order 

for the same process in which these very same Pauli excluded pieces are 

likewise erroneously included, but with the opposite sign; and therefore, 

these calculational errors (which always come in pairs) always cancel. 

He showed in general that any calculation of a QED process which con- 

tains all graphs of a given order in e has in principle automatic and 

full compensation for the erroneously included (but Pauli excluded) 

intermediate states; no errors are incurred in the final sum for that 

process and hence, when the Feynman rules are employed, no thought need 

be given to the operation of the Pauli exclusion principle in the 

intermediate states. 

It follows that in analagous manner, the Feynman rules properly 

(and to all orders) incorporate the Pauli excluded time ordered pieces 

of higher order (self-mass) diagrams on the electron propagator as 

appropriate compensation for the Pauli excluded pieces of the higher 
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order vacuum bubbles, whose energy is to be subtracted from that of the 

unperturbed vacuum. The pieces of the vacuum fluctuation bubbles which 

have no Pauli overlap with the self-mass diagrams may be ignored;30 it 

has been shown in genera131 that in the perturbation expansion for the 

vacuum expectation value of time-ordered products of Heisenberg fields, 

which can be used to construct the S-matrix for any process, the effect - 

of these vacuum bubble graphs cancels out, leaving the perturbation ex- 

pansion only in terms of the connected parts of the Feynman graphs. 

(2) The First Pauli Effect 

We recognize, then, that the proper method to determine the function 

F would be, order-by-order in e, to evaluate and sum all relevant graphs 

in the self-mass perturbation series. Using this procedure, by Feynman's 

compensation theorem, there would be no "effect" of the Pauli exculsion 

principle. But we have already noted that this method is not feasible; 

we have therefore used an expansion in which order denotes the number of 

photons. In this expansion, we do not get the benefits of this automatic 

"Feynman compensation" for certain Pauli excluded states, because to be 

tractable the approximation selectively sums (what we believe to be) 

the most significant graphs. These are the vacuum polarization graphs 

(Fig. 2a) which are of only one type of topology and which give the 

Landau singularity, the major feature of our self-mass solution. Fig. 6a 

gives an example of a graph included in the one photon summation that 

has a Pauli excluded piece whose (Feynman) compensation graph is omitted 

from the summation. We will call the effect of this deficiency the first 

Pauli effect for short.32 
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It is important to observe that this omission acts asymmetrically. 

That is, the graph in Fig. 6d which is missing in the one photon expansion 

for 6m, would compensate for an exclusion effect associated with leptons 

of type 1 (which by our convention is the lepton that we are "dressing"), 

but there is no equivalent (omitted) graph for leptons of type 2. There- 

fore, the omission of this and all other such graphs symmetrizes the - 
contributions of the different fermion types to the vacuum polarization 

component of the self-mass calculation. Thus we see that the above found 

(El + c2) symmetry in the limiting form of the function F is an artifact 

of our approximation, and not something which one expects to hold exactly 

from any general principle. 

It is relevant to reiterate here that there are two options for 

graph calculation. On the one hand while relying on the principle of 

Feynman compensation, one can (in principle) use the standard Feynman 

rules to calculate all of the graphs of a complete perturbation series 

to obtain the self-mass, or on the other hand, one is also (in principle) 

permitted to leave out the Pauli excluded pieces calculating and summing 

only the Pauli allowed pieces of these graphs. Feynman showed that 

these two options are numerically equivalent. 

Since the standard method to determine the amount of (cl -I- c2) 

syrmnetry breaking is not feasible, the approach adopted here is to use 

the latter of the above options for graph calculation along with physical 

arguments to estimate directly the asymmetry induced into the n = 1 Y 
approximation by the first Pauli effect. To do this, we recall that our 

calculation is being performed in a box of volume V containing N phase 

space states. Since one of these N states is already occupied by a 
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lepton of type 1 (the lepton we are dressing), one expects the vacuum 

polarization integrals associated with leptons of type 1 to be slightly 

different from those associated with the lepton of type 2. 

In order to estimate the magnitude of the piece of the vacuum polar- 

ization integral which should be Pauli excluded, we must examine the 

relationship between the fermion momentum in a typical loop and that 

along the line of the lepton being dressed. The Pauli exclusion prin- 

ciple will apply when two like fermions are in the same intermediate 

state. In the diagrams that are included in the one photon estimate 

6m(ly), this relationship is straightforward (looking at Fig. 6a shows 

that the Pauli exclusion condition is q = p - k). But as pointed out 

above, the effect we are trying to estimate here involves all of the 

self-energy graphs, as schematically depicted in Fig. 1. As we attempt 

to go into finer detail and use more elaborate graphs, we see that this 

relationship involves more momenta of integration and quickly becomes 

prohibitively complicated. 

The complicated physical motion which the set of higher order graphs 

of the fermion propagator mathematically describes is called Zitterbe- 

wegung.33 This Zitterbewegung, involving the fermions in the vacuum 

polarization as well as the original fermion line, in effect randomizes 

the relationship between the (instantaneous) momentum in a given vacuum 

polarization loop and the (instantaneous) momentum being carried along 

the original fermion line. That is, when one looks into the details 

of the propagators, one sees that the state that the original fermion 

excludes by its mere presence is, in effect, uncorrelated in momentum 

with the states in the vacuum polarization loops. Thus, the Pauli 
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excluded state (for type 1 leptons) may be accounted for by removing it 

with an appropriate random probability from the N available phase space 

states over which the loop sums (integrals) are taken. 

The probability of removal can be represented by an effective 

probability density function pl(y), which then yields a factor [l-p,(y)1 

in the vacuum polarization integrand. The variable y is defined by - 
Eq. (B-2). The notion of Zitterbewegung leads one to expect that the 

distribution p,(y) will be very broad and relatively flat, ranging out 

to the Landau momentum. We can represent this p,(y) by a (Fourier) 

series expansion. The zeroth order or dc term of this expansion will 

equal l/N [spl(y) dy=l/~] with higher order terms causing p,(y) to fall 

off to zero at large y. 

Keeping only the zeroth order term and dropping the higher order 

contributions to the vacuum polarization integral enables a straight- 

forward zeroth order estimate of the first Pauli effect. We merely 

associate a factor 

ll - E 2 1-k (11) 

with each vacuum polarization loop in which a fermion of type 1 circu- 

lates. It is easy to see that this modification, applied to the self- 

mass series depicted in Fig. 2a, will give a perturbation series which 

sums to yield 

[ 

K2 K2 K2 1 - (l- sl) g Rn 2 - $- Rn 2 - $ Rn 2 (12) 

ml m2 m3 1 
as the vacuum polarization denominator. 
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At first it might be surprising that the pieces of the graphs in 

IYu and S$ brought into play by this accounting for the Pauli exclusion 

principle have the same functional form as does (the sum of) the vacuum 

polarization graphs; that means that they contain (infinitisimal) non- 

Bore1 summable components (entering with like, rather than alternating, 

sign). But then this must be the case because the graphs with which 
- 

they share a Pauli excluded overlap are non-Bore1 summable, which fact 

brings about the Landau singularity in the vacuum polarization integral 

(which integral accounts for the electric charge renormalization). 

Since this singularity is not manifest in the individual graphs but 

rather is evident only by their (non-Borel) summation, then, too, the 

components of I" and S$ that are associated with the first Pauli effect 

would be manifest in the standard method with the above fuctional de- 

pendence (proportional to el) only by summation. Thus, until one has 

the ability in the standard approach to (exactly) calculate and sum to 

very high order all of the graphs in the self-mass series, what is here 

called the first Pauli effect would not be revealed; the infinitisimal 

non-Bore1 summable part would be totally obscured at the level of the 

individual graph by the much larger Bore1 summable parts. 

Equation (12) tells us that the first Pauli effect (re vacuum polar- 

ization loops) acts like an infinitesimal charge renormalization of the 

lepton of type 1, but Eq. (11) tells us that as the normalization box 

size goes to infinity, the first Pauli effect goes to zero as l/N, 

eliminating in the limit this charge renormalization. Nevertheless, 

as the E' of Eq. (B-23) becomes large (because of the Landau singularity) 
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Eq. (12) leads to a slope at the symmetry point of 

dC1 = 
dC2 

-1 - &1 < -1 . 

5, = 5, 

(13) 

That is, inclusion of this correction to the limiting form yields a 

symmetric solution that is discrete and unstable, 

(3) The Second Pauli Effect 

The second Pauli effect is a saturation phenomenon associated with 

graphs of extremely high order. It comes about because we are using 

a physical cutoff at the Landau mass and are performing our calculation 

in a finite box. 

It is clear that when we perform our analysis in the box of volume 

V,graphs of order >> N will have so many fermion lines that they must 

be comprised (almost) entirely of Pauli excluded pieces. It follows, 

therefore, that by taking the point-of-view of the second option for 

graph calculation, these graphs may be entirely omitted from the pertur- 

bation summation. That is, among these graphs (for some specified order 

2 N it is appropriate, because of the Pauli exclusion principle, just 

to truncate the perturbation series.34 

For the purposes of estimation of this second Pauli effect we shall 

truncate the summation of graphs associated with the one photon estimate 

when the power of CL exceeds N' = (R+Z)N; for many loops and high mo- 

mentum the fermion loops will be equally populated by the (R+2) differ- 

ent types of fermions, giving the additional factor35 of (R+-2). One 

expects there to be a factor (of order unity) correcting the (effective) 
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location of this 

errors below. 

In the hard cutoff solution, this Pauli saturation effect can be 

saturation point; this is included in the list of 

taken into account simply by subtracting a second infinite series, 

which starts at n = N', and then resuming: i.e., 

- 

1 a3 
co 

l-y-+ c 
(14) 

n=O n=N' n=O n=O 

In the one-photon approximation, the Pauli saturation effect will become 

active at the value y = l- l/N', which is infinitesimally below the 

Landau singularity. Therefore, with a hard cutoff, this Pauli effect 

will be negligible; while we expect that A is a number of order unity, 

even if it is large, the self-consistent value for the hard cutoff will 

fall well below the value y = l- l/N'. 

From the above discussion, it follows that when we include a 

Lorentz-invariant cutoff at ML and a momentum integration to infinity, 

for a finite sized normalization box, this second Pauli effect will 

prevent the photon propagator from actually diverging at the Landau 

singularity; the propagator becomes very, very large at K ' = 4, but 

nevertheless remains finite, -N'. For y < 1, this result follows 

directly from Eq. (14); there are N' terms in the summation, each of 

which for y = l- equals unity. . 

We now assume that the influence of this Pauli saturation effect 

upon behavior of the (analytically continued) photon propagator for 

y > 1 is symmetric. That is, the negative excursion of the propagator 
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at Y = l+ is also finite and -N'. Such an assumption is required for 

the mathematical stability of the principle value prescription; its basis 

could be sought either in a physical description of features on the 

scale of the Landau length36 or in mathematical analysis.37 In either 

case it can be taken into account by setting the r~ in Eq. (B-26) to a 

constant rather than taking it to zero. From the discussion associated 

with Eq. (14) we have seen that this constant should be -l/N'. 

One can see that the second Pauli effect acts in the opposite sense 

to the first Pauli effect, tending to stabilize the symmetric solution 

(increasing the slope dSl/dc2). Correcting for both Pauli effects, one 

rewrites Eq. (13) as 

d% = 
dc2 

-1 - El + E2 ; 

5, = 5, 

(15) 

both si are greater than zero and of comparable size. 

We assert that while there would, of course, be no Pauli effects, 

as such, in a standard self-mass calculation, because of the equivalence 

of the two options for graphs calculation, the slope of the function F 

determined by such a calculation in a finite box to sufficiently high 

order would still be given by Eq. (15). As the normalization volume V 

is taken to infinity, N goes to infinity and these Pauli effects become 

infinitesimal like l/N, effectively vanishing. The Landau singularity 

of the photon propagator then recovers its (limiting) 1/(1-y) form. 
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For the purposes of the numerical study in Sec. 7, it is useful to 

rewrite Eq. (15) as 

dEl 
dt2 

5, = 5, 

= -1 + E2(1-P) ; 

where 
El 

l-171 py= . k&l/ 

2 

It will be seen that the structure of the solutions is a function only 

of the ratio p, in which, as required by Eq. (C-5), the value of N 

cancels. This cancellation enables one to make an estimate of the lep- 

tonic mass splitting. 

7. NUMERICAL ANALYSIS 

A. Mathematical Formulation 

An analysis which includes the above features, which vanish like 

l/N, faces certain practical difficulties; self-consistent integral 

equations incorporating these features cannot be solved analytically 

in closed form, and the computer cannot deal with infinitesimal quanti- 

ties. There is a computational approach, however, which can be used to 

circumvent these difficulties. This approach is based upon the results 

of Appendix C which show that for large N, the locations of the self- 

consistent solutions are independent of the actual value of N. This 

means that we can perform an analysis using a value of N tractable to 

computer calculations obtaining the same results that would be derived 

(16) 

in the limit as N goes to infinity. 
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It is possible to carry through this approach using the results in 

Appendix A, which employ the hard cutoff; parameters in that approxi- 

mation are used to simulate the Pauli effects, but with a tractable 

(effective) value of N. Full self-consistency, however, must be given 

up when the hard cutoff results are employed, That is, both the mean 

mass parameter f g (se + 5u)/2 and the mass splitting 5, - 6, cannot be 
- 

determined at the same time. This is not a serious drawback since in 

principle 5 can be determined from the self-consistency symmetric solu- 

tions, which are not influenced by the infinitesimal Pauli effects. 

We recall that in I, R was determined by using the self-consistency 

condition 6m/m = 1, setting the value of A', of Eq. (341), according to 

the order of the approximation. On the other hand, using the hard cut- 

off solution precludes a self-consistent relationship between A and R, 

leaving them both as free parameters. As free parameters A and R can 

be used to set the value of the slope at the symmetry point (mainly 

through A), and the value of i (mainly through R). E, assumed to be 

already determined from the symmetric solutions, thus determines the 

value of R to be used in this numerical study. It can be seen from 

Eq. (B-27) that setting the slope at the symmetry point in this way 

simulates the second Pauli effect and is like choosing an effective 

value of N for the problem. With these steps taken, a variation of the 

parameter G (1-G goes like ~1 of the first Pauli effect) will now yield 

a parametric study of the structure of the solutions. 
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B. Structure of the Solutions 

This analysis has been carried out using Eqs, (A-7 through A-10). 

The values of the parameters employed are A = 1 for convenience, 

53 = 0.06345 (equivalent to m3 = 20 GeV/c' for A = MP; A is arbitrarily 

set to % rather than self-consistently determined. As will be seen 

below, other errors will completely dominate theme introduced by this 

choice. 38), and R = 13.377 to yield f = 0.0757 (equivalent to 6 = s 

for A = I$). The choice for 5, is slightly coupled to the choice for R, 

but variations of 5, do not qualitatively effect these results and hence 

are unimportant here. (It will be seen below that calculational errors 

and unknown non-QED physics preclude a quantitatively convincing calcu- 

lation.) The choice of A = 1 fixes the amount of the second Pauli effect, 

and via Eqs. (16) and (17) effectively sets a scale for the first Pauli 

effect. It is the relative size of the two Pauli effects as given by 

the parameter p which is relevant to the structure of the solutions; 

the N dependence cancels out. 

The results, plotted in Fig. 7, reveal the following structure. 

When (1-G) = 0, the first Pauli effect is null, In this case, as we 

anticipate from the above discussion, there is one solution (since 

E' < a>, a stable symmetric one (as depicted in Fig. 4b). As (1-G) is 

increased (i.e., G is diminished) a degenerate or trifurcation point is 

reached; this point represents equality of the two Pauli effects at the 

symmetry point, defining the location of p = 1, and hence the scale of 

the abscissa in terms of p. As (1-G) is increased yet further (the first 

effect now exceeding the second), one enters a region having asymmetric 
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as well'as symmetric solutions (as depicted in Fig. 4c). By the criterion 

of Eq. (9) the asymmetric solutions are stable and the symmetric ones 

unstable. 

The structure of the solutions given in Fig. 7 can be shown to be 

independent of the selection of the effective value of N. That is, 

increasing the value of A merely moves the trifurcation point closer 

to G = 1, resealing the abscissa and at the same time the "parabola" 

of the asymmetric solutions. This assertion has been numerically veri- 

fied on the SLAC IBM 360/91 computer to the extent possible (quadruple 

precision, going up to A = 3). Several values of A were selected and the 

analysis repeated. Independent of the value of A, relative to the 

trifurcation point, the general structure of the solutions as a function 

of p remained invariant; only the overall scale of the abscissa was 

changed, and taking this scale change into account, the parabolas of 

the asymmetric solutions were (essentially) congruent. The fact that 

values of A in the range 1 < A < 3 (which is equivalent to the range 

60 < N < 5.3~ 107) yield solutions with the same structure indicates 

that A = 1 already simulates a value of N in the asymptotic region. 

C. Estimate of the Splitting 

To estimate the splitting, 5, - ,Q we must determine P from the 

relative magnitudes of Ed. As indicated in Sec. 6C(2), cl may be approx- 

imated by l/N. In Appendix B, we see from Eq. (B-27) that the one 

photon estimate for &2 gives 

1 E2 = ZL(l)Nf ' (18) 
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where L(1) is the value of the phenomenological Lorentz-invariant cutoff 

at the Landau singularity (y= l), and f is a factor expected to be of 

order unity. Using Eq. (18) gives the estimate 

1 
N 

p = [2L(1)Nf,-l = 2L(1)f (19) 

Several possible functions L(y) are listed in Table 1, with their 

value at y = 1; i.e., at K2 = A', where K2 is the Euclidean 4-momentum 

defined in Appendix A. While these different functions do not yield 

significantly different results for the symmetric solutions found in I, 

the asymmetric solutions under study here are extremely sensitive to 

the value of L(1). The range is p associated with the span of L(1) of 

these functional forms is plotted in Fig. 7. Since there is already a 

range of -2 uncertainty in p due to the value of L(l), no additional 

error is included for the factor f, which has been set to unity. As 

indicated in Fig. 7, it can be seen that this span of p includes 

P = 1.00546, which yields the observed 5, = 0.0716 and 5, = 0.0798. 

D. Discussion of Errors 

Errors in the estimated mu/me enter in two places: (1) the factors 

relating the &i to N -1 and (2) the conversion of the estimated value of 

p (using the solution structure depicted in Fig. 7) into 5, - c,, which 

by exponentiation yields mV/me. The former category includes estimates, 

via phase space arguments, of the specific influence of the Pauli ex- 

cluded pieces of the Feynman diagrams, the influence of the strong in- 

teractions of the hadronic point-like particles,3g and the unknown 

physics associated with the phenomenological function L(y). The latter 
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category includes factors which change the shape of the parabola of 

Fig. 7, such as the modification of the vacuum polarization by the 

strong interaction, the representation of masses of the heavier fermions 

by m3$ and the approximation used to represent the fermion mass damping 

effect. 

Since the span of reasonable values of p includes both regions, 
. I.e., stable symmetric and stable asymmetric solutions, until more is 

known about the phenomenological function L(y), one cannot estimate the 

mass splitting using this model. Furthermore, the estimate of the mass 

splitting is very sensitive to the estimate of p. For example, the 

upper limit of the range, p = 1.26, is only about 25% away from the 

"correct" value, yet at this point one has mP/me = 8x 10'6 It is easy 

to see that this extreme sensitivity of the deduced mass ratio mu/me to 

small changes (errors) in the estimate of p is because m,,/me is deter- 

mined by the exponentiation of the logarithmic quantities Si; specific- 

ally, from the curve in Fig. 7 one can deduce that to determine mu/me to 

an accuracy of 10% requires that the estimate of p be accurate to -2 ppm. 

Thus, now and for some time to come, the unknown non-QED physics will 

in this model preclude a satisfactory estimate of mu/me, even though 

it may be possible (in principle given sufficient effort) to reduce the 

QED associated errors to an acceptable level. Q-n the other hand, one 

can make an extrapolation of the model in which these difficulties 

are minimized. 
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8. EXTRAPOLATION OF THE MODEL 

If the mass splitting of the muon and electron are generated by the 

breakdown of a permutation symmetry as analyzed above, then the simplest 

assumption is that (charged) leptons must come in pairs. If there is 

such a permutation symmetry between e and p, then by extrapolation there 

will also be one between the r and a yet heavier lepton40 which we here 

call the T. While we have seen that the splittings within a pair cannot 

be calculated with a sufficient degree of accuracy, one expects the 

computational and other errors associated with each pair to be similar. 

Thus, anticipating that to first order the ratios of the masses in each 

pair are the same, we use the observed 1-1 - e mass ratio to make our 

extrapolation 

mu mT -*- 
m m , 

e T 

which yields mT * 380 GeV/c'. This estimate41 is compared in Table II 

to heavy lepton mass estimates given by some other models. 

9. SUMMARY AND CONCLUSIONS 

This paper continues the study of a model based upon the suggestion 

of Baker and Glashow that the p - e mass splitting might be associated 

with a symmetry breaking in the QED self-mass formulation. The initial 

paper, I, developed a self-consistent formulation for the (leptonic) 

self-mass and considered the symmetric solutions. This paper considers 

the possibility of asymmetric solutions. The symmetry that is broken 

to yield these asymmetric solutions is a permutation symmetry. This 

broken permutation symmetry introduces in a natural way a quantum number 
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which distinguishes muon from electron, and which forbids p - e transi- 

tions. It is noted that the experimental upper limit on the branching 

ratio for F + ey is indeed very, very small (< 1.9x 10 -10) . 

Here, as in I, we have seen that vacuum polarization plays a crucial 

role in the physics of this model for the generation of leptonic masses 

and their splittings. In I, it was accepted as part of the model that 

vacuum polarization led to the existence of a (Landau) singularity in 

the photon propagator. Here, as in I, this difficulty was controlled 

by assuming that the photon propagator has the same functional form 

above ML as it does below (where it was determined by the summation of 

a perturbation series) and that there was a physical cutoff at ML' 
It was shown that in this formulation the Landau singularity dom- 

inates the self-consistent, self-mass calculation yielding a (continuous) 

set of degenerate solutions. These degenerate solutions manifest in 

their limiting form what we call a (El + c2) symmetry and are sensitive 

to effects that break this symmetry, no matter how small. Because of 

this sensitivity, it was shown that two new aspects, not considered in 

I, are significant. These aspects, also intimately associated with the 

vacuum polarization, are called the fermion mass damping effect and the 

Pauli effects. Their inclusion was shown to break the (Cl + C,) symme- 

try as one approaches the limiting form and change-the continuous set 

of solutions into a discrete set that included both syrmnetric and 

asymmetric parts. 

The structure of these solutions was investigated, and a method for 

estimating mass splitting was given. It was shown that this estimate 

is extremely sensitive to numerical errors. While these errors unfor- 

tunately stem in large measure from non-QED physics and are indeed much 
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too large to permit a quantitively convincing estimate, this difficulty 

should not obscure the qualitative fact that this model does have the 

possibility of asymmetric solutions compatible with the observed P - e 

ratio. In mitigation it is perhaps worthwhile to note that there are 

well known physical systems which also exhibit extreme sensitivity to 

certain parameters, e.g., those invovling critical phenomena or phase 

transitions. It should also be remarked that while this model is ex- 

tremely sensitive to intrinsic computation errors, it cannot be said 

that the correct P- e mass ratio can result only by an exquisite cancel- 

lation of two opposing effects; p = 1 + (3/4)cl gives (a good approxima- 

tion to) the observed mu/me, and 01, while small, is not vanishingly small. 

Ultimately, of course, one hopes for an improved experimental 

knowledge of the fermion spectrum and theoretical understanding of the 

interactions to enable calculations of adequate accuracy. Until such 

time, it appears that the best test of this model is a search for the 

yet heavier lepton predicted by an extrapolation of the model at 

-380 GeV/c'. This prediction is less subject to the difficulties 

mentioned above because it derives from an already observed mass ratio, 

which should afford a significant compensation for the intrinsic errors. 

Such a search would at the same time test the lepton mass predictions 

of several other models (see Table II) which fall within the capabilities 

of coming generations of accelerators. 

Finally, it is interesting to note that, should this model be 

relevant to describe the v- e mass splitting, the fact that the observed 

!J- e mass ratio is on the order of 01 appears to be fortuitious, rather 

than the consequence of a simple, direct relationship to the magnitude 
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of a. In this model, one would not expect c1 to play a direct role in 

the mass ratio (i.e., me N umu) since both leptons acquire their 

masses self-consistently and "at the same time." 
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APPENDIX A 

A GENERALIZATION OF THE ONE PHOTON ESTIMATE 

OF THE SELF-MASS 

In Appendix A of I, a one-photon estimate of the leptonic self-mass 

6mw) was derived. The usual Feynman rules of QED and the notation of 

Bjorken and Drel15' were used to write down the uegrals associated with 

the graphs shown in Fig. 2a. It was assumed that participating in the 

polarization of the vacuum there are (an effective number) R other point- 

like particles in addition to the two leptons. A Wick rotation51 was 

employed to convert these integrals from expressions in Minkowski space 

(kn, ~=0,1,2,3) to ones in Euclidean space. The substitutions to effect 

this rotation are 

k. = iK4 , k. = K. , and k2 = - K2 
J J 

, (A-1) 

where j =1,2,3 and i=a. As discussed in I, the infrared problems 

were ignored, and only the leading terms in the ultraviolet cutoff were 

kept. The resulting expressions were then summed. 

Since the interest in I was in the symmetric solutions, all (R+Z) 

masses were set equal to m, yielding the one photon estimate. 

6m(lYl = 9m 
4(R+2) Rn 

1 
l-(R+2) $9n$- 

I 

. 

(The I appended to an equation number indicates that that equation is 

taken from I.) A in this equation is a hard cutoff just below the Landau 

(A-131) 

singularity. From Eq. (A-131) the dimensionless quantity 

9 
A - 4(R+2) h 

1 
1 _ (R+2) ~1 Rn A2 

377 z I 

(A-141) 



-37- 

was defined. 

One can easily generalize this result to apply to the case of 

differing fermion masses. Using the definition 

si 5 A2 
s !b $7 (A-2) 

i 

where i=l or 2 stands for the (two) leptons and i= 3 subscripts an 

effective "threshold" mass (for the contribution‘;;cf the R "hadronic" 

point-like particles as a set), Eq. (A-131) becomes 

1-b (R+1)51-52-X3 
l-5,-<, 

I  

-RS3 l 

(A-3) 

Equation (A-3) uses the convention that i=l represents the lepton 

acquiring the self-mass and i- 2 the lepton whose mass is specified as 

a parameter in the expression for 6m 1' 
An improvement upon this approximation can be made by noting that 

in the expression for the vacuum polarization due to one fermion 10op,~~ 

(A-4) 

the argument of the logarithm is always greater than unity (when we work 

in our symmetric Euclidean four-space), and hence the logarithm in Eq. 

(A-4) is always positive. But, for small K2, Rn Cl--t Rnl = 0. This 

fact can be (approximately) taken into account by dropping the contri- 

butions of the loops of the i-th fermion when 

K2 < m?, , (A-5) 

which is in accord with intuition. In the text this effect is called 

the fermion mass damping effect. 
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When employing Eq. (A-5), there are four regions of interest in the 

mirror plot (see Fig. 4) defined as follows: 

Region I: 5, 2 El3 < 5, or ml 1 m3 > m2 

Region II: 5, < 5, 5 52 or m3 > ml 2 m2 

Region III: 5, I 5, < 5, or m3 1 m2 > ml 

Region IV: 52 < c3 < 5, or m2 >T3 > ml . (A-6) 

The results of the self-mass integrations are recorded below. The quantity 

G, which is to account for the first effect of the Pauli exclusion princi- 

ple (discussed in Sec. 6C), equals (1-~1); cf. Eq. (12). G is unity 

when this effect is ignored. 

Region I: 

gml 
4(R+G+l) Rn 

l+(R+l)Q-5*-X3 
1-GS1-52-RS3 1 , (A-7) 

essentially the same as Eq. (A-3). 

Region II: 

gml 1+C1--C2 1 gml 1 
4(G+l) Rn 1 -G-E1 -5,+(G+l)C, + 4(R+G+l) Rn 

-GE1 - 5, + (G+l) 5, 

1-GS1-52-~S3 1 
(A-8) 

Region III: 

gml 1 -'X1 
+ 4(R+G+l) Rn 

- 5, + (G+1)C3 

l-GS1-E2-RS3 I 
(A-9) 
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Regfon IV: 

gml 
+ 4(R+G+l) Rn 

1-G<1+(R+G)[2-R<3 

l-G5,-C2-X3 1 . (A-10) 

Analogous to Eq. (A-141) one may now define a morLgenera1 form for A as 

the respective expressions obtained from Eqs. (A-7), (A-8), (A-9), or 

(A-lo), divided by ml. These expressions for A are the appropriate dimen- 

sionless quantities to use when the fermion masses are not assumed to be 

the same. 
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APPENDIX B 

SOME SLOPE CALCULATIONS 

The hard cutoff integral for the dimensionless parameter A (defined 

in Appendix A) which would be associated with Eq. (A-3) can be expressed 

in the form 

Y max - 

A= ' 
/ 

dy 
4(R+2) 1-Y 

Y min 

where, analogous to Eq. (311), 

Y=g 
K2 K2 

Rn 2 + $ Rn mp + EQ.$ , 
1 3~ m2 

3 

Y =- min @+1X1 + 5, + RS3 

Y max = 6, + E2 + RS3 

(B-1) 

03-2) 

(B-3) 

(B-4) 

and the Si are defined by Eq. (5). Since i= 1 is the lepton acquiring 

the (self-consistent) self-mass and i= 2 represents the "parametric" 

lepton, we are studying 5, = F(S2); in particular dSl/dS2 = dF/dS. 

We now recall that Eq. (1) for the ny =l approximation yields the 

self-consistency condition A-1=0. It was shown in I that in like fashion 

higher order approximations lead to the condition P(A)=0 where ny is the 

highest power of A in the polynomial expression P(A). Thus, in general, 

the self-consistency condition leads to the specification that A=constant, 

where the constant is determined according to the order n Y of the approxi- 

mation. (In I it was shown that for ny=2, A=1.3136.) Therefore, the 

total differential of A, dA=O, independent of n Y' 
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Now' the quantity dA can be calculated without actually integrating. 

Consider the formula53 

b b 
d 

dc / 
f(y,c) dy = 

/ 
$ f(y,c) dy + f(b,c)$ - f(a,c)% . (B-5) 

a a 

Since the integrand of Eq. (B-l) has no functional dependence upon 5, or 

c,, Eq. (B-5) applied to Eq. (B-l) yields 

dy max dYmin 
l-ymax - l-ymin 

3 
’ 

Using Eqs. (B-3) and (B-4) to write 

dYmin = - (R+l) dS, + dS, 

and 

dYmax = Xl + dE, 

obtains 

dS1 E-l -=- 
dc2 E+R+l 

where 

E  = lDYmin 
lWymax 

(B-6) 

(B-7) 

03-8) 

(B-9) 

(B-10) 

If we introduce a phenomenological form L(y) for a Lorentz-invariant 

cutoff at the Landau singularity, and select A  such that 

Y 
I K2 = A2 

EyL = 1 , (B-11) 

Eq. (B-l) becomes 
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A' 9 
= ;ro 4(R+2) s 

_L+ 
1-Y 

ymin 

(B-12) 

where the prime denotes that Eq. (B-l) is extended by the use of L in this 

formulation. As discussed in I, the principal value prescription has been 

used with the infinitesimal T-I going to zero (symmetrically) at the Landau 
- 

singularity. [As with Eq. (B-l), the self-consistency condition requires 

that A' = constant.] 

Equation (B-12) can further be refined by also including the fermion 

mass damping effect [active when K2 c m!; see Eq. 1 (A-4) and related dis- 

cussionl. With this refinement, Eq. (B-12) becomes 

9 
+;$; 4(R+2) 

LAY+ 
1-Y 

Y min 

where 

2 
Yl = K2 $!Zn~+~Ln~ , 

1 2 

YO = 5, + 5, - 25, 

and 

Y = min E2 - 51 

Proceeding as before, we obtain 

(B-13) 

(B-14) 

(B-15) 

(B-16) 
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9 
dA' = 8 

I 1 

dyO dYmin 
l-yg - 1-ymin 

1 

9 
+ ;yo 4(R+2) 

t(y,- n)d(~~- n) dyg ~(y~+n)d(y~+n) 
--- = 

l--Y0 0 . n -11 

(B-17) 

Using Eqs. (B-2) and (B-11), 
- 

d(yL - n> = d(yL+n) = dS, + dS, , (B-18) 

where the quantity rl contributes no functional dependence. From Eq. 

(B-161, 

dYmin = - dS, + dE, (B-19) 

to replace Eq. (B-7), and from Eq. (B-15) 

dyO = Xl + X2 . (B-20) 

Using Eqs. (B-18)-(B-20) in Eq. (B-17), and setting dA'=O yields 

o= 
dS1+dS2 dS,-dS1 + l im g!& dC1+dC2 dS, + dE, 
2(1-YO) - 2(1-Ymin) n-+0 11 R+2 - (l-ye) CR+3 

(B-21) 

which reduces to 

dCl -= 
dc2 

- l im 
n+O 

R R+2 
2(1 -yO> - 2(1-Y,in) 

R RS2 
2(1 -Y,) + 2(1 -Y,in> 

as the formula for the slope dF/dS. 

In the limit, Eq. (B-22) may be written 

(B-22) 

d% -= 
dE2 

-1+ R+2 1 E  (B-23) 
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where ' 

E' : lim 
2L(1) (l - Ymin) 

. 
n+O n 

(B-24) 

One can see that for E' >> 1, (B-23) is essentially equivalent to Eq. (B-9). 

Equation (B-24) shows that E' will be a divergent quantity going like 

lim n-l 
n-+0 

provided ytin< 1. From the definition of ymin [Eq. (B-16)1, 

Eq. (5), and the self-consistent value of 5 founhin I, one anticipates 

that Ymin < 1 will be satisfied in the physical region of the mirror plot 

(c1,c2 > 0). Therefore, while in this approximation E' is a divergent 

quantity, the slope is convergent to 

d% 
d5, = -l 

(B-25) 

in the physical region of the mirror plot. 

It is clear that Eq. (B-25) obtains independently of the values A' 

and R, and furthermore that it does not depend upon the details of L as 

long as L is a continuous function at the Landau singularity, which one 

would expect from physical considerations. Consequently, even when one 

includes the (nonlinear) fermion mass damping effect, 5, = F(S2) still 

is a straight line, degenerate with 5, = F(S1) everywhere; the divergence 

of the photon propagator at the Landau singularity dominates the calcu- 

lation. 

It is useful to note that at the symmetry point 5,=5, which, using 

Eq. (B-16), gives ymin=O. Thus, at the symmetry point Eq. (B-24) becomes 

2L(l) E' = lim - . 
n-+0 n 

(~-26) 

If, as discussed in Sec. 6C(3), one takes the Pauli exclusion princi- 

ple into account, then the limiting value for n can be related to the 
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number of (available) states N in the phase space associated with 

normalization volume V used for the calculation. As long as V is finite, 

then n is also finite. From the discussion in Sec. 6C(3), for the one 

photon approximation it is appropriate to set 

n = f[(R+2)N]-' (B-27) 

where the (unknown) factor f is expected to be onlfhe order of unity; 

f is to account for the uncertainty in the coefficient associated with 

the onset of the second Pauli effect.35 In this case, Eq. (B-23) becomes 

L = -'+ 2L(;)Nf dE2 
. (~-28) 

Thus at the symmetry point 1/[2L(l)NfI is the one photon estimate for e2. 
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APPENDIX C 

N DEPENDENCE OF THE SELF-MASS SOLUTIONS 

It is the purpose of this appendix to show that the locations of the 

self-mass solutions are independent of the effective number of phase space 

states N, where N is introduced in Sec. 5. The analysis to show this 

starts with the approximation that includes the &enomenological Lorentz- 

invariant cutoff at the Landau singularity and the (nonlinear) fermion 

mass damping effect. In this approximation, as shown in Appendix B, 

dSl/dS2 = -1 everywhere; c1=F(c2) is a straight line perpendicular to 

the symmetry axis on the mirror plot, E2=F(c1) being degenerate with 

5, “NE21 l 

It was remarked in Sec. 5 that if the (c1+c2) symmetry of F is 

broken, the lines c1=F(S2) and c2=F(c1) will separate slightly. The 

intersection points of these curves then specify the location of the 

self-consistent solutions to the coupled self-mass equations, both sym- 

metric and asymmetric, as depicted in Fig. 4. 

An indicator of the separation of these two curves is the quantity 

DtE,> f F(C2) - F(F(S2)) . (C-1) 

Line segments representing the quantity D are shown in Fig. 4. It is 

evident that the zeros of the function D(c,) give the locations of the 

self-consistent solutions to the problem. We note here that by the 

criterion of Eq. (9), those solutions with dD/dc2 > 0 are stable, while 

those with dD/dS2 < 0 are unstable. 

Because of the symmetry between 5, and E,, a more convenient co- 

ordinate system in which to analyze this problem is one rotated by 45' 
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from (51,5,). That is, let 

Cl = +Gl + 52) 

(C-2) 
1 

52 = fi -(-cl + c2) * 

In terms of these new variables, it is useful to define the function 

At<,> = Dt.5,) , (C-3) 

where to be unambiguous, we define the argument c2 of A(c2) as that speci- 

fied by the argument 5, on the line 5, =F(c2) as indicated by the dots in 

Fig. 4. That is, G2 = [S2- FK2)]/fi . 

For the initial (degenerate) approximation mentioned above, we see 

that A(<,)=0 for all G2. Inclusion of the (5,+5,) symmetry breaking 

effects leads to A(c,> #O in general, but as required by permutation 

synnnetry, leaves A(O)=O, the symmetric solution. 

We now make the power series expansion 

m  

Ak2) = x an5y l (c-4) 
n=l 

By symmetry a0 =O, and has already been omitted from Eq. (C-4). Now 

A is known to be small and goes to zero when l/N goes to zero. 

Therefore, we assume that we can expand the coefficients an in the small 

parameter N -1 << 1. That is, we may set 

(C-5) 

where the bin are independent of N. This step yields 
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A(<2) = 2 2 bin(i)i'y * 
n=l i=O 

When N=m, A(c2) =O, and Eq. (C-6) reduces to 

0 = x n=l b0n 'Y = O . 

(C-6) 

(C-7) 

Since Eq. (C-7) is true for all c2, it follows thz 

b On = O (C-8) 

for all n > 0. Thus we can drop the i=O terms from Eq. (C-6). For 

large N, we need only the leading, or i=l, terms in Eq. (C-6) and write 

A(s2) = 2 b 1 cn 
n=l ln N 2 

(C-9) 

as the appropriate equation for large N. When one solves Eq. (C-9) for 

the roots of A, one obtains 

co 
z n=l bin 'Y = O , (C-10) 

an equation in <2, independent of N. 

One may now let the normalization volume for the problem become as 

large as one likes. As a consequence, N gets larger, and the curves 

E1=F(S2) and t2=F(t1) lie closer together causing A(<,) to approach 

zero. However, because Eq. (C-10) is independent of N, the solution 

points of the coupled equation given by the roots of A, remain invariant 

as this limit is taken. Thus, in the limit of N-t= we have dSl/dS2 + -1, 

but still have discrete solutions with the possibility of asymmetric 

solutions. 
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TABLE I 

L(Y) 

1 _ e-A2/K2 

e-K2/A2 

L(1) 

0.632 

0.5 

0.368 

p= 2L(l) 

1.264 

1.000 

0.736 

Note 

UEd in I, Eq. (341). 

A pseudo-Fermi 
functional form 

Standard exponential 
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TABLE II 

Model Mass Predictionsa Comments 

Tennakone b 
& Pakvasa 

RosenC 

22, 4554, .,. 

1.915, 15.67, . . . 

Discrete scale 
transformations 

- 

QED self-mass formulation 
including gravitation 

Blaha d 31.52, . . . Wave equation with a 
relativistic potential 

Bjorkene -10 Logarithm of Mass is 
a smooth function 

Pais f -380 Quark-lepton mass relationship 
extending "standard model" 

Barutg 1.78608, Quantized magnetic 
10.2937, . . . self-energy 

Krolikowski h 25.5, 455, . . . Second-order difference 
equations for mass & charge 

Caldirolal 

This model 

0.1056, 1.794, 
21.58, . . . 

-380 

Chronan hypothesis including 
vinternal" states 

QED self-mass formulation with 
symmetry breaking between 

pairs of leptons 

?n GeV/c'. 
bRef. 42. 
=Ref. 43. 

dRef. 44. 
eRef. 45. 
fRef. 46. 

'Ref. 47. 
hRef. 48. 
iRef. 49. 
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FIGURE CAPTIONS 

Fig. 1. A graphical depiction of C(p), the proper self-energy of a 

fermion of four-momentum p. D;(k) 
lJV 

is the complete photon 

propagator, Si(p-k) is the complete fermion propagator, and 

?(p,p-k) represents the vertex function. The cross hatching 

indicates that these QED functions are complete summations of 

the appropriate proper Feynman (sub)graphs. 

Fig. 2. a) The one-photon fermion self-mass graph (left-hand graph with 

the hatching) is defined as the sum of graphs of vacuum polar- 

ization loops indicated on the right-hand side of the equation. 

From this series approximation is derived the one-photon 

estimate of the self-mass 6rn (1Y) . 

b) The additional graphs which are used to define 6m WI , the 

two-photon piece of the fermion self-mass. The hatching indi- 

cates vacuum polarization loop sums as in Fig. 2a. 

Fig. 3. Vertices forbidden by the conservation of the leptonic quantum 

number associated with Eq. (2). 

Fig. 4. Schematic plots of the mass parameters 5, = F(S2), full curves, 

and 5, = F(S1), dashed curves, as symmetric functions of each 

other. The self-consistent solutions to the problem, which 

are located at the intersections of these curves, are indicated 

by the heavy dots. The symmetric solutions are on the 45' 

symmetry axis (all plots). In Fig. 4c the function F is such 

that there are also asymmetric solutions not on the 45' 
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symmetry axis. A line segment indicating the quantity 

D(5,) E F(E2) - F[F(c2)] is drawn in Figs. 4b and c. This 

quantity is equal to A(c2) as defined in Appendix C. A point 

defining the appropriate 5, to use as the function argument is 

indicated by the smaller dot on the 5, = F(c2) line. 

Fig. 5. Graphs of the electron propagator that ;Re associated with the 

second-order electron self-mass. Graphs a, b and c are time- 

ordered with time increasing from left to right. 

a> The electron emits a photon at x and reabsorbs it at y. 

b) A vacuum fluctuation emits an electron-positron pair and 

photon at x and reabsorbs them at y. This graph is Pauli ex- 

cluded when the electron is specified to be in the same state 

as the original electron whose self-mass is being calculated. 

c> The vacuum at y emits, along with a positron and photon, 

the final electron in the state of the initial electron. The 

photon and the positron annihilate with the initial electron 

at x. This graph is Pauli excluded because the initial and 

final electrons are in the same state at the same time. 

d) Standard depiction of the second-order graph which is calcu- 

lated by the Feynman rules to yield the second-order contribu- 

tion to the proper electron self-mass. Points x and y are 

arbitrary, and the graph is evaluated by integrating x and y 

over all space-time. 
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Fig. 6. This sequence of Feynman diagrams indicates the "Pauli overlap" 

of two self-energy graphs (fourth-order in e) of different 

topology. The intermediate state interaction points x and y 

are labeled in each graph to clarify the relationships between 

the two types of graphs. The arrows on the fermion lines indi- 

cate the direction of fermion motion and the (intermediate - 
state) fermions to which the Pauli exclusion principle is to 

be applied. 

4 Standard depiction of a one-photon diagram with one loop of 

vacuum polarization. Four-momentum p enters the diagram at 

the left; the loop momenta k and q circulate as indicated. 

b) Diagram (a) deformed to depict the possibility that the two 

fermions in question can be in the same (Pauli excluded) state. 

c) Diagram (b) with the fermions interchanging. Since the two 

fermions are indistinguishable, diagrams (b) and (c) are 

indistinguishable. 

d) Diagram (c) redrawn in the form of the standard depiction 

of a self-energy graph. The topology of this latter graph 

differs from that of the graph in (a), but these two graphs 

are seen to share exactly the same Pauli excluded intermediate 

states. The signs of these two (Pauli excluded) contributions 

differ due to the minus sign associated with the vacuum 

polarization loop. 
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Fig. 7. A representative plot of the self-consistent solution points in 

the parameter 5 of the self-consistency equations versus 1-G 

along the lower abscissa. As discussed in Sec. 7, this plot 

simulates the inclusion of the two Pauli effects. A scale for 

p, the ratio of these two effects, is indicated along the upper 
- 

abscissa. For 1-G close to zero, there is only a stable sym- 

metric solution (corresponding to the mirror plot in Fig. 4b). 

As 1-G increases, a trifurcation point is reached, indicated 

by a dot at (1-G) = 0.02014. At this point the two Pauli 

effects are equal, defining the point p = 1, and the solutions 

are degenerate. Beyond this point there are three solutions, 

an unstable symmetric one and two stable asymmetric ones 

(corresponding to the mirror plot in Fig. 4~). The more massive 

of these stable asymmetric solutions is labeled "muon branch" 

and the less massive, "electron branch". A range in which the 

estimate of p is expected to fall (See Table I) is indicated 

by the cross hatching along the upper abscissa. This range 

includes p = 1.00546 for which the observed muon and electron 

masses are stable asymmetric solutions at 5 = 0.0716 and u 

5e = 0.0798 are indicated, 
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