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ABSTRACT 

We show there is evidence that a method of summing important loga- 

rithmic corrections which are significant in the large-x region leads to 

a superior description of both neutrino and electron deep-inelastic 

scattering data (analyzed using the evolution equations). Next-to- 

leading-order calculations can imitate the impact of this summation 

method, but at high x it appears that there are higher-order and higher- 

twist corrections which separate those approaches. 
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Considerable effort has been devoted in the last few years to obtain 

clean and quantitative predictions in Quantum Chromodynamics (QCD) for 

various physical pr0cesses.l Among these, deep-inelastic processes could, 

in principle, represent an excellent laboratory for such tests. Although 

QCD predicts an observable logarithmic violation of scaling for the 

structure functions, there are difficulties which&e. prevented a com- 

pletely satisfactory comparison between theory and experiment. Resonance 

production, elastic and diquark scattering, and more general higher-twist 

effects are among these.2 Even when considering only the leading-twist 

contributions in the operator-product expansion (OPE) there are contri- 

butions of higher order in CL s the running coupling constant. And, as 

stated recently,3-g the s ummation of certain logarithmic terms (in moments 

they are characterized as as!?.nZn) leads to large corrections in the x -+- 1 

region (x = Q2/2p*q). 

In this paper, we use the evolution equations" to analyze the im- 

pact of both second-order and x -t 1 corrections to the deep-inelastic 

structure functions, and we consider the relationship between them. We 

make direct comparisons between theory and experiment for both electron 

and neutrino deep-inelastic scattering, using Stanford Linear Accelerator 

Center - Massachusetts Institute of Technology (SLAC-MIT)ll and CERN- 

Dortmund-Heidelberg-Saclay(CDHS)12collaboration data. We find that 

there are dramatic indications in the data to support theoretical ex- 

pectations. 

Brodsky and Lepage3 have observed that large nonleading contribu- 

tions to the structure functions, which arise in the x + 1 region due to 

the gluon radiation corrections of the theory13, are related to kine- 
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matical constraints. Analyzing deep-inelastic scattering, they observed 

that the use of the correct kinematic constraints plus the correct argu- 

ment of c1 in evolution equations introduces an additional term. For 
S 

the moments of the structure functions, this reproduces the sum of the 

large aslog2n corrections (which come from the x + 1 region). These 

corrections are the same ones as computed using the-operator-product -. 

expansion8'g to order as. Similar arguments about the resummation of 

gluon bremsstrahlung effects (including also the Drell-Yan case) have 

been developed by Parisi and by Curci and Greco.5 Amati, Bassetto, 

Ciafaloni, Marchesini and Veneziano6 by a careful analysis of the strong- 

ordering contributions to the invariant charge have proposed a modified 

evolution equation which, due to the resealed argument of the running 

coupling constant, resums14 the large corrections. The proof that such 

a resummation occurs has been given only at the leading infrared singu- 

larity level. The kinematics-dependent scale in the coupling constant 

is given by the upper limit on the emitted-gluon invariant mass. The 

modified leading-order evolution equation for the structure functions is, 

in the non-singlet (NS) case, then: 

2 a 
Q- 

aQ2 
F”‘(x,Q~) = /’ dz FNs (:,Q~) ~s(Q2~~z)‘zJ P(~J+ (1) 

where F NS = (F;P - vN Fy) or xF3 . The + notation indicates the regulari- 

zation procedure (see Ref. 10). This equation sums the large logarithms 

which arise when the real emission of gluons cannot compensate for the 

large, opposite effects of the virtual contributions. 

The perturbative approach of Eq. (1) breaks down for (1-z) < Qt/Q2 

(where Qt is a mass of order 1 GeV2 such that as(Qz)/2n < 1). 
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The structure function becomes of the quark form-factor type and shows a 

Sudakov-type damping.l 

Considering the new argument of as in Eq. (l), we see that as x 

becomes large and Q2 is held fixed, the running coupling constant becomes 

large. In order to investigate this problem we introduced the following 

definition15 of a : 
S A- 

(2) 

where we define16 V2 - Q2(1-z)/z+m2 , with m a free mass parameter. 

Such a definition, which leaves as unchanged at large values of the ar- 

gument, makes it possible to make a limited estimate of the sensitivity 

of calculations to this region.17 Use of this definition (with the pa- 

2 rameter m > is equivalent to the inclusion of higher-twist terms since: 

1 2 
w 1 zm 

Rn Q2(1-z)/z+m2 Rn Q2(1-z)/z 

A2 A2 
Q2c1 _ z)Rn Q2(l -d/z 

i 

. (3) 

A2 

When we (later) make use of the second-order-in-as(Q2) evolution 

equations, we follow the work of Curci, Furmanski and Petronzio'* and 

write (using the %? renormalization schemeg): 

Q 2 -+ FNS(x,Q2) = 
aQ 

I' dz ““(;,Q2) [ "::42) P(l) (z) + "p:: d2) (dj+ 

(4) 

where P(l) and P(2) are defined in Ref. 18. 
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Now turning to our results: What is the impact of using the 

variable V2 f Q2(1- z)/z+m2 instead of Q2 in Eq. (l)? Clearly one ( ) 

expects to find a lower valuelg of A. For CDHS v data, A decreases from 

A= 0.33 GeV for Q2 evolution to A z 0.20 GeV for V2 evolution. For SLAC 

data, A = 0.66 GeV decreases to 0.43 GeV. 

More important is the result that the data are better described by 

V2 evolution than by Q2 evolution (first order). W&find that the x2 

for fitting data with V2 evolution are noticeably better: 

x2 = 90.7 versus 93.3 for Q2 evolution (76 dof) for neutrino data and 

x2 = 62.8 versus 67.8 (72 dof) for electron data. 

This can be understood, in part, by noting that whereas the first- 

order Q2 -evolution equation implies a fixed, constant value of A, the 

use of this Q2 -evolution to extract A from the data results in a A which 

is dependent of x (see Fig. 1). Such a contradiction is not found when 

V2 evolution is used to extract A from the data; here we find A con- 

sistent2' within errors with being independent of x (see Fig. 1). Be- 

cause V 2 evolution leads to a constant A, the resulting global (all x) 

fit to the data is superior to that from the leading-order Q2 approach. 

How do results using the evolution equation calculated to second- 

order in as(Q2) compare with those from leading-order Q2 evolution? The 

impact on the overall value of A is very small (e.g., A (1) z 0.33 GeV 

and A(2) W 0.35 GeV).. One notes, however, that the x2 for second-order 

fits to the data are somewhat better than for first order. The cause of 

this improved fit is that (as for V2 evolution) use of second-order 

evolution, Eq. (4), to extract A from data can give a A relatively inde- 

pendent of x. That it is possible for second-order evolution to imitate 

the effects of V2 evolution is easy to see since Eq. (4) can be 
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rewritten as21: 

Q 
2 a - FNs(x,Q2) = /,i dzFNS(z,Q2)[as(Q2f(z))P(')(z) + @(a:(+ . (5) 

aQ2 

By expanding in powers of &n(Q2/A2) , one finds 

To see whether this approximate equivalence does in fact occur, we 

treated the output of the VL-evolution equation (1) as "data", and then 

checked the x-dependence of A extracted using the second-order evolution 

equation (4). The results are shown in Fig. 2, where we also compare 

with the use of the first-order Q2-evolution equation. Clearly the 

second-order equation (unlike the first-order equation) is consistent 

with giving a constant A. The fact that both methods simultaneously 

provide x-independent values for A confirms that the Q2-evolution equa- 

tion corrected to second order can to some extent handle the essential 

kinematic constraints as the V2 evolution does. 

How do curves from these different approaches compare? In Fig. 3a 

we show 

xF cv2) 
( 

xFi2) - xF:l))/xFil) (which we found looks very similar to 

( 3 - xF;l))/ xF;l) ). These results indicate that large differences 

for xF3 in these approaches only occur for large x (as expected).22 

Figure 3b, showing the relatively small difference between the V2- 

evolution and the second-order evolution results, raises an interesting 

question. The fact that the differences are significant only at very 

large x may indicate that the ability of the second-order equation to 
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2 reproduce the impact of the V -evolution approach fails at these x 

values, so that the higher-order terms (third order and higher) are in- 

creasingly important (and higher-twist corrections become increasingly 

important).23 This is not unexpected since the second-order equation 

cannot account for terms such as a2s(Q2)log4(1/(1-x)) and xm2/Q2(1-x). 

We also note that if one adjusts the V2 -evolM&on parameters to fit 

the second-order evolution curves, we find that the best fit has the 

parameter m2 roughly equal to 0.9 GeV2 (close to m2 
P 

= 0.88). If we 

choose much different values (say m2 X 3 GeV2), the agreement is much 

poorer. It is not possible to determine m2 from present data, since 

they are not precise enough at large x. 

We believe that the analysis of the structure functions via the 

evolution equations has clear advantages over moment analyses. The data 

are found as structure functions, not as moments. The integration over 

x needed to obtain moments requires the extrapolation of data into un- 

measured regions. In doing moment analyses we found that our results 

were critically sensitive to the nature of the extrapolation. 

In conclusion, our results indicate that the use of the modified 

evolution equation (in terms of V2) which should sum the most important 

logarithmic corrections at large x, leads to clearly superior descrip- 

tions of the neutrino and electron data (compared to that from leading- 

order Q2 evolution). We also have shown that the second-order evolution 

equation (in Q2) can imitate the impact of the V2-evolution equation (by 

making A roughly x-independent). However, at large x the two approaches 

diverge, and one can hypothesize that it is higher-than-second-order-in- 

a 
S 

and higher-twist-type corrections inherent in the V2 approach which 
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distinguish them. 

We feel that much could be learned from having more data in the 

large x region. Even for moderate x regions, use of the VL-evolution 

equations for the analysis of data is indicated by our results. 

A more detailed report of our work will appear elsewhere. 
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FIGURE CAPTIONS 

Fig. 1. The values of A extracted from SL,AC-MIT1l and CDHS12 data for 

'F; - Ft) and xF3 using first-order Q2 evolution and using V2 

evolution with the data in large x bins. 

Fig. 2. The values of A extracted using first-order and using second- 

order Q 2 evolution from "theoretical data" created from the 

2 
output of the V -evolution equation. The input value of A was 

0.2 GeV. Below x = 0.2, there is little sensitivity to the 

value of A. 

Fig. 3. The fractional differences between (a) second-order and first- 

order-in-as(Q2) structure functions and (b) the V2-evolved and 

the second-order structure functions obtained by use of the 

corresponding evolution equations. The same x parametrizations 

were used in all cases. In (b) the particular Q2 value at 

which the high-x difference is (approximately) zero is not 

significant; it varies with the choice of Qi (the starting 

point of evolution). 
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