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ABSTRACT 

The moments of the photon's third structure function 

WY 3 are considered in quantum chromodynamics up to the 

next-to-the-leading order. The one-loop and two-loop 

anomalous dimensions of the relevant operators are calculated. 

Using these results, the part of the higher-order corrections 

is evaluated. 
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InI contrast to the photon structure functions Wi and Wz in the 

deep-inelastic photon-photon scattering, the third structure function 

Wi in the leading order is not affected by strong interaction effects 

and agrees with the result calculated in the simple parton model. 

This fact has been found independently by several authors.lD5 The 

origin of this interesting result is that Ws is related to the s-channel 

helicity-flip forward amplitude of the photon-photon scattering; i.e., 

Wz requires helicity flip both at the target and the high-Q2 virtual 

photon. 

The authors of Refs. l-4 have arrived at the above conclusion in 

the framework of perturbative QCD and/or the leading logarithm approxi- 

mation, observing that quarks acquire the transverse momentum cut-off 

at the photon target in the case of Wz. This observation corresponds 

to the absence of twist-2 quark operators contributing to Wz in the 

framework of the operator-product-expansion (OPE) and renormalization 

group (RG) method. Delduc et al., in their first paper of Ref. 4, and 

the present author have derived the same conclusion using the OPE and 

RG method. 

In this short note I shall put an addendum to the results of Ref. 5 

and calculate the one-loop and two-loop anomalous dimensions relevant 

to the new gluon operator, which is typical of the photon structure 

function Wg. The expressions of these anomalous dimensions turn out to 

be very simple. Using these results, I shall evaluate part of the next- 

to-leading-order corrections of asymptotic freedom to the structure 

function Wz. In what follows I shall adopt the notation of Ref. 5 unless 

stated otherwise below, and shall refer to equations there, denoting by 

V, followed by the same numbers as in Ref. 5. 
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First I comment that the expression (V.3.11) for the moments of 

Wi is incomplete.6 Another term which is the order of l/(anQ2/A2) 

should be added. This comes from the next-to-the-leading (i.e., 

two-loop) corrections to the photon coefficient function Cy 3 Jl,i2,d ¶ 
(V.3.8). It is expanded in powers of g2 as follows: 

1 
Then adding the contribution of the second term in the parenthesis of 

Eq. (l), I obtain the quantum chromodynamic (QCD) prediction for the 

moments of Wz as 

s 1 n-l dx x 
0 > 

where 

a3,n = rsy B$", 
, 

b3,n = 
6 Klyn Bn I/J 3,G 3,G 

O,n 
'3,GG 

'3,n = 6y B;$; , , 

(1) 

(2) 

(3) 

(4) 

(5) 

and y 04 
3,GG is the one-loop anomalous dimension for the gluon operator 

Ui (see Eq. (6) below), Ki'i is the two-loop anomalous dimension which 
, 

arises from the mixing between UE and the photon operator Uy, and 

B';,c is the one-loop correction to the coefficient function C3 n G (l,i2,d , 

(V.3.8.). 
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O,n l,n Next I present the results of calculation of y3 GG and K3 G. 
, , 

The twist-2 gluon operator UG which contributes to W; is 

[ 1 
uG 

up I-12”.?Jn-1 l+B II 1 = 1 in-2 S, 
4 

G '1" ,!2 
A . . . Dun-l 8r-1" - trace terms 

(6) 

where GK is the gluon field tensor, and S' denotes complete symmetri- 

zation over u1,p2, . . . , 1-',, The twist-2 photon operator ?Jy for Wi is the 
UV analog of the gluon operator Ui with the gluon field tensor GA replaced 

by the electromagnetic field tensor F". 

04 The calculation of the one-loop anomalous dimension y3 GG for the 
, 

operator IJZ is very similar to the case of gluon operators contributing 

to the nucleon structure functions. The symmetrization and removal of 

the trace terms can be done by multiplying the operator by the tensor 

A 1-ll 1-12 A . . . AVn 

where Au is an arbitrary vector subject to the constraint A2 = 0. The 

O,n diagrams contributing to y3 GG are shown in Fig. 1. The result is , 

04 

'3,GG +$ T(R) . (7) 

Where CG = 3 and T(R) = f/2 with f being the number of quark flavors. 

14 The calculation of the two-loop mixing anomalous dimension K3 G , 
is much involved. 1,perform the calculation using dimensional regular- 

ization and the minimal subtraction scheme. 7 

In the renormalization of the operator LJE (i.e., the calculation 

of its matrix elements in higher orders) it mixes not only with the 

operator U; but also may mix with other operators which are in general 
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not gauge invariant.8 The zero-loop matrix element of the operator 

Uy between photon states with momentum p, multiplied by the tensor 

A pl p2 A . ..A 1-ln with A2 = 0, has the following form: 

(y(P),+;/ y(p),~)~ Apl.,.:n = + (P*A)~-~ {[guagvB + gVBgvc] (~*a)~ 

g""A' + g "A')p' + (gVBAv + gVBA' pa ) 1 1 (p-A> + 2 pap' A"Avj , (8) 

where v and v are the Lorentz indices of the external photon. Following 

the argument of Ref. 8 it can be shown that the matrix element of the 

operator lJi between photon states 

A % . ..Apn (9) 

has a counterterm whose Cg w vB g + gp8gva1 coefficient is obtained from 

the matrix element of Uy only. Therefore the first step in the calcula- 

tion is to find the projection operator which projects out the coeffi- 

cient of Cg w vB g -t guBgVal and reduces tensor forms into scalars. 

The appropriate projection operator is 

R 4 
waB = R(R- 2) 'vvpaB 

4 
%(a- 3) g~vpa$+ppvgaB-gpvgaB + 

1 

guagvf3+ gp$gva 
2 

- 3 gv BPpa - if gvaPpf3 - + gpaPvB - 3 gpf3pva 

PPAA _ L-a@- ApAvPap$ + 1 p,,Av+Aupv 1 [Pclaa + Acd 
(~4~ (P*A)~ ~(P*A)~ I 

, 

where G is the dimension of space-time, and 

pjlAv+ Aupv AA 
P =g - 

I-iv I.lv P*A 
+ p2 IJ ‘J2 . 

(P-A) 
(11) 
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Since A2 = 0, the projection operator satisfies the following relations: 

+?A C 
w v6 1-16 va +gg R 1 vvaB = 1 

gpvRvvaB = ga8Rpva8 = 0 

PFIRuvaB = PVRpVaB = paRlivaB = pBRPvag = 0 

A'R ?JvaB 
= AvR llVclB = AaR lJvaB 

=A', =o 
uvaB (12) 

l,n The two-loop diagrams contributing to K3 G are shown in Fig. 2. 
, 

It is known that the box diagrams with one-quark-loop for the gluon- 

photon scattering give no divergence when they are combined together. 

Therefore, the diagrams of Fig. 2 when combined give a simple pole only 

at E = 0 in R = 4 - E dimensions, and do not have a double pole. The 

anomalous dimension K l,n 
3,G 

is obtained by taking the coefficient of 

simple pole part (i.e., the l/s coefficient) of these diagrams. After 

the straightforward calculation, the diagram (a) of Fig. 2 gives no 

l,n contribution to K3 G + All the contribution comes from the diagram , 

(b) , and I obtain 

l,n 
K3,G = 

8 
- 'F (n-l)(n+2) 3f (e2) (13) 

with CF = 4/3. 

The result (13) has turned out to be a very simple expression. It 

decreases as l/n2 for large n. It is interesting to compare Ki'i 

with the two-loop gluon-photon mixing anomalous dimension K 
1,n ' 
G for the 

photon structure function Fz. g It has the following form:gPt0 
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lpn = -c 
KG F 8+16 

1 

2n6 + 4n5 + n4 - 10n3 - 5n2 -4n-4 
(n-l) n3(n+1)3 (n+2) 1 

3f (e2) 

(14) 
l,n In the large n limit KG becomes constant. 

0 Now I evaluate a3 n and b3 n in Eq. (2) using the results of Y3 GG 
, , 2 

and Ki':. The one-loop corrections to the coefficient functions 
f 

BO,n 
3,Y 

and By,G have been given in Ref. 5. They are 

go+ = 4 -- 
3,Y n+2 

B;,G = 
f 4 

'2 n+2 

(15) 

(16) 

The numerical values for a3 n and b3 n are given in Table I. The param- 
, , 

eter b 3 n decreases very rapidly as l/(n3 Rn n) with increasing n. 
, 

Considering that the effective coupling constant g2/4r varies roughlyI 

between 0.3 and 0.2 while Q2 changes from 5 GeV2 to 50 GeV2, one of the 

higher-order correction terms, (z2/16r2)b3 n, in Eq. (2) is negligible 
, 

as compared with the leading term a 3,n' 
Another higher-order correction term (g2/16~2)c3 n in Eq. (2) has 

, 
not been evaluated. In order to do that, the two-loop correction 

Bl,n 
3,Y 

in Eq. (1) should be calculated. Some of the diagrams contribu- 

ting to l,n 
B3,Y 

are shown in Fig. 3. Because of the spin structure of 

Wi, the one-loop correction B O,n 3 y does not have in its expression (15) 
¶ 

a term proportional to the sum 
n 

c 
1 

j=l 3 
(17) 

It is probable that the two-loop correction Bl ,n 
3,Y 

may also evade 

having a term like Eq. (17) and hence may not behave as Rn n for 
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large n. The structure function Wi for large x values is governed by 

the large n behavior of the moments. The calculations of B l,n 
3,Y' 

therefore, is very interesting in order to study how W: behaves as x + 1. 
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TABLE I 

Numerical values of the parameters a, _ and b, _ for f=3 and f=4. 

a3,n b n 34 
f=3 f=4 f=3 f=4 

2 -0.667 -1.259 9.86 x 1O-2 2.55 x 10-l 

4 -0.444 -0,840 x x 8.24 1O-3 2.20 10 -2 

6 -0,333 -0.630 2.18 x 10 -3 5.88 x 1O-3 

8 -0.267 -0.504 8.60 x 1oL4 2.33 x 10 -3 

10 -0.222 -0.420 4.20 x 1O-4 1.14 x 10 -3 
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FIGURE CAPTIONS 

Fig. 1. O,n Diagrams contributing to y3 GG. 
, 

Fig. 2. l,n Diagrams contributing to K3 G. Solid lines, curly lines 
, 

and wavy lines represent quark, gluon and photon, respectively. 

Fig. 3. Some of the diagrams contributing to B l,n 
3,Y' 
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