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ABSTRACT 

A finite lattice in 4 dimensions and correlation functions defined 

by integrals are used and the general concept is made precise. Former 

results on Schwinger-Dyson equations and Ward-Takahashi identities are 

extended and the much richer structure of quantities and relations, which 

arises necessarily on the lattice, is discussed. The mechanism of gauge 

fixing is analyzed and consequences for the advocated concept and for the 

axiomatic approach are pointed out. The implications of the generalized 

fermion degeneracy regularization for the position space propagator and 

in the relations for the various currents are shown. An explicit solution 

for open boundaries is presented and compared with that of the case of the 

otherwise used periodic conditions. The analogue of continuum methods for 

dynamical masses and particular decompositions of the fermion determinants 

are considered. The connection between degeneracy regularization and 

axial-vector anomaly and the situation for weak interactions are discussed. 

Further a number of important details is clarified. 
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1. INTRODUCTION AND SUMMARY 

In view of the success of gauge theories it is a major task to de- 

velop a nonperturbative description of the underlying dynamics. This is 

crucial for color confinement as well as for dynamical symmetry breaking 

and mass generation. More generally, to find an ultimate unified theory 

in addition to group theory a better understanding of dynamical aspects 

could be essential. The introduction of a lattice1 has turned out to be 

most promising for the nonperturbative analysis. With respect to the 

features related to confinement in QCD remarkable progress2, though un- 

fortunately without fermions, has been made. Lattice methods have also 

led to promising results3 for the dynamical breaking of chiral symmetry 

in QCD. So far, however, the extension to weak interactions, because of 

the need to handle the fermion spectrum degeneracy on the lattice', has 

not been achieved. On the other hand, nonperturbative lattice methods 

are desirable in the electroweak case too, in particular because of the 

necessity to generate the masses dynamically which has become rather 

clear recently.536 

In this situation it appears important to develop lattice theory 

further and to make every effort to overcome the present difficulties. 

To do this, a clear concept and a formulation with a minimum of ingre- 

dients is essential. Within the latter respect the framework of a fi- 

nite lattice with correlation functions defined by integrals, as used in 

the successful Monte Carlo calculations2 in QCD, is most attractive. It 

has recently been shown to be advantageous for analytical calculations 

too by giving a nonperturbative derivation of the axial-vector anomaly7 
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and by investigating the lattice structure of Schwinger-Dyson equations 

and Ward-Takahashi identities.* A consequent concept is now to consider 

the formulation seriously as a particular regularization of quantum field 

theory, with the goal of applying it to the gauge theory of all inter- 

actions. The next step then is to extend the previous results7** and to 

investigate a number of additional points which are important for the 

indicated concept. To do this is the aim of the present paper. 

A major phenomenon to be encountered is the much richer structure 

of relations and quantities on the lattice which necessarily occurs 

(already for the simplest possible form of the lattice action). This 

suggests the possibility that by the advocated framework the structure 

of the ultimate theory is better resolved as it is by the present con- 

tinuum theory. A further general feature is that, because quantization 

needs no gauge fixing, gauge invariant correlation functions become the 

natural objects and familiar quantities and relations with gauge fixing 

appear artificial. A problem to be considered within several respects 

is that related to the fermion degeneracy. Its direct nonperturbative 

connection7 to the axial-vector anomaly9 makes the view possible that one 

meets the questions related to the latter in a better resolved form. 

In Sec. II the general concept is made precise and put in perspec- 

tive to other formulations. It is pointed out that in the cases of QCD 

and QED the relation to continuum theory can already be considered as 

essentially established. 

Apart from giving definitions (including a generalized degeneracy 

regularization) and some general properties, in Sec. III the transition 

to Minkowski space is discussed, which, being transparent in the present 
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notation, reveals a particular property of the degeneracy regularization. 

In Sec. IV Schwinger-Dyson equations are considered which occur as 

an important tool also in later sections. The derivation of Wick's 

theorem and the specialization to a Wilson loop are indicated. The eva- 

luation of the formerly introduced derivatives for the non-Abelian fields 

shows the rich structure of the equation of motion on the lattice. 

The fermion propagator with the generalized degeneracy regulariza- 

tion is discussed in Sec. V. From its position space form, without re- 

ferring to a spectrum degeneracy, a simple picture emerges, how the ab- 

sence of the regularization leads to wrong results for fermion loops. 

In addition the properties of the symmetry group responsible for the de- 

generacy and its relation to the propagator are clarified. 

In Sec. VI the case of open boundary conditions is investigated, 

firstly to study an alternative to the otherwise used periodic ones and 

secondly because the fermion spectrum then exhibits no degeneracy. The 

problem is explicitly solved and the propagator found to get a form which 

again leads to unacceptable results in perturbation theory. This pro- 

vides an example that the spectrum alone does not guarantee the correct 

limit. 

Exploiting an explicit relation between correlation functions with 

and without gauge fixing in Sec. VII first the mechanism of gauge fixing 

is analyzed. The discussion then leads to the more natural invariant 

correlation functions. Further, the general structure which emerges is 

shown to pose severe difficulties to the axiomatic approach. This re- 

flects the deep difference between gauge theories and other quantum 

field theories. 
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Section VIII presents the derivation and discussion of various 

Ward-Takahashi identities and of the related currents. The role of 

gauge fixing is illustrated by an example. Properties of the occurring 

anomalous terms are pointed out. Again the richer structure of the lat- 

tice relations becomes apparent. 

In Sec. IX first the lattice analogue of the usual continuum me- 

thodsl" for dynamical mass generation is studied. It turns out that 

these methods then become rather unattractive. In addition one gets a 

drastic example of how familiar relations look on the lattice. Then de- 

compositions of the fermion determinants according to their gauge field 

content are discussed and qualitative pictures for Wilson loop and fermi- 

on propagator given. 

Finally in Sec. X the situation for weak interactions in view of the 

connection between fermion-degeneracy regularization and axial-vector 

anomaly is discussed. 

II. BASIS OF THE FORMULATION 

The lattice is considered as a particular regularization of quantum 

field theory which makes the definition of the latter independent of per- 

turbation theory and which preserves gauge invariance. Euclidean space 

is used in the same sense as in continuum theory where it is introduced 

to define Minkowski space quantities properly.ll On a finite lattice in 

four dimensions the representation of correlation functions then is well 

defined and simple. Thus one has a framework with a minimum of mathe- 

matical ingredients. On the other hand, it is the most immediate possi- 
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bility with respect to physical amplitudes in space-time. 

It is to be realized that one can work in this framework without any 

further mathematical refinements. In fact, the Monte Carlo calculations2 

are numerical examples for this. In principle one can thus get any 

quantity and approach the continuum limit as close as one wishes (in 

practice, if an adequate computer exists). Also analytical calculations 

can be done to evaluate quantities or to decide general questions.7'8 

Thus one can postpone the question of a mathematically more elegant way 

of handling the limit until more experience with the formulation in con- 

nection with physical facts shows what is really appropriate. 

It is advocated here that to make contact to continuum quantum field 

theory one has only to consider perturbation theory, because the compa- 

rison with experiment so far rests on the perturbative form. This clear- 

ly reduces the mathematical requirements considerably. In addition, it 

appears advisable in view of the difficulties faced by the axiomatic 

approach which will be pointed out in Sec. VII. 

For compact QED Sharatchantra12 has shown that with Wilson's formu- 

lationl and degeneracy regularization4 one gets renormalizability and the 

correct continuum limit for perturbation theory. Actually, as has been 

pointed out recently,* gauge fixing must be done in a more sophisticated 

way to obtain this result. Since the continuum perturbation expansion is 

the same for compact and noncompact QED, the usual continuum theory could 

be each of them. Accepting quantization on the basis of the gauge group 

measure as is done here, QED is compact. The Sharatchantra analysis is 

expected to go through in the non-Abelian case as well. Basic divergent 

diagrams for QED and QCD have been investigated for Wilson's lattice1y4 



-7- 

by Karsten and Smit13p14 and found to have the correct limit. Thus, put- 

ting things together one sees that, though some details should be worked 

out further, in the cases of QED and QCD the connection of interest can 

be considered as essentially established. 

A word on the relation to other approaches is in order here. Using 

the transfer matrixI one arrives at a Hamiltonian and a space of states. 

This involves the continuum limit in one direction and necessarily gauge 

fixing. Thus considerable mathematical assumptions enter and things 

become more complicated. The formal functional integrals of continuum 

theory can be considered as properly defined by the integrals of the 

present framework in the indicated limit of the formulation. This is to 

be contrasted to defining the limit of such integrals individually either 

via a measure l6 or a space of path17 which, apart from needing again 

assumptions, is anyway only possible in simple cases. The common feature 

of the alternatives is that already a more refined topology of the limit 

(manifest in the spaces of states or path or in the measure) is chosen. 

III. DEFINITIONS A.ND GENERAL PROPERTIES 

A finite lattice of & = 16 N1N2N3N4 sites in 4-dimensional Euclidean 

space is used. Periodicity for nX + nX + 2NX in the numbering of all 

variables is imposed as boundary condition. (An alternative condition is 

investigated and then discarded in Sec. VI.) 

The action, with Grassmann variables describing fermions, is 
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s=v c 
n',n 

qn, (d-X+M) 4~ n'n n 

+v c Tr(1 - ui UT on A,n+a"o,n+X . 
n,a,X 

n stands for all components n 1-I' 
and n + X then means n 3- 6 1-I PA' 

a A are the lattice spacings and v = a a a a 1234' One further has 

fl=x 
A 

yXDh with 

D An'n = oJ~n'~n~ +A n - uAnSn, n+ -$ /@aA) , 
, , 

(3.1) 

(3.2) 

andM n'n =(s m. n'n X in (3.1) is the fermion-degeneracy regularization 

which is here defined by 

x= ?-j c wA ' 
1 + Y5 1 - Y5 

T) = z 
x 2 +z* 2 , (3.3) 

where z is a complex constant subject to IzI > 0 and 

W Xn'n = UJ:,, 6nf + A n + UAnSn, n+ A -26n,n)/(2aA) . (3.4) 
, , 

For z = 1 (3.3) gives Wilson's original prescription" and for z = -i 

the alternative one of Osterwalder and Seiler.l* 

The gauge fields in (3.1) - (3.4) are given by Uhn = exp iBXn 1 ) 

with BAn = R 
c TLBin and the normalization Tr(TRTj> = $6 aj. In the 

Abelian case the operation Tr in (3.1) is to be replaced by a factor % 

to conform with usual conventions. g is the coupling constant. To arrive 

at the field quantities of continuum theory the BXn are to be expressed 

by BXn = g a pXn- 



-9- 

A general correlation function is defined by 

<P> =/e+P//e+ , (3.5) 

where J means J-J , with J standing for the Grassmann-variable 
u + $ 

integrations 
rr d$nSd?nB and s similarly for the invariant 

n,B U 
integrations over the gauge group. The integrations in (3.5) include all 

variables on the lattice. In the Abelian case J becomes simply 

l-l s” U 

n,X -7r 
dBXn/2* and the dependence of P on U is reflected by the 

periodicity P(B) = P(B + 2~). For P, specifying a particular function, 

not only a product of variables but also more general expressions are 

admitted. The technical device of introducing source terms, familiar in 

the formal applications of path integrals, is avoided here. 

The fermion integrations in (3.5) have the important property 

(3.6) 

where ?!$ denotes the left derivative and 5" 
nB 

the right derivative with 

respect to the Grassmann variable + 
nB' 

Analogous relations hold for 5 
n$' 

To get similar equations for the gauge fields one has to introduce the 

derivatives* 

ch,Q = lim (Q(...,expIiTeelUXn,...) - 
E"0 

Q(...,U,, ,...))/E , 

(3.7) 

Q?$, = lim (Q( 
E-f0 

. . ..UXnexp{iTRe}....) - Q(...,UAn,... ))/E , 
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for which the property 

/ 
+U a IlanQ = 0 , / 

U U 
Q;;, = 0 (3.8) 

follows. For the derivatives (3.7) the rule for products and chain rules 

for the cases of interest can be established such that one has a conve- 

nient tool for the non-Abelian fields. In the Abelian case both deriva- 

tives simplify to a/aBAn. From (3.6) and (3.8) Schwinger-Dyson equations 

are obtained in Sec. IV. Similar derivatives as (3.8) with respect to 

transformations give Ward-Takahashi identities in Sec. VIII. 

The action (3.1) and the integration measure in (3.5) are invariant 

with respect to the gauge transformation 

Icl; = vn?Jn 3 s; = Gnvi 5 U& = vn + pAnv; 

where 

Vn = exp{iT T'oz) . 

(3.9) 

(3.10) 

The behavior of P in (3.5) under (3.9) will be discussed in Sec. VII. 

The classical continuum limit, i.e., that of S separately, is the 

correct one for (3.1) because then W A and thus X vanishes. In the 

quantum case, i.e., for correlation functions, X defined by (3.3) guaran- 

tees the correct limit as will be seen in Sects. V and VIII. 

Because of the distinction between the aX made here, which goes 

easily through everywhere, the transition to Minkowski space istrans- 

parent at any stage. Thus to check the reality of S/v there one replaces 
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a4 by iao. Further A4n is replaced by -iA 
On' such that (according to 

B4n = ga4A4n) B4n becomes Bon. Complex conjugation of the Grassmann va- 

riables is defined here as a one-to-one mapping of the Grassmann algebra 

(with generators li)n6, Gn8) onto itself which satisfies ({*)* = 5, 

(5,5,)* = C~C.; and (aSI* = a*E*, where 5 is a Grassmann element and c1 a 

complex number (an involution I9 would require much more). Now, with 

R. = - c 
'n 

$n,nWOn,nJln being the W. contribution to S/v, it follows from 

(3.1) :h;t (S/v - RO)* = S/v - Ro, however, that 

* 
RO = -R. . (3.11) 

Thus a peculiar property of the degeneracy regularization is found which 

will be met in a different form in Sec. VIII again. 

In the quantum case one has more carefully to replace a4 by iao+s. 

This amounts to working in Minkowski space with an is-prescription which 

could be largely done instead of using Euclidean space. It leads, as it 

should, to Feynman propagators which, for example, can be immediately 

checked converting the equations in Sec. V. 

For position space variables xA = aXnX, the replacement a4 -f ia 0 

means just x 4 -f ix 0' Momentum space variables are based on the r-repre- 

sentation of the occurring matrices which is obtained from the n-repre- 

sentation by the transformation 

dP+ exp -ni C 
x 

(3.12) 

Then one has kX = nrX/(aXNX) and for a 4 + ia o, r4 -t -r. one gets 
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k4 
-+ ik 0' Thus the transition is completely consistent (and hyperbolic 

functions4 do not occur in the discussion of propagator poles). 

IV. SCHWINGER-DYSON EQUATIONS 

From the general relation (3.6) with Q = -e 
-S P one obtains 

J- ( YJ 
e-' (?SS)P - PBP) = 0, [ews (p(SP8) - P%zB) = 0. (4.1) 

Analogous relations hold for TzB -4 and a 
nB' 

With (4.1) one has by (3.5) the 

Schwinger-Dyson equation <($zBS)P - +zB a P> = 0 and the respective ones 

for the other fennion derivatives. Because of the bilinearity of S in 

the fermion variables the second equation in (4.1) actually contains 

nothing new. This is seen by noting that 3' nB 
S = -S?S according to (3.1) 

and that from P only odd Grassmann elements contribute to the integrals. 

Due to the bilinearity it is also easy to read off from (3.1) that ? nL3 S 

and S? nB 
is just what occurs in the lattice Dirac equations. 

For the gauge field derivatives one gets from (3.8), putting 

Q = -e-'P, 

J ( e-' 
U 

(sionS)P - $i,,P) = 0, J ( U 
e-' P(S$ion) - pa +yon)= 0, (4.2) 

which by (3.5) gives again Schwinger-Dyson equations. In (4.2) the two 

equations have different content. The evaluation of the derivatives of 

S gives 



-rsv v Ran= 
g-clla. 

crA,n 
_ gc21a. 

uh,n-X / (gauaA)2 - 5tn/au + S:,/au , 
A 

(4.3b) 

with the currents 

+R J = un + ( s;,Yu U;nTeJI, + u + 5, + g$J $ on n ) 

Tin = &Y$J;~J~~ + u + li?, + u~u~un&n ) 

the quantities originating from x 

(4.4) 

(4.5) 

and the field-strength type components 

Tal The matrices 9ax n in (4.6) are given by 
, 

- upcal / (2i> 

(4.3a) 

(4.7) 

where w = u-f U-f 
n on A,n+o"cr,n+AUAn is the product starting with UAn at 

point p(1) = n, and the other w 
p(a) 

its cyclic permutations starting 

from P(2) = n -I- h, ~(3) = n f A + u, p(4) = n + u, i.e., from the other 
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corners around the plaquette. They have the antisymmetry property 

gCa’l = Cal 
uX,n - gXu,n (4.8) 

valid for a' = a = 1, for a' = a = 3, and for a' = 2, a = 4. The pro- 

Cal ducts of gauge field factors around plaquettes in the gu,X, n, occurring 
, 

in Eqs. (4.3a) and (4.3b) have the link from n to n + u in common and 

start from n + u and n, respectively, as is illustrated in Fig. 1. The 

occurring quantities (4.4) and (4.5) are also associated to this link. 

In the continuum limit of the individual quantities, i.e., in the 

classical one, one has 

gCal 
uh,n ’ (g auax) -t FOX(x) for all a, 

+I. J +R 
on ' 

J un+J$ , (4.9) 

tR +R 
Jo, Y Jun+o . 

In the quantum case, i.e., for correlation functions, it is to be stressed 

that all these quantities depend on the variables of the integrals, and 

the limit is the one discussed in Sec. II. 

As an application of (4.1) the derivation of Wick's theorem is 

briefly indicated. Inserting P = - $ n,B,P# and evaluating $$3S the first 

equation in (4.1) becomes 
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u- e+ J, 5 
n", B" 4 

nisi n~~~,Ip~(~-X+M)n"~"n~ 

I. 6 =- 
v n'n'8'8 

s 
ems p+- 1 Je-S$n,6,JzBPQ . (4.10) 

J, v ?-J 

It is to be noted that from P 
Q 

only even Grassmann elements contribute 

to the integrals. With G = (&X+M)-' one obtains from (4.10) 

/ J, eys Qnrg, Tns PJ’ = $ Gnt @tnB /e-’ PJ’ JI 
(4.11) 

Now, inserting P 
8 

= 1 one gets 

s e-’ 
J, 

$,I B~iJnfi = t Gnt B’nfj JemS 
* * 

(4.12) 

Next, putting P lb = $n,,,g,,, Gn,,,,, in (4.11) and using the result (4.12) 

one obtains 

(4.13) 

1 
2 G ( 

-S 
=----- n, f3,nfj G n' 1 I fj' I rnclgrr -G n, B'n"rpGnl 1 lf$' ' '*fj )J 

V 
*e . 

Obviously one can proceed in this way up to P J, 
with the maximal number 

of pairs +$ on the lattice (for other types of P JI 
the integral vanishes 

identically). This gives the Wick expansion for fennions. It can be used 
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with respect to S -S 
0 ine =e -so-s1 = -so O3 (-y 

e c t to set up per- 
u=o V. 

turbation theory. 

As an example for the application of (4.2) it is specialized to a 

Wilson loop. According to Fig. la for the first equation one has to 

choose P = 2Tr(TRL n+a 1, where L n+a is the product of gauge field fac- 

tors along a closed loop starting and ending at point n+a. Then 

summing over all R one gets 

(4.14) 

and similar expressions for the other terms. These forms can be inter- 

preted as deformations of the loop as is illustrated in Fig. 2 for a 

particular case. It is thus seen that the type of equations which has 

been recently of interest with respect to strings20 in the present 

formulation can be obtained in a general and easy way. 

v. FERMION DEGENERACY AND PROPAGATOR 

From (4.12) without gauge field one obtains for the free-fermion 

two-point function 

27 n,glnB(z) = $ Gn,B,nB with UAn = 1 . (5.1) 

By using the transformation (3.12) this can be written 

where for later convenience the abbreviation 
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tX,(h,a,d = - 

with s x = sin(rrA/NA)/aA , w = /ax and sign factors 

hA = f. 1 is introduced. 

To study the denominator in (5.2) it is advantageous to express it 

in terms of u x = 2 sin .rrrX/(2NX) 
( ) 

/ax which in contrast to sA is uniquely 

related to k A = nrA/(aANA) within the full r-interval. This gives 

rs: + lz12w2 + m2 - (2 + z*)mw = Tu: + m2 . A 
2 

+ (lz12- 1)CL4+ 1zj2 
c 

aXau u:uz+(z+z*)m c 
aA 2 

x4 x Au 4 
A -7x’ (5.4) 

From (5.4) it is seen that for IzI = 1 the uz term drops out. Such a 

choice of z thus generalizes the one advocated by Wilson4 to suppress 

the additional poles already at the finite stage. For the limit only 

IzI > 0 is needed as will be seen for the propagator in the following 

and for the anomaly term in Sec. VIII. 

So far the summation over rA in (5.2) is from -NA + 1 + cx to 

NA + cA, where c x is some integer. By an appropriate choice of cx and a 

shift of the summation indices in one half of the intervals by NX, c 
, r 

can be replaced by c for which the summations are restricted to 
r 

-NA/2 -c r x 2 312. In this way instead of (5.2) one obtains 
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27 n,B,nB(~) = (A’v)-l x’exp{CFrAAA/NA ) [~r(l,O,d 
r 

+ c (-1) AA 
C-1) 

Ax+A 
cl ,z 

h 

(5.5) 

+ c C-1) 
Ax+AG+A 

D>cPX 

+ C-1) 
Al+ A2+A3+A4 

X(-l,m +m +m +m z) r 12 3 4' 1 
where A = n' -n 

x h A and m x = 2 cos(nrh/NX)/aX. The sign factors h in 

(5.5) are defined by the requirement that h = -1 in (5.3) if one of the 
1-I 

arguments of h equals P and that h = 1 otherwise. The crucial point now 
1 u 

is that for c , in which kX and sx are uniquely related, the continuum 
r 

limit can safely be performed. Then, as long as IzI > 0, all terms of 

(5.5) except the first one vanish because the m x become infinite. One 

thus remains with the limit of 

‘C 
- (&v)-' c' exp{*iF rhAhlNh) l~y~s' -2m 

r yX+rn 

(5.6) 

which gives the correct result. 

The additional poles occurring in the fermion problem have been 

interpreted as further particles.4'14 From (5.5) it is seen that the 

sign factors h are an obstacle to this. For each term one could get rid 

of them by switching to another set of y-matrices. One has, however, to 

decide for one set to describe the system as a whole properly. 
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It is interesting to look at what happens for z = 0. In that case 

one can derive from (5.5) that 

. 
c 

27 n,B,nB(0) = -(h'v>-1 2 exp{Irlx rAAA/NA) i ' f~)~us'B~(A)m (5.7) 
r h 

x 
sx + m 

where 

fu(A> = 
i 

16 if AP odd and A'x with X # 1-1 even, 

0 otherwise, 

(5.8) 

f(A) = 
t 

16 if all Ah even, 

0 otherwise. 

Thus averaging n' in (5.7) over the 16 corners of an elementary cube one gets 

the same result as for (5.6). This holds for the limit too if (5.7) is 

averaged with a test function or occurs in a diagram combined with boson 

lines. It is, however, seen that wrong results arise in the limit as 

soon as functions (5.7) multiply, as they do in the case of fermion loops 

in perturbation theory. Then due to the factors (5.8) an additional 

(wrong) factor 16 arises for each multiplication. This is a simple ex- 

ample that one can get the spectrum and further features correctly though 

the problem is actually not solved. 

The fennion degeneracy is related to the invariance of S under the 

replacement +, + y5yx(-1) nX $, as was observed by Chodos and Healy21 con- 

sidering 2 + 1 dimensions and which was recently also discussed for 4 

dimensions.14 To find out more precisely here how this symmetry works, 

first four mappings TX of the Grassmann algebra onto itself are defined, 
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the action of which on the generators is given by 

+,: = 
5 

iyxy5(-l) $ 
nA 

n ’ Si = $,iyAy5(-1) . (5.9) 

It is to be noted that on the r-representation [which is obtained by 

(3.12)1 the Th then act as 

iyXy5’r + N 
- x 

, ;: = ;,,, (5.10) 

It is seen that S given by (3.1) with z = 0 as well as the integrations 

defining the correlation functions in (3.5) are invariant under (5.9) 

(the presence of the gauge field does not matter within this respect). 

Using (5.9) it follows that the mappings have the general property 

TATp + TpTA = 26 
XlJ ' 

(5.11) 

Thus the group generated by the TX is a well known one with 32 elements 

(16 basis elements of a Clifford algebra equipped with plus and minus 

signs). 

Next the implications of 

fermion propagator with z = 0 

integrations are invariant, a 
P P 

this transformation group for the free 

are considered. Because the action and the 

transformation of the variables by (5.9) 

in J 
+ 

e-' jinlfi,GnS / J e-' shows that T,g,nB(0) becomes 
$ 

C-1) 
AA 

21a (YAY5)B'a' ~n1c(In,(0)(Y5Y$,S ' (5.12) 

On the other hand, the value of ~7 nrarnB(0) is, of course, not changed 
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by using different integration variables, thus it must equal (5.12). 

This means that 9 n'8'ni3(') is invariant under the transformation given 

by (5.12). The detailed mechanism is that the 16 terms in (5.5) with 

z = 0 transform among themselves as can be checked by considering the 

effect of (5.12) on each of them. Further one can create all of them by 

repeatedly applying (5.12) to (5.6). It is to be noted that TX as well 

as -TX leads to (5.12) which explains why (5.12) generates only 16 trans- 

formations. 

YI. FERMION PROBLEM AND BOUNDARIES 

The periodic boundary conditions introduced in Sec. III (and exclu- 

sively used except in the present section) are particularly convenient 

because of the explicit solutions available in the free case. Thus (5.2) 

has been easily obtained from (5.1) by diagonalizing DAn,n using the 

transformation (3.12). Considered for one direction A, the crucial point 

is that with periodic conditions the matrix 

v' +1,v -6 
V1 

has eigenvectors 

f 1 z-e 2TriWlL 
c1V 

fi 

which correspond to eigenvalues 

Xu/(2a) = 2 i sin(2na/L)/(2a) . 

(6.1) 

(6.2) 

(6.3) 
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L 

Due to the identity c 
e2ai(a' -c()v/L = N6 with the normalization 

v=l ct'a 

introduced in (6.2) the relation 

(6.4) 

is satisfied. 

An immediate alternative possibility is the use of open boundary 

conditions. In the following it will be shown that in this case the 

fermion propagator can be explicitly calculated too. The clue to this is 

the exploitation of particular properties of the determinants which occur 

in the calculation of the eigenvalues of the matrix 

4k = *v,+1 v - 6 ,v+1 with v',v = 1 ,**a, L. (6.5) 
, V’ 

One has to note that more explicitly this matrix for open boundaries reads 

0 1 0 . . . 0 o\ 

-1 0 1 . . . 0 0 

0 -1 0 . . . 0 0 

. . . . . . . . 

. . . . . . . . 

0 0 0 . . . 0 1 

ro 0 0 . . . -1 0 I 

in contrast to 

for periodic ones. Thus defining 

dL(X> = det(AIL - ~1 

0 1 0 . . . 0 -l\ 

1 0 1 . . . 0 0 

0 -1 0 . . . 0 0 

. . . . . . . . 

. . . . . . . . 

0 0 0 . . . 0 1 

1 0 0 . . . -1 o/ 

(6.6) 
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for the oien case one can derive the recursion relation 

dL(A) = -ML _ ,(A> + dL _ ,(A) . (6.7) 

From (6.7) the dL(X) for all L can be readily calculated. Further, 

(6.7) can be used to show that the representation22 

dL(X) = WL fi 
a=1 

( X + 2i cos (*)) (6.8) 

holds. This can be checked by using as an intermediate step the 

representation 

dLO) = 
(-x+o-z)L+l-LA-Fz)L+l, (6g) 

. 

2L + 1L5 

which will be useful later too. 

From (6.8) one reads off that the eigenvalues of AL are 

Xa = -2i co,(*) . (6.10) 

Instead of c1 = 1 ,...,L one may use 

L+l &=a------ L-l 
2 ' 

&=-L-l _- 
2 ' 

L-1+l 2 ,***, - , (6.11) 2 

by which (6.10) becomes 

h 

A^ = 21 sin a ( &). (6.12) 

Now, comparing (6.12) with (6.3) one observes that the factor 2 in the 

argument of the sine, responsible for the fermion degeneracy, has disap- 
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peared. The experience with (5.7), however, teaches that before drawing 

conclusions one should at least calculate the propagator. In order to be 

able to do this one has to find the eigenvectors ofJlc,v. 

To get the eigenvectors $ov in 

(6.13) 

one first observes that for fixed c( the L equations (6.13) can be re- 

arranged as 

0 a2 = Ac%%l 

9 a3 = Vk%2 + Q1,l 

0 a4 = xcA3 + ?x2 

. . . . . . . . . . . . . . . . . . . . . . . . . 

@ uL = %X%X L i + % ~-2 , - , 

0 = ?&XL + +u L-l , . 

(6.14) 

The r.h.s. of (6.14) is then expressed by Aa and $ul alone using the 

equations (6.14) to replace the $ov with v > 1 there. Comparing the 

occurring polynomials in X c1 with those arising from the calculation of 

the dL(A) by (6.7) it turns out that one gets 

9 
CiV 

= (-I)‘- ‘d 
v - l(WcXl l 

(6.15) 

To determine the d v-l(ha) one inserts (6.10) into (6.9) which gives 
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d v-l(Aa) = iv-'sin (%)I sin(*) - 

Then with $cl = dz sin(*) one has 

(6.16) 

9 = 
av d & (-i)'-l sin(s) , (6.17) 

the normalization of which is such that 

(6.18) 

By (6.11) for (6.17) the form 

is obtained. 

i 1+ WV + I- WV (6. 
2 2 19) 

Now using (6.19) for all components of Dhnln, with i corresponding 

to ; A' the propagator can be calculated. Up to terms with a factor 

exp ri 
t = 

Gx(ni + nA)/(2NA + 1) 
i 

which, having alternating signs from 
A 

site to site, do not contribute to the limit, one obtains 

-(>v)-l c expbix i,AA/(2NA+l)] i"f~~~P~~2f(A)m , (6.20) 
A 
r A 

x h 

A 

where s = sin(&,/(2Nh+1)) /aX and ~k'=pZN~+l). Thus it turns out 
x 

that one gets essentially the same unacceptable result as in (5.7). 

There the doubling disappeared by the replacement of c by c-' - 
r r 
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Here it is not there because one has gx instead of sx. If fp and f are 

suitably averaged one gets again correct results, however, a wrong limit 

if factors (6.20) multiply. From a more general point of view the pre- 

sent case is an example where the matrix corresponding to the derivative 

of the continuum has been chosen to get a nondegenerate spectrum, which 

is, however, not sufficient as the explicit calculation here shows. 

VII. CORRELATION FUNCTIONS AND GAUGE INVARIANCE 

To make contact to the functions and relations of continuum theory 

gauge fixing is to be studied. The usual procedure23 can be performed 

on the lattice in a general and well-defined way. Denoting the group 

integrations over the transformations (3.10) by J , for a given gauge 
V 

fixing function {the invariant function 4 is given by 

$(U> $ fqu’) = 
V 

Using (7.1) it follows that 

J ems = $ ems@ $ {(U') = $$ e++/(U) . (7.2) 
U U V v u 

The definition of correlation functions with gauge fixing is then 

<Pp = Je-'$/P/ $e-"+& . (7.3) 

To investigate the nature of the latter, in the numerator as well as in 

the denominator of (7.3) steps as in (7.2) can be done in the opposite 

direction, which gives 
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<P>e = S~e-S~~P/S~e-S~~=~e-s~S~(U')P(U',lCI',~')/Se-S 
V V V 

By inserting $I from (7.1) into (7.4) one thus obtains 

tp:, = q juJ’)PoJ’ ,$’ ,6’,/$ f!<u’)> 
V V 

(7.4) 

(7.5) 

as the general relation between correlation functions with and without 

gauge fixing. 

From (7.5) it is seen that gauge fixing amounts to the use of an 

effective 

P eff = JP(u'w ,$J' ,$', /$ jvJ'> , 
Y V 

(7.6) 

which is obtained from a given P by averaging it with the gauge fixing 

function. Clearly Peff is invariant. If P is invariant one has 

P eff = P and for the exact result gauge fixing actually does not matter. 

In numerical calculations it has been observed2 that with gauge fixing 

the convergence becomes slower. The case of invariant P has been 

envisaged by Creutz24 when discussing gauge fixing on a lattice. If P 

is not invariant, as for example for the usual fermion two-point function, 

it becomes obvious from (7.6) that the role of an appropriate /is to 

provide factors such that invariant contributions arise which do not 

vanish under . J At the same time {must also contain an invariant term 
V 

to guarantee a nonvanishing denominator in (7.6). Thus the choice of the 

gauge fixing function on the lattice needs some care. An example of an 

appropriate f, corresponding to exp - &sd4xc (apAu)2 
1-I 
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continuum theory, has recently been given.* 

Using (7.3) it follows from (4.1) that with gauge fixing the 

Schwinger-Dyson equations with fermion derivatives, 

<(Z$S)P - ?Y P> = 0 , 
nB e 

<P (ST$ - P? > = 0 , 
nfv 

(7.7) 

look essentially as before, while replacing P by ASP in (4.2) one obtains 

S - En($@))P -qo,P> = 0 , <P((S - Ln($/))5~on)-PZ~on)e (7.8) 

for the ones with gauge field derivatives. 

It is to be noted that gauge fixing has already in continuum theory 

some unpleasant features. A well-known one of these is the Gribov am- 

biguity. 25 Another one, which in the nonperturbative case becomes im- 

portant, is that related to nonlinear transformations (or to ordering in 

operator language) which has been pointed out some time ago26 and for 

which now examples have been calculated.27 The present analysis on the 

lattice shows that by (7.6) gauge fixing constructs gauge invariant Peff 

from noninvariant P in a complicated and physically unmotivated way. 

For example, for the fermion'propagator in general an average of products 

of gauge-field factors (along paths between the two fermion points) with 

gauge-field dependent weights is formed. Thus it appears much more 

reasonable to start with gauge invariant P from the very beginning. 

The only gauge invariant function which has so far been extensively 

studied in literature is the Wilson loop in the absence of fermions. 

With respect to dynamical mass generation the propagators of the full 

theory are of interest (including the case of infinite mass this could 
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describe confinement too). For the gauge field one can simply consider 

the correlation between two plaquettes (minimal Wilson loops) which in 

the continuum limit means to deal with field strength rather than with 

vector potentials. For the fermions, however, one has necessarily to 

include gauge field factors in P too. The most natural choice is a pro- 

duct t9fn, of them along a path w from n' to n such that in9 ;nlJinl is 

invariant. The generalization of PO = $ 5 
n'B' nB 

of the free case is then 

P= - 'nf3 9ZCBln'1:8'1'n'B' (7.9) 

where CBI, CB’I mean internal symmetry indices only. There is in general, 

of course, a large number of possible paths from n' to n. To restrict it 

w an immediate requirement is gnn = 1. Then it seems reasonable to ex- 

clude paths going through the lattice boundaries. Further one can admit 

only those of minimal length, which on the lattice, however, leaves still 

many degenerate possibilities. Thus there are some questions which de- 

serve study in connection with the dynamics. 

The structure of quantized gauge theory which emerges here leads to 

severe difficulties for the concept of axiomatic field theory to con- 

sider correlation functions (or Green's functions) as distributions. To 

point out how this comes about, first the case is considered where P de- 

pends on p variables $,, There, using test functions f onlR 4P , one can 
. 

define <P> as distribution considering it as the linear continuous 

functional the action of which on the f is specified by 

vp lx p(P~nl~l,...,~npap))f(~(nl),...,x(np~) - (7-10) 
n ,...,n 
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For the continuum limit the fact can be exploited that if (7.10) con- 

verges for all test functions, the limit itself defines a distribution. 

Thus the connection can be established using only the weak topology of 

distributions. In appropriate examples it can be explicitly checked 

that (7.10) gives the usual expressions. However, all this does not work 

for gauge theory because of two reasons. Firstly, for correlation func- 

tions as the fermion propagator or the Wilson loop the number of gauge- 

field factors becomes infinite. This would mean p + m in (7.10) in which 

case the distribution formalism is no longer applicable. Secondly, be- 

cause gauge invariance requires these factors to be along a path or a loop, 

the n-summation in (7.10) is no longer possible. 

VIII. WARD-TAKAHASHI IDENTITIES 

To get Ward-Takahashi identities the integration variables in s e -%P 

are transformed. An invariant factor I is included for later convenience. 

The transformations to be considered have in common that the integration 

measure is invariant with respect to them. From the transformed expres- 

sions the identities of interest follow by applying appropriate deriva- 

tives. 

In the case of the transformation V defined by (3.10) the derivative 

+-V a Rn is used which is related to Vn in the same way as TAn in (3.7) is 

to UAn. If only the fermion variables are transformed, i.e., for 

one obtains 

4 ( ? 
e-'I P(S5:n) - PY )= 0 . 

Rn (8.1) 
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By evaluation of the derivatives, using the chain rules for Grassmann 

variables, (8.1) expressed in $,, Gn becomes 

s e-‘I 
JI 

(8.2) 

(?8P)(T$& + ($J~T'+&P 
)I 

= 0 . 

By (3.5) this gives the Ward-Takahashi identity with the quantities (4.4) 

and (4.5) which occur in the equations of motion too. Alternatively one 

can transform only the gauge field variables, i.e., consider 

U' =v -t 
Xn n+XUhnVn ' which leads to 

L ( , 
e-'I P(Ssvti) - pyn = 0 . 

> 
(8.3) 

By using the relation QxIn = 
CC x 

Q?& - $yx ,-x9) , and after the 
, 

evaluation of the derivatives, (8.3) gets the form 

1 -- 
V c 

x 
(P$YXn - $:A &P) 

, 1 = 0 . 

If the full transformation (3.9) is used, instead of (8.2) and of (8.4) 

one obtains 
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(;j"nSP)(T'$& + ($nT5)8$zBP = 0 , 

(8.5) 

which gives the Ward-Takahashi identity involving no currents. 

For (8.2) the relation to the corresponding continuum equations is 

obvious. It gives the proper definition of the formal path integral re- 

lations there in the sense indicated in Sec. II. Putting I = $I according 

to (7.3) gauge fixing can be readily introduced. Further one may combine 

7% +R 
JAn with JXn and ;f, with "tn to come closer to the usual appearance. 

The analogue of (8.4) is not used in continuum theory. To obtain corres- 

pondence of (8.5) to continuum relations one has to introduce gauge 

fixing, i.e., to put I = 4 , to replace P by {P, and to apply (7.3). 

It is instructive to consider (8.5) in the simplest case of interest 

with and without gauge fixing. For I = $I and P = /$n,fi,$n,,S,, one has 

(8.6) 
-1 

- $,n,(TE+n,)B,~ n”B” +6 nn "Jln' 6' ($,,,T')S,,j 
J 

= 0 . 

By (7.3) this gives the identity which corresponds to the continuum one 

involving the divergence of the fermion-untruncated vertex function and 

fermion propagators multiplied by B-functions. The gauge field 

dependence of the vertex function in (8.6) is seen to originate from &. 

On the other hand, for I = 1 and P given by (7.9) one gets 
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Since the derivatives in (8.7) can be immediately evaluated, in this 

case the identity becomes trivial. 

The transformation $A = eXpiianl$,, ?I', = j; 
n exP{-ian) 3 using the 

derivative a/aa 
n' leads to the identity 

J e-'1 
J, H P c 

x 
(JAn - JA,n-X) hX - C (j,, - j, n-$/a~ 

x 9 

(8.8) 

for the singlet current 

J on = $ GnY,u;n*n+o + Gn+(&uonen ( ) 
' 

The quantity 

(8.9) 

(8.10) 

originates from X. The relation to the continuum equations is for (8.8) 

in the same sense as for (8.2) obvious. Similarly as in (4.9) one has 

the classical limits J Bn + Jo(x) and jcrn + 0. 

In the case of the transformation li)i = Vi$n, $A = $,< with 

Vi = exptiy5 c TRoR] the derivative zv5 +-v 
Rn ' differing from aRn by having 

R n 
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exp{iy TLc} 5 instead of exp{iT's} in its definition, is used to get the 

V5-analogue of (8.1). Now, however, the contribution resulting from X 

can no longer be decomposed in a divergence-like manner. Its terms are 

+G 
therefore expressed by (4.11) and by the analogous equation with anA. 

Thus one arrives at the identity 

&ems1 k (F (3:: - ?z:nvA) /ax - 2im$ny5T”$n - 5 tr (Y5Te(GX + Wnn)) 

(8.11) 

i -- 
cc 

= 0 
V 

n',B 

with the axial currents 

(8.12) 

and where tr refers to y-matrices in addition to the internal 

symmetry ones. 

By the transformation $A = exp{iy5an)Qn, a,: = in exp{iy5an), 

using a/aan, one gets in a completely analogous way the identity 

le-'I[P (F (J:, - J:,n-h)/aA - 2im$,y5jJn - ttr (y5(GX+XG)nn)) 

(8.13) 

i -- 
V 

(~~,~P)((~+GX),I,Y~~~)~ -(S;,Y~(~+XG&& Jiv6p = 0 - )I 
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for the singlet axial current 

JL = 3($nYXY5U:n$n+h + ?n+XYXY5UXn+n) l 
(8.14) 

For (8.11) and (8.13) the relation to the corresponding continuum 

equations is again clear provided that one has in the limit 

+ tr XG) nn E pvhpFpv(X)FXp(X) (8.15) 

+ XG)nn E ?.NhpFJX)FAp(X) , (8.16) 

$0 + GX)n,n , $(l + XG)n,n -+ g4(x' - x) , (8.17) 

I.e., one has to get the Adler-Bell-Jackiw term9 in (8.16), the result of 

Bardeen2* in (8.15), and the same limit as for % v n'n alone in (8.17). 

For the degeneracy regularizations of Wilson4 and of Osterwalder and 

Seilerl* it has been recently shown7 that (8.16) and (8.17) indeed hold. 

The presented demonstration7 generalizes to the case of the regulariza- 

tion (3.3) with arbitrary z # 0. In addition it can be modified to give 

(8.15) too. 

The limits of the identities for correlation functions given by 

(8.11) and (8.13) with (3.5) are again to be considered in the sense of 

Sec. II, and in particular provide the proper definition of the corres- 

ponding formal path integral relations of continuum theory. Thus, for 

example, (8.13) is the adequate description of what has been considered 

by Fujikawa.2q With respect to (8.15) and (8.16) it is to be realized 
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that the limit is only the naive one for classical gauge fields. F,,v (x> 

and F,,(x) th ere arise as the limit of averages of four quantities7 which 

are related to the four plaquettes having the point x in common. In the 

full quantum case these quantities depend, of course, on the gauge-field 

variables. With respect to the currents it is to be noted that classi- 

+-5R tally one has again J 55R 
An' An + J:'(x) and Jz, -f J:(x) . 

The currents considered here are seen to be related to the links of 

the lattice just as the gauge fields are. Thus their nonlocality does 

not exceed the minimally necessary one. On the other hand, it is re- 

markable that they automatically get forms which are reminiscent of the 

pointsplitting ones introduced30 in continuum theory to overcome diffi- 

culties. fR tR The regularization quantities Jam, Jam, jAn may be combined 

with the respective currents. It is, however, to be noted that they in- 

herit the property (3.11) of the degeneracy regularization. Thus, while 
J; 

one has J kn = Jkn for k = 1,2,3 and -Tin = -J4n for the currents, which 

with J 4n = iJOn gives Ji, = Jon, for the regularization quantities one gets 

.* 
JAn = jAn for X = 1 ,...,4 and thus with j4n = ijOn the result jtn = -j Ona 

IX. METHODS FOR DYNAMICAL MASSES 

The usual methodlo in continuum theory to investigate dynamical 

mass generation is based on Schwinger-Dyson equations and in addition 

uses Ward-Takahashi identities. The solution of the integral equations 

presents, however, still considerable problems.31 Therefore, having 

now the corresponding equations on the lattice it appears worthwhile to 

study the respective possibilities there, since everything then is well 
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defined. 

To get the analogues of the usual equations first the ? 
n'B' version 

of (7.7) with P = $ 
nB 

is considered which is 

(9.1) 

Introducing gnlBlnB = <J, (9.1) can be writteng-1% + "V' = 1, 

-1 or after multiplication with $J , 

(9.2) 

where L? is the free propagator given by (5.1) and 

“Yn’B’nB =v 
c(( x 

< UJ;,, - 1) (.Y, - n)$ n' + X > B' 5 > nB/ 

) ) 

(9.3) 

- '(('A,n'- h -1) (Y, + n)$ n' - X 3 > 6' n6/ /(2aX) . 

The basic elements of (9.3) are three-point functions of the form 

<YR$ $ Xn n' B' n"@">/ with YR Xn = 2Tr(TL(UAn- l)/aA) and similarly for II:,. 

To relate these to vertex functions one has to put 

aa a where one may choose gAnz; = <dR &--> An An/ with 
!2 

&An = 2Tr(Ta(UAn -Uin)/(2igaX)) to be close to continuum theory. 

The usual approximation corresponds then to setting 

rR Ann'B'n"@" z cona. (T’Y~) 6, B,f 6nn, gnnll . (9.5) 
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If (9.4) with (9.5) is inserted, (9.2) b ecomes the analogue of the 

equation on which the usual method10p31 is based. 

It is obvious that gauge fixing is essential in the indicated ap- 

proach. Therefore, from the lattice point of view as discussed in Sec. 

VII it is not natural. In addition the ansatz (9.4) with the approxima- 

tion (9.5) is deeply rooted in perturbation theory and can hardly be 

justified at the nonperturbative level. The Schwinger-Dyson equation 

RR associated with ghnx-n , namely (7.8) with P = &Z" X'n' ' due to the compact- 

ness of the gauge field only in the limit gets a workable form. Thus on 

the lattice the method becomes rather unattractive within several res- 

pects. 

Following the usual line of argument lo further, to conclude via the 

Ward-Takahashi identity from the fermion propagators with mass about a 

vertex pole, (8.6) is to be considered. Then the obtained knowledge is to be 

used for the vertex in the gauge-field Schwinger-Dyson equation (7.8) 

with P = d" A'n' , i.e., in the three-point function 

(9.6) 

to come towards a vector boson mass. However, the gauge field dependen- 

ces of the vertex functions contained in (8.6) and (9.6) are of a rather 

different nature, and in (9.3) one has even a third version of this pheno- 

menon. The relation between these functions is thus scarcely useful for 

practical purposes. From a more general point of view one sees that 

familiar continuum quantities in a nonperturbative formulation can have 

different analogues in different situations. 

A central question for concrete calculations which remains is 
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how to deal with fermions. Actually, due to the bilinearity of S in the 

Grassmann variables, s 
e-Sf 

4J 
, with Sf denoting the fermion part of S, 

is nothing else than det(vG-1) , 
/ e-sf$n' 6IGna is its minor without 

$ 
row n', 6' and column n,B, and the corresponding integrals with more 

pairs $$ similarly are minors with more rows and columns deleted. In 

contrast to their conceptual simplicity, however, the actual solution of 

determinants is a major problem, in particular if the result is needed 

for the subsequent gauge field integration. A selection of the occurring 

contributions according to their gauge field content appears therefore 

advantageous. To get it one has to note that one can write 

Sf = 
= ic 

(cc XnB'B - WXnf3'B) + *nB'f3 (9.7) 
n,6',6 h 

where 

UXnB,B =vs; n+ X 6' ((yX + n)UXn)B'fi'n@'(2ah) ' , 

U)\nS'B =v3; n~'((Y~-'I)U:n)~'~*n+A,B/(2aX) ' (9.8) 

@nB’ B = v 'n@' (m+n F t),,glv,B . 

This allows the representation 

e-sf = l-l (” (1 -u 
n,B',B X 

hnB'B)(l+~~nB,B) (1 -"n61& * (gag) 
) 

From (9.9) only the products contribute to 
/ 

-sf e which contain all 
* 

components $, 5 (and only once). Thus visualizing uXnBIB , uAnBIB and 
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wnB'B 
as depicted in Fig.3 one must have 4N ingoing and 4N outgoing lines 

at each point, where N denotes the number of internal symmetry components. 

Similarly to 
J 

-sf e $ 5 only those products from (9.9) with all com- 
11, n'B' nS 

ponents except'$ n'f3' and 5; 
nB 

give a contribution. 

For simplicity the discussion of the emerging picture is now re- 

stricted to N = 1. It is seen that the contributing paths formed by the 

elements of Figs. 3a,b are just the ones allowed for factors UAn,LJln by 

gauge invariance. Actually, these paths are even there without the gauge 

field and have then equal weight. In the presence of the gauge field 

they are weighted according to their dependence on the latter and to the 

coupling strength. In Fig. 4 it is illustrated that loops to compensate 

a Wilson loop and to invalidate the area law argument1 are readily 

available. 

An example of a contribution to the fermion propagator is shown in 

Fig. 5. The path from the minor completes w given by (7.9) to a loop. 

Thus for stronger coupling minor paths close to w are preferred. It is 

to be remembered that the freedom in the choice of Yw nn' is what remains 

here from the gauge dependence of the propagator in continuum theory. 

With respect to a dynamically generated mass the implications of this 

choice are of prime interest. It is felt that the indicated picture can 

provide a guide for the development of quantitative methods. 

X. SITUATION FOR WEAR INTERACTIONS 

The fact that the fermion degeneracy regularization breaks chiral 

symmetry has so far been an obstacle to extending the lattice fonnula- 
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tion to weak interactions and thus to the electroweak theory. This is 

unsatisfactory from the practical as well as from the conceptual point 

of view. Thus it appears necessary to look more carefully where the 

problem is actually located. 

The central point to be realized is the connection between the de- 

generacy regularization and the axial-vector anomaly,g which has been 

shown in perturbation theory at the one-loop level by Karsten and Smit13'14 

and which has been established independently of perturbation theory in a 

general way by the present author.7 In Sec. VIII it is manifest by the 

limits (8.16) and (8.17) in Eq. (8.13). Because one must have the anomaly 

term, one is thus forced to break chiral invariance. There is no contra- 

diction to the'SLAC approach32, which starts in a chiral invariant way, 

since for the crucial test objects, fermion loop and axial-vector current, 

the limit there cannot be performed without further specification.33 In 

this context a degeneracy regularization may be viewed as a parametrized 

limit prescription (technically somewhat similar, for example, to the 

is-prescription for Green's functions). 

Next it has to be noted that also in continuum theory the notion of 

chiral symmetry is to be qualified. For example, the chiral U(1) sym- 

metry in QCD with massless quarks is one without a conserved gauge- 

invariant current. Thus this symmetry is spoiled if one insists on 

gauge invariance as one has to do according to the discussion in Sec. VII. 

With respect to perturbation theory it is to be remembered that to avoid 

anomalies means to build the theory such that the anomalous contributions 

cance134, and, of course, not that the individual terms are not there. 

Therefore, it is not surprising that the lattice formulation, being non- 
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perturbative, shows these features in a more detailed form. This form 

has here the virtue that the effects of the anomaly are explicitly 

prescribed by the degeneracy regularization. 

Then it is to be observed that what forbids putting the degeneracy 

regularization into the electroweak action is nothing new but just what 

does not allow mass terms there. Following the conventional way this 

would lead to inserting the regularization via a Higgs coupling too. To 

circumvent the nonrenormalizability of this coupling one could use a sub- 

sequent limit of parameters13p35 which in the present notation amounts to 

letting aX in X go to zero later. The unpleasant features of this way 

are, apart from the somewhat artificial limit, the same as for the 

masses. There are the reasons5r6 making elementary Higgs fields unwelcome 

which need not be repeated here. Further, to avoid trivially vanishing 

expectation values of the Higgs fields, gauge fixing is needed, which is 

not natural on the lattice. Thus, summing up, just as for the masses,6p36 

looking for a dynamical mechanism appears more reasonable for the degene- 

racy regularization too, though this is certainly still more difficult. 
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FIGURE CAPTIONS 

Fig. 1. Gauge field factors around plaquettes illustrated in 3 dimensions 

for (a) Eq. (4.3a), and (b) Eq. (4.3b). 

Fig. 2. Deformations in the oX-plane of a particular Wilson loop 

(situated in the oX-plane and going through the link from n to 

n+a) within the Schwinger-Dyson equation (4.2) due to the terms 

from (4.3a) of (a) gk:' , (b) gLz'n-x , and (c) $o, . , 
Fig. 3. Graphical representation of the quantities (a) uXnB,@ , 

(b) u XnB'f3 ' and (c) e 
nB'B 

in Eq. (9.8). 

Fig. 4. Example of a loop from the fermion determinant which can 

compensate a Wilson loop. 

Fig. 5. Example of a path from the fermion minor which completes the 

prescribed path w (in dashed line) of gin, of the fermion 

propagator to a loop (the enclosed area is shaded). 
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