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ABSTRACT 

We analyze the direct photon production in e+e- collisions in 

quantum chromodynamics using the cut vertex formalism and renormali- 

zation group method. The two-loop anomalous dimensions of time-like 

cut vertices are calculated from the two-loop parton decay probability 

functions. The moments of the transverse structure function $ are 

calculated up to the next-to-leading order. The nonleading corrections 

to @z turn out to be large, and even larger than those to the photon 

structure function Fh in the photon-photon scattering. Also, the 

moments of the longitudinal structure function WY L are calculated in 

the leading order. The corrections are found to be small. 
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1. Introduction 

For some time it has been emphasized that the measurement of the 

photon structure functions in high energy e+e- colliding beam experi- 

ments should provide a good test of quantum chromodynamics (QCD). 

Because of the point-like nature of the photon, the definite predictions 

have been obtained for the photon structure functions in the leading and 

the next-to-leading order of asymptotic freedom.lW5 The point-like 

nature of the photon also leads to precise predictions for many processes 

involving real photons.3 

One such process is the direct photon production in e+e- collisions 

as shown in Fig. 1, 

+- 
e e -+ Y*(s) + ydirect(p) + hadrons (g = +) . (1.1) 

Here the virtual photon with momentum q is far off shell (large q2 ' 0) 

and the observed photon having momentum p is "direct", which means that 

it is not a decay product of radiatively decaying hadrons. The un- 

observed hadrons have charge conjugation %'=+. 

If we define the time-like photon structure functions gy and 9; 

as follows:6 

. 
eiq2 eiP(y-x)<O/~(Jp(~)JII(s))T(JP(y)Jv(0))~O> 

= 

[ 
-guv + 

q,qV 
- 

q2 1 i;(p*q,q2>+ 
( 

Pp - y qp p, - y qvqp-q,q2> 
P >( q > 

(1.2) 

with T representing anti-time-ordered products, then the cross section 

for the direct photon production can be written as 



do - = 7 o. z 
dzdfi l (1.3) 

Here V = p'q, z = 2V/q", 8 is the angle between the photon momentum and 

the e+e- collision axis, and 

Oo = 
4ra2 

3q2 
, (1.4) 

is the total cross section for e+e- + v+!J-, with c1 = e2/4.1r being the 

electromagnetic coupling constant. In terms of the transverse and 

longitudinal structure functions such as 

and 

(1.5) 

(1.6) 

we can rewrite the cross section (1.3) as 

da - = 4 a0 z[~;(z,q2)(1+cos2e) + i+q')(l- cos28)] * dz dQ (1.7) 

The direct photon production in e+e- collisions was first studied 

in parton model (PM) by Walsh and Zerwas.6 Evaluating the s-channel 

discontinuity of the box diagrams of Fig. 2, they obtain 

GY 
T PM 

= a2 6y4 1+ (1-z)2 Rn q2(1-z) 
2 2 , 

Z 
mq 

and 

iy 
l-z 

L PM 
= a2 6y16 -y- 

Z 

(1.8) 

(1.9) 

where 
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6y = 3f<e4> = 3ce4 , 
i 

(1.10) 

the sum i runs over quarks of f flavors, and m 
q 

is the quark mass. 

Because of the point-like coupling of photon to quarks Gy 
I T PM 

does not 

scale, but grows logarithmically with q2. 

Recently QCD predictions for this process have been obtained in the 

leading order of asymptotic freedom by Llewellyn Smith3 in the framework 

of perturbative QCD and Koller et al.,7,28 in the framework of Altarelli- 

Parisi approach.8 They found that the structure function iz maintains 

the non-scaling Rn q2 behavior, but its shape changes substantially from 

the simple parton model prediction. 

The calculation of the next-to-leading-order contributions is 

important at least in two respects: it is important for perturbation 

theories to estimate how large the corrections to the leading term are. 

Secondly, it is known that A, the single free parameter of QCD, is not 

specified by a leading-logarithm calculation.g'10 In order to determine 

A it is necessary to include the next-to-leading-order contributions. 

In this paper we shall analyze the direct photon production in e+e- 

collisions using the cut vertex formalism developed by Mueller" and 

shall calculate the next-to-leading-order QCD corrections. It is crucial 

in the analysis to introduce the bare cut vertex for two photons in 

addition to the usual fermion and gluon cut vertices. The point-like 

nature of photons is taken into account by inclusion of two-photon cut 

vertices. The situation is very similar to the case of the deep-inelastic 

scattering off photon target where we must consider the twist-two photon 

operator in addition to the usual quark and gluon 0perators.l 
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In the next section we derive a formal expression for the moments 

of cy and Gi in the framework of the cut vertex formalism. T We discuss 

in some detail the necessity of introducing the bare cut vertex for two 

photons. In Sect. III we present one-loop and two-loop anomalous dimen- 

sions of cut vertices. Using these anomalous dimensions we evaluate in 

Sect. IV the first three leading terms of wi moments. In Sect. V we 

evaluate the leading term of q? moments. Section VI is devoted to a 
L 

brief summary of this paper and some comments on the backgrounds to the 

direct photon production. 

II. Cut Vertex Formalism for Direct Photon Production 

In order to analyze hard scattering processes we need to separate 

the dynamics into two regimes-that of large distance effects which are 

connected with the formation of hadrons, and that of short distance 

effects which are calculable in perturbative techniques. In deep-inelastic 

scattering, the light-cone expansion makes it possible to separate the 

large and short distance effects. This separation can be done even in 

semi-inclusive processes by using the cut vertex formalism which has been 

developed by Mueller.11'12 

In his pioneering work,ll Mueller showed that the moments of the 

structure functions in single-particle inclusive e+e- annihilation 

factorize, for large q2, into a singular function depending on the q2 

of the virtual photon, but completely independent of the particle pro- 

duced, times a cut vertex which depends on the particle observed. He 

has introduced the bare cut vertices for two fermions, for two-fermions 

with arbitrary number of gluons, and for gluons (see Fig. 5 below). 
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But if the observed particle is a photon, we should consider an addi- 

tional cut vertex- the cut vertex for two photons. 

First consider the inclusive hadron production in e+e- collisions. 

For a given Feynman graph contributing to this process, we break up the 

graph into two parts which are connected by fermion and/or gluon pro- 

pagators as shown in Fig. 3. Call the right-hand part of the graph T 

and left-hand part A. Because of the composite nature of the hadron 

produced, we decompose the graph such that large momenta of order q2 

flow through T, and not through A. The additional subtraction procedure 

enables us to pick up the dominant term for large q2 and to show that 

the moments of cross section are factored into a cut vertex times a 

singular function. (Details are discussed in Ref. 11.) Roughly speaking, 

after renormalization A contributes to the renormalized fermion and gluon 

cut vertices, and right-hand part 't contributes to the time-like coeffi- 

cient functions. 

Now consider the direct photon production in e+e- annihilation. The 

photon has two feature: the photon interacts as though it were a vector 

meson with a transverse momentum cutoff, but on the other hand it couples 

point-like to quarks. If the photon has the first feature only, each 

contributing Feynman graph can be broken up into two parts just like those 

in Fig. 3, and the moments of the cross section (or the time-like photon 

structure functions) can be written in the factorized form, i.e., the 

fermion and gluon cut vertices times the time-like coefficient functions. 

However the second feature, the point-like coupling of the photon to 

quarks, allows the different configuration of momentum flows from the 

ones in Fig. 3. Large momenta of order q2 can flow all the way down to 

the real photon vertices, and the decomposition of the types shown in 
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Fig. 3 i's not adequate. We should include the contribution of each graph 

with this configuration of momentum flows, which is illustrated in Fig. 4. 

This latter contribution to the moments can also be written in a factorized 

form; this time, the bare cut vertex for two-photons times a coefficient 

function. To lowest order in a the photon cut vertex needs no renormali- 

zation. Therefore, the bare photon cut vertex, when summed over the photon 

polarization and multiplied by an appropriate kinematical factor, turns 

out to be simply equal to one. The situation is exactly analogous to 

deep-inelastic scatterings off the photon target, in which we have in- 

troduced the photon operator and the matrix element of the photon operator 

in a photon state is, to lowest order in a, equal to one. 

Let us examine the contribution of Fig. 4 more closely. Call 

M aB uv(p,q) the renormalized amplitude for four-photon vertex. For the 
, 

moment we forget the polarization sum of the outgoing photon. Now con- 

sider the case where large momenta of order q2 flow through the vertex 

and the decompositions of the types shown in Fig. 3 are not allowed. 

Then we should consider the vertex itself as a whole. Decompose 

M af3,vv(P'q) into the different tensor structures as follows: 

M ag,vv(p,q) = iF2 t;B,pv(p.q) $(p2,p*q,q2)+ 0.. 3 (2-I) 
- , 

where 

tL ,$&,(P.4) = 2(gpyq2 - q,qJ 

(2.2) 
X 

i 
gaB(P*q)2- (qaPg +qBPa)P'q+qaq8P2 

) 
1 

- ' 
(q2> 3 
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2 

+ -9-2 pppv 
(p*q> (2.3) 

x gaB(P'q)2 - (qaPg+qgpa)p'q + 4,4gp2 - 
1 > 

1 

(q2>2 ' 

and the neglected terms 

the photon polarization 

in Eq. (2.1) d o not contribute when we sum over 

in the final state. Setting p=v=-,13 and for 

large q2 and q, we obtain 

tL 2&l: 
aB,-- = -- 

(q2> 3 C gafjpI - P-(go,-pB+g@-pa) + ge-g@-p2 ' 1 (2.4) 

2 

t2 91 
a$,-- = - 

(q2) 2 C ga,p? - P-(gc-pB+gs-pa)+ ga-gfi-p2 . 1 (2.5) 

When we sum up the polarization of the final photon, we obtain 

22 

-Iz 
a$ 2q2p2 

g MaB 
,--(p,q) = $+ q(o,v,q2) - ---$ M:(03v3q2) l (2.6) 

a,@ 

Taking the (-,-) combination for by 
I.lV 

in Eq. (1.2) and comparing it with 

the result of Eq. (2.6), we find for the contribution of graphs with the 

large-momentum-flow configurations shown in Fig. 4 to the photon structure 

functions 

vl(z,q2) = z2 q(o,z,q2) 

= z M;(O,z,q') . 

The moments are then given as 

, (2.7) 

(2.8) 

]dz zn G;(z,q2) = ]dz zn+2 q(O,z,q") = E;,,(q") , (2.9) 

0 0 
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1' 1 

I 
dz zn+l v$(z,q2) = 

J 
dz z n+2 M;(0,z,q2) = E;,n(q2) . (2.10) 

0 0 

Above equations can be rewritten in another form 

]dz zn fi;(z,q’) = vI;(p2) E;,,(q’) , 
0 

I. 

/ 
dz zn+' vij;(z,q2) = v;(p') E;,n(q2) , 

0 

where 

= c .!3 
af3 1 n-l Ty 

a,8 
j$ pm a,,,(') , 

(2.11) 

(2.12) 

(2.13) 

and 

ry aB,n(P) = 4 !3,,P” - p- (ga-Pfi + g&Pa) + gamg@_P2 (Pm) > 
-n-l 

* (2.14) 

The expression of Eq. (2.14) is exactly the same form as the two-gluon 

cut vertex (see Eq. (2.17) below), and we can call I'iB ,(p) the bare cut 
, 

vertex for two photons. It is illustrated in Fig. 5(a). 

Now we list the other (time-like) bare cut vertices which we need 

for analysis of the direct photon production in e+e- annihilation. The 

flavor singlet cut vertices for two fermions without and with one gluon 

,,,11,12 

Fig. 5(b) : T;:,(p) = y-PIn6ab1 , 

gym * 
Fig. 5(c) : rtf;p(p,k) = k Tzb (p+k) 1" 1 , 

me * 
Fig. 5(d) : I';;?p,k) = - -k- TibpInl . 

(2.15) 
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The indices a,b refer to a representation R of the color group SU(3) for 

fermions, g is the strong coupling constant of the theory, and 1 is f x f 

unit matrix. These vertices obey the following Ward-Takahashi (WC) 

identities: 

k- r;tAb (PM 
. 

= gTia, r ;;;(p+k) 9 

(2.16) 

k- r ;$?p,k) = -g r ;;;(p) T;,b . 

We must add the cut vertices for two fermions with more gluons. Vertices 

with extra gluons become rather complicated, but their form is essentially 

fixed by the WT-identities and the bare fermion cut vertices without 

gluons. Therefore we have not listed higher-order vertices. 

The formulas for the flavor non-singlet cut vertices for two fermions 

without and with gluons are the same as the singlet ones with the replace- 

ment of 1 by (Qzh-<e2>l), where Qzh is the square of fx f quark charge 

matrix; and <e2> is the average quark charge squared. 

The cut vertex for two gluons is given by Fig. 5(e) 

r djS ,(k> = 4’ij{ga~” - k_(ga_ks+ gs_ka) + ga-gs_k2 > (k-j -n-1 . (2.17) 
, 

We need cut vertices for more gluons. The higher-order vertices are 

straightforward to construct with resorts to the WT-identities, but they 

are somewhat cumbersome. The three-gluon vertices, for example, are 

shown in Ref. 11. 

With all these cut vertices at hand, we follow Mueller's cut vertex 

formalism which has been discussed in detail in Ref. 11. Then for large 

q2 the moments of the time-like photon structure functions are. given in 

a factorized form as follows: 
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‘/dz zn Gl(z,42> = TV: Ei,n($,g2,a) , 

1 

J 
dz z n+l $(z,q2) = xv; E; n , 

i , 
0 

(2.18) 

(2.19) 

where the sum i runs over $, G, NS, and y, and p 2 is the subtraction scale 

at which the theory is renormalized. The q2 dependence of the structure 

functions enters into the time-like coefficient functions Ei n and Ei n. 
, , . 

On the other hand, vt does not depend on q2, but is dependent on the 

particle observed. Especially we have vz = 1 from Eq. (2.13). The 

hadronic feature of the photon is taken into account within vz, vz, and 

VNS n' 

The same cut vertices contribute to the moments of ii and vii. 

Therefore, from Eqs. (1.5) and (1.6) the moments of the transverse 

structure function ? is given with the same v T i as follows: 

]dz zn Ei(z,q2) = xv: Ei,nc<,g2,aj , 

0 i lJ 
(2.20) 

with i = a, G, NS and y. In what follows we work with the moments of 

cy and Gy T L' 
. 

The q2 dependence of ET' n and El 
, 

i n in Eqs. (2.20) and (2.18) is 
, 

governed by the same renormalization group equation (RGE). If we des- 

cribe the coefficient function by the column vector 
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, k = T,L (2.21) 

then Ek n obeys the lowest order in a the following RGE: 
, 

( 
IJ &+ B(g) $)'k,n($&23a) = ?,(92,a> zk,n($&29~ (2022) 

where f3(g) is the well-known renormalization function and un(g2,a) is 

the anomalous-dimension matrix of the cut vertices. To lowest order 

in a this matrix has the form 

";,(g'> i$Jl(p2> 0 0 

0 0 

Yn(g24) = 
?;G cg2> ';Gb2) 

. (2.23) 

0 0 $&-2) 0 

$(g" ,a) CE(g2,a) qs(g2,a) 0 ~ 

The solution of the RGE (2.22) is given by 

%k,n($,g2,a) = kgexpctgl 'n~(g~~)o')] $,n(l,g2,a) l (2.24) 

Here Tg represents T-ordering, and g2 is the running coupling constant 

of the strong interaction which satisfies the following equation: 



& g&g) = B(E) 

-13- 

, i(O,d = g (2.25) 

with t = (l/2) h (q2/v2) . 
We observe that the RGE (2.22), the anomalous dimension matrix in 

(2.23) and the solution (2.24) of the RGE have exactly the same forms as 

those we had in the deep-inelastic scattering off photon target.lyL In 

the latter case Bardeen and Buras have explained the solution of the RGE 

in detail and have calculated the next-to-leading-order contributions in 

Ref. 2. Therefore we can follow the same procedures as they did to evalu- 

ate the first few leading terms for the moments of the time-like photon 

structure functions $ and iy. L Moreover we can adopt the formulae in 

Sects. II, III and V of Ref. 2 with the replacement of the anomalous 

dimensions of operators by those of cut vertices, and of the coefficient 
. 

functions Cin(l,g2,a) by El: ,(1,i2,a). , 

III. Anomalous Dimensions of Cut Vertices 

For the evaluation of the T-ordered exponential in Eq. (2.24) we 

expand yn(g2 ,a) and B(g) in powers of g as follows: 

qj (g2) = Yp;” 2 
-+y -1,n 
lea2 ij 

L+ . . . 
(16~~)~ 

i,j = $,G (3.1) 

(3.2) 

-0,n e2 ?!(g2,a) = -Ki - - ~1 ,n e2g2 
(16r2)2 + l -• *  

. 
161~~ = 

1 = $,G,NS (3.3) 
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and ' 

with23 

3 
B(g) = - B. 5 - Bl 85 

16~ (16~~)~ 
(3.4) 

BO = ll- = 102 - Ff . 

We also expand g2(q2), the solution of Eq. (2.25) with B(g) given 

by (3.4), in powers of $(q2), the effective coupling constant calculated 

in the one-loop approximation, with result 

-2 2 
g (9 1 

where 

-2 2 
got4 ) 

161~~ 
= 

(3.5) 

. (3.6) 

Now we list the one-loop and the two-loop anomalous dimensions of 

cut vertices. 

A. One-Loop Anomalous Dimensions 

For the hadronic sector the one-loop anomalous dimensions have been 

calculated in Refs. 11 and 14. 

-0,n 2 yw = -0,n 
‘NS 

= 8 
3 n(n+l) + 4Sl(d 1 (3.7) 

-",n = - 4f n2+n+2 
ytJG (n-l)n(n+l) (3.8) 

-0,n = 16 n2+n+2 yGJ, - 3 n(n+l)(n+2) (3.9) 

-Opn = 6 
‘GG 

-11 
3- (n-41), - (n+l)4(n+2) + 4Sl(n) + $f 1 (3.10) 
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where l 
n 

S,(n) = z 
1 

j=l 7 
. (3.11) 

The anomalous dimensions K -",n and -Osn 
J4J 5JS are obtained from (3.8) by replacing 

the group-theory factor f/2C= T(R)1 by the relevant charge factors, with 

the result 

,O,n = 8 n2+n+2 
JI (n-l)n(n+l) 3f <e2> 

n2+n+2 
(n-l)n(n+l) 3f(<e4>-<e2>2) . 

Also we have in one-loop approximations 

jfO,n = o 
G 

(3.12) 

(3.13) 

(3.14) 

B. Two-Loop Anomalous Dimensions 

For the pure hadronic sector the two-loop anomalous dimensions of 

cut vertices can be obtained by taking moments of the next-to-leading 

parton decay probability functions, i.e., a generalization of the 

Altarelli-Parisi probabilities8 to two-loop level. Recently three groups 

have calculated the probability functions in two-loop approximations.15-17 

The g2 corrections to El ; ,(Li2 ,a) in Eq. (2.24) can be obtained by taking 
, 

moments of the one-loop corrections to the "short distance cross sections" 

(SDCS) which have been calculated by Altarelli et al.18 and later by the -- 

authors of Refs. 15 and 16. 

It is well knownI that in deep-inelastic scatterings the anomalous 

dimensions of the relevant operators in two-loop and the g2 corrections 
. 

to the coefficient functions CE(1,i2) are renormalization-prescription 
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dependent. Only when both are calculated in the same renormalization 

scheme and are put into the physical quantities, their renormalization- 

prescription dependence cancels out. The same thing happens in the case 

+- of the single-particle inclusive e e annihilation. In our analysis of 

iiy T' therefore, we should use the two-loop anomalous dimensions of cut 

vertices and the g2 corrections to the coefficient functions E $ , $ ,i*,4 

which are calculated in the same renormalization scheme. (In the case of 

WL' we do not need the two-loop anomalous dimensions of cut vertices and 

the g* corrections to E ; ,(1,i* ,a) are renormalization-prescription 
, 

independent. See Sect. V.) 

So far, the calculation of the two-loop probability functions by 

three groups15-17 and of the g2 corrections to the SDCS by four groups15-18 

has been done in the same 't Hooft minimal subtraction scheme.20 However 

there still remains a subtle scheme dependence. As shown clearly in 

Ref. 17 a different convention to define the SDCS gives a different result 

for the two-loop probability functions, although the physical quantities 

are scheme-independent. In what follows we shall adopt the results of 

Ref. 15 for the next-to-leading probability functions, and of Ref. 18 for 

the SDCS, since the authors of both references have used the same con- 

vention to define the SDCS. 

-1,n The two-loop anomalous dimensions of cut vertices y.. 
iJ 

in singlet 

sector are obtained by taking the moments of the two-loop parton decay 

probability functions PllB (1 ,o (x) g. iven in the second paper of Ref. 15. 

Before presenting the results, we need several definitions: 
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k cF=3 ; cG=3 ; T(R) = 3 

n 

S2(d = c 
1 

2 j=l j 

for even n 

for even n 

E(n) = . (3.15) 

We obtain for even n t 2 

1 
-b = 
Y*Q 

-8 
J 'FF 

(l,T) (x) xn-l dx 

0 

= -8 AGb(d + CF CG B$+ b-d + CF T (R) D$$(n) > , (3.16) 

with 

AJIJI(d = *S1(n) - 
1 

n(n+l) I[ -6S2(n) 

8:(n) + S; 2 2 - -- 2 S1 b-4 
n (n+l)* 1 

l + l 2 

(n+1)3 

1,l 3 -- - 
(n+l)* n n+l 

+-g-IT (3.17) 
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BQq b> ’ n (n-l-l) *S2 W - s;($)- $1 

+4:(n) - +S;ff +-+-S*(n) - +-J--+11 
0 

1 
n* 6 (n+l)* 

+ 14 1 14 1 --a-- 
3 3 n+l 

+17 
n 24 

52 -- 1 + 28 1 112 1 401 1 
3 n 3 n+l 

+Tn+2----- 
9n-1 6 

and2 1 

1 
-l,n = -8 *T(R) 
yW J 

cF 0 
‘FG 

(l,T) (x) xn-l dx 

= -16 D$G(n> + C,T(R) H$G(n) 
> 

(3.18) 

(3.19) 

(3.20) 

with 

DqG(n) = 
n*+n+* 

(n-l)n(n+l) - 3S2(n) - 1 
+ S,(n) [ 8 8 

(n-l)* - ,2 + 
6 4 2 -- 

(n+l>* n-1 
+-$- 

n+l 1 
+ l6 331 9 1 8 5 1 -_-- -- 

n-l 2 n + 7 n+l +2+ l 
(n-l)* - ’ (n+l)* n3 (n+l) 3 

(3.21) 
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H$G(n) = 
n*+n+* 

(n-l)n(n+l) -S:(n) + 7S2(n) - 

+ S,(n) 4 +4- 
(n-l)* n* 1 

8 2 
+ 

10 7 8 1 
- - (n-l) 3 (n+l) 3 (n-l)* (n+l)* ’ (n+*)* 

91 1 17 1 
-Yyx+<-- 

44 1 
n+l - 9 n+2 

and 

-1,n=-8 ‘F 
1 

yG$ *T (R) s ‘GF 
(1 ,T) (x) xn-l dx 

0 

= - 4 CiAGy(n) + CF CG BGe(n) + C,T(R) D,*(n) 

(3.22) 

(3.23) 

with 

AGQh) = 
n*+n+* 

n(n+l) (n+*) + 10S2 (n) 1 
+ S,(n) 16 

(n+l)* - 
16 

(n+*) * 
+g-- - 12 + 12 

n+l n+2 I 
(3.24) 

4 --- 
n: 

+5+ 8 16 12-L+& 
(n+1)3 n* (n+l)* + (n+*)* - y n+l 

B,,+(n) = 
n*+n+* 2 

n(n+l) (n+*) 2Sl(n) - 2S2(n) - *s;($ - $ “21 

+ S,(n) 
[ 

24 
+ 

24 22 1 44 1 44 1 
(n+l)* (n+*) * 

-T;+Ta--- 3 n+2 I 

+4+ 8 +81+88 1 28 
n3 (n+1)3 3 n* 3 (n+l)* - (n+*) * 

40 1 26 1 34 1 200 1 
-9n-1 ; 9n _ -- 9 n+l+9n+2 (3.25) 
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DGi(n) = 4 S,(n) - y 1 [ + $ -L - 4 4 
n* (n+l>* + (n+*)* 1 

(3.26) 

and 

1 
-19n = -8 
‘GG J 

P(l'T) (x) x"-l dx GG 
0 

= -8 CF T (RI DGG h> + CG T(R) HGG h> f Cz LGGh) 
t > 

with 

DGG(n) = -?- + 4 l 10 14 1 - 16 
n3 (n+l) 

3 - - -l& 
3 (n-l)* ,2 (n+l)* 3 (n+*)* 

+ 92 1 4 + 12 164 1 --_- 
9n-1 n z-i- --g--z- l 

HGGh) = - 4 S2(n) + + Sl (n) 

+8 1 41, 4 8 1 46 - 
3 (n-l)* 7 n* 

1 
(n+l)* ^ ?T (n+*)* - T n-1 

+381 38 1 
9 n --ii-zi 

+461 
9 n+2 

A+$"* 

(3.27) 

(3.28) 

(3.29) 

LGG(n) = -4X(n) + ?f- S,(n) + + S; 5 
0 

+ S,(n) - 

+ S,(n) 4 -,2+ 4 4 4 67 (n-l)* - - (n+l)* (n+*)* T 1 
8 4 4 1 1 7 

- (n-1)3 ,3 
- 

+10 3 
--- 

(n+l) 3 (n-l)* +ll 3 n* (n+l) * 

+34 1 +~+~+~&--&+~+'. (3.30) 
3 (n+*) * - 
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The factors 2T(R)/CF and CF/2T(R) have been inserted in Eqs. (3.20) and 

(3.23, respectively, for the following reason: the authors of Ref. 15 

have calculated P$i'T)(x) by summing over gluons but not over quark 

flavors, and PGF (l'T)(x) by summing vice versa. However in order to obtain 
-l,n 
y9G 

we should sum over quark flavors but not over gluons. -l,n we For yGe 

should sum vice versa. In fact we can obtain the correct one-loop non- 

-0,n -0,n diagonal anomalous dimension y$G and yGJI in Eqs. (3.8) and (3.9) by 

taking moments of the one-loop nondiagonal probability functions 

'FG 
(0 r T) (x) and PA:") (x) given in Ref. 15, and multiplying them by 

*T (R) /c, and CF/2T(R), respectively. 

The two-loop anomalous dimension of the non-singlet cut vertex has 

been calculated first in the first paper of Ref. 15 with the result for 

even n 2 2 

2 
-19n lpn _ *n+l IT 
'NS = 'NS 

-- 
n*(n+l)* 3 1 

where 
(3.31) 

- $CFCG )f 16S1 b-4 *n+l 
n*(n+l)* 

+ 16 [ *Sl(d - n(i+l) 1 
x + 64:(n) + 24S2(n) - 3 - 8s;; 

0 

_ 8 3n3+n2-1 
n3(n+1)3 

_ 16 *n*+*n+l 
n3(n+1)3 I 

+ cFcG S,(n) 
1 c 

y+ 8 n22zIt)2]- 16Sl(n) S,(n) 

+ S,(n)[- y + n(i+l)] - +j - 4 151n4+263n3+97n2i-3ni-9 
9n3(n+1)3 

+ c,T(R) 
160 - 9 S,(n) + + S*(n) + $+ 16 lln2+5n-3 

9n*(n+l)* 
(3.32) 
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is the two-loop anomalous dimension of the non-singlet operator which 

appears in the deep-inelastic scatterings. 19,22 

The two-loop anomalous dimensions K -t'*, gin, and $'" can be 

obtained from yihn and yiin by picking the terms proportional to CFT(R), 

replacing the factor T(R)(= f/2) by the relevant charge factors, with 

the result 

~1 ,n 2 
+ 

= 16CFDJIG(n) 3f<e > , 

-la = 
%S 

16CFD$G(n) 3f(<e4> -<e*>*) , 

-1,n 
KG = 8CF DGG(n) 3f<e*> 

(3.33) 

(3.34) 

(3.35) 

We give numerical values for the two-loop anomalous dimensions of 

time-like cut vertices in Table I. It is interesting to compare these 

values with those for the two-loop anomalous dimensions of relevant 

operators in deep-inelastic scattering off photon target, which are 

listed in Tables I and II of Ref. 2. 
-1,n Note large negative values of K 

4J 

and Gin for first several n's. They result from ti term -(2/3)s* in the 

2 expression for D$G(n) in Eq. (3.21). Also IT terms appear in the ex- 

pressions of two-loop anomalous dimensions of time-like cut vertices. 

They are due to the analytic continuation from space-like region to 

time-like region. 
-1,n 

For large n we obtain the following asymptotic forma for y.. 1J 

(i,j = $,G) and -1,n : y NS 
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-1;n -1,n n:co’NS nzco 536 8 2 160 ywJ 9 - 3’ 'FCG - 9 C,T(R) 

-1,n 
'JlG nza 

Rn*n -16(CF-CG)T(R)- 

-1,n 
'G$ nyoo 

Rn*n 
-8(cG-cF)cF- 

yl,n N 160 
GG n+m - 9 C,T(R) . (3.36) 

-1,n As was expected, y.. and q&n have the same asymptotic behaviors as the 

space-like counterizrts.22 Also l?$'" and $$" behave as (l/n) Rn*n , and 

-1,n 
KG becomes O(1) for large n. 

IV. Transverse Photon Structure Function Gs 

First we expand the coefficient functions gT n(1,i2,0) in powers of 
, 

-2 g up to one-loop corrections as follows: 

e* 6 ’ i=J, (4.1) 

, i=G (4.2) 

2 
e 6NS ’ 

i = NS (4.3) 

e4 -n 
16n2 % B~,T 

. 
1= Y (4.4) 

where 

6$ = <e*> = xeflf 
i 

6 NS = 1 

(4.5) 

(4.6) 
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and 6 
Y 

is given in Eq. (1.10). The g2 corrections to El T ,(l,~*,a) with 
, 

i=JI, G and NS are obtained by taking moments of the one-loop "short 

distance cross sections" dq(z) and dG(z) given in Eqs. (64) and (65) of 

Ref. 18. They are 

-n 
B$,T = %S,T 

= - 4 
{ 

10S2(n) + *S:(n) + 
( 3- n(rj+l) > S,(n) 

3 6 --- 
n+l 

4. 
,2 (n+l)* 

-9 (4.7) 

-n 
BG,T = 2f n*+n+* 4 3 - (n-l)n(n+l) sl(n) - 

+4- 
(n-l>* n* (n+l)* > 

. (4.8) 

In Eq. (4.8) we have changed factor 4/3 in Eq. (65) of Ref. 18 to 

2f (=4T(R)) to match our definition of the coefficient functions. 

Also in Eqs. (4.7) and (4.8) we have discarded the terms proportional 

to Rn(4n - y,), since it is possible to absorb them through a redefinition 

of the scale parameter A (MS scheme).2910 

-n B -n 
Y,T 

is obtained from BG T by removing the group factor T(R) and 
, 

is given as 

-n B 
Y,T 

= 2p 
f G,T ' (4.9) 

With all information needed, we now follow the same procedures as 

Bardeen and Buras did in Ref. 2 to solve the RGE (2.24) for Di. We 

obtain the QCD prediction for the moments of Gi, which is given in the 

following form: 

jdz zn iG(z,q*) = a*( anJ?.n 5 -!- a: !?,nJ?,n -$ + gn) . (4.10) 
0 



-25- 

The parameters an, a;, and bn have the same expressions as a n, an9 and 

bn in Eqs. (3.23)-(3.25) of Ref. 2 except that all the anomalous dimen- 

sions and one-loop corrections to the coefficient functions are replaced 

by the time-like counterparts. They are given as follows 

-1 = a n>2 n 

and 

(4.11) 

(4.12) 

-0,n + l& 6NsqS,T + iiy,T6y , n > 2 . (4.13) 

Here we have defined 

-0,n 
yw 

(4.14) 

(4.15) 

(4.16) 
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-n 
%I 

%,T 'NS -lpn+281 

S,T = 
(4.17) 

(4.18) 

-O,nyl,n-O,n -O,n-l,n-0,n -O,n-l,n-0,n -O,n-l,n-0,n 

+ 'G$ $G 'GG + 'GG 'G$ '+G - 'I/JG 'GG 'GJ, - 'GG '$JJ 'GG . 

The Eq. (4.11) for the leading term an is valid for n 2 2, and agrees 

with the results of Refs. 3 and 7. The Eqs. (4.12) and (4.13) are valid 

for n > 2. For n=2, x: vanishes and we cannot evaluate the constant term 

C2’ since this constant term depends on the unknown fermion and gluon 

renormalized cut vertices. For 2; we obtain 

-1 Sl- a2=2a2+ _ 1 

BO 2x+Bo 

z Sl -0 
+ a - q K~ "~1 y;G (4.19) 

where a 2 is evaluated from (4.11) and the index n=2 has been dropped in 

the second term. The Eqs. (4.12), (4.13) and (4.19) are new results. 

The parton model predicts for the asymptotic behavior of the moments 

QG from Eq. (1.8) as 

(4.20) 

where 

]dz zn f(.,q2)lpM = o*F,Rn $- 

0 M 

P, = 46 n*+n-l-2 
Y (n-l)n(n+l) 

(4.21) 

and rni has replaced by a mass parameter AZM. The above PM prediction is 
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also obtain from Eq. (4.11) if all anomalous dimensions except $'" and 

-0,n 
%?S are set equal to zero. 

We give in Table II the numerical values for the parameters an, i:, 

gn and i n as functions n in the case of 4 flavors. For increasing n, an 

decreases faster to zero than 6,. In fact an vanishes as l/(nann) for 

large n, while i n behaves as l/n. Therefore, the photon structure func- 

tion fiz(z,q*) as given by the leading-order expression is suppressed at 

large values of z as compared with the parton model predictions. The 

large negative value of a; are due to large negative values of K -"* and 
+ 

-1,2 
KG l 

The parameters Ln are negative and large. They decrease with in- 

creasing n slightly faster than a n, but still remains to be large rela- 

tive to an. In Table III we list the ratio of gn to an as functions of 

n, and also the corresponding ratio b,/a, in the case of the photon 

structure function Fy * 2 in the photon-photon scattering. Note that these 

values have been calculated in MS scheme. In comparison with the case 

of Fy 2’ the higher-order-corrections to the time-like photon structure 

function L7; are very large. 

Now we evaluate the moments of $,. We shall take A =0.30 GeV as 
- 

a "standard" value in MS scheme.24 In Fig. 6 we plot the moments of fii 

in units of a*Rn (Q*/A*) as predicted by the parton model, by QCD in the 

leading order, and by QCD with higher-order corrections. From Fig. 6 

it is seen that QCD higher-order effects are significant. The substantial 

suppression of the first few moments are due to the large negative values 

of En. For example, the moment of n=4 almost vanishes at q* =~ 25 GeV* 

and indeed it turns out to be negative at q 2 = 20 GeV*. 
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This may suggest that even at q* =20 GeV* the contributions from 

the hadronic nature of the photon, which vanish for large qL as 

(an q2/A2)-h with some positive constant h and so far have been neglected, 

are still significant, or that the QCD calculation for the direct photon 

production in e+e- annihilation breaks down. 

The structure function for large z values is governed by the large 

n behavior of the moments. The asymptotic behavior of an is l/(nann). 

From Eq. (4.13) we find the parameter cn behaves as l/n, but not as 

Rn n/n for large n. In fact the contribution from the first four terms 

in Eq. (4.13) to gn behaves as Rn n/n. However, the last term iy6Y 

behaves also as Rn n/n in the large n limit with the same coefficient 

but the opposite sign, and it cancels the leading contribution from the 

first four terms. Therefore the ratio gn/an grows not as (Rn n) * but as 

Rn n.25 This is also the case for the moments of the photon structure 

function Fz. The situation here is quite different from the cases of 

deep-inelastic scatterings off hadronic targets and semi-inclusive hadron 

productions in e+e- annihilation. For instance, the moments of non- 

singlet nucleon structure function in the deep-inelastic scattering can 

be written generally as 

M,(Q*) = An (4.22) 

where An is the matrix element of the non-singlet operators. The higher- 

order correction Rn has been calculated10p1g and grows as (an n) * for 

large n. In the case of the moments of Ei((Fz), the corresponding quantity 

to Rn in Eq. (4.22) is Bogn/in (Bobn/an). It behaves as Rn n in the large 

2 n limit, since cancellation occurs among its leading (fin n) terms. The 
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point-like nature of photon plays an important role for the cancellation 

of leading (an n) 2 terms. 

Finally, a few comments are in order. The mass effects due to heavy 

quarks have not been taken into account in our formulas for the moments 

of W$. The quantities necessary to evaluate an, ;A, and gn have been 

calculated for arbitrary f-quark flavors with all quark masses zero, and 

the results have been presented for f=4 only. up to q* =20 GeV* mass 

effects due to charm production could be important. As qL increases the 

charm quark mass effects may be neglected. And we expect that our pre- 

dictions for four flavors are valid in the range of q* from 25 GeV* up 

to 100 GeV*. Above q* x 100 GeV* the b-quark contribution should be 

added, but it is small compared with the charm 

of 16 due to its charge. 

Secondly, the expressions of the two-loop 

in Sect. 1II.B are valid for even values of n. 

the two-loop parton probability functions with 

the anomalous dimensions can be written in the 

Y l,n = yt + (-l)n yi 

contribution by a factor 

anomalous dimensions given 

In fact taking moments of 

arbitrary n, we find that 

following form:15~1g~26 

. (4.23) 

The expressions in Sect. 1II.B have been obtained by taking (+) combina- 

tion, i.e., y:+yf. Because of the crossing relation for the structure 

function iz, (+) combination should be adopted here and it can be analyti- 

cally continued to any value of n. Therefore, expressions (3.16)-(3.35) 

for two-loop anomalous dimensions can be also used to compute bn for odd 

values of n. 
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Thirdly, we have so far used the MS scheme. Since our perturbative 

expansion is a truncated one, its rate of convergence depends on the 

scheme used to define the running coupling constant g.10127 We can change 

schemes by changing A and gn as follows: 

A + A' = KA 

g +G’ = bn + anLnc2 . n n (4.24) 

With the choice ~=2.16, we can obtain the results for the momentum-space 

subtraction (MOM) scheme.27 We give in Table IV the numerical values for 

i;MOM and the ratio b -MOM a 
n n' n' In Fig. 7 we take24 AMoM = 0.55 GeV and plot 

the QCD predictions for the moments of vz in the MOM scheme. The values 

of cMoM and Er/g h n ave become smaller than those in the MS scheme, but n 

the higher-order corrections are still large. 

V. Longitudinal Photon Structure Function il 

The QCD prediction for the longitudinal photon structure function 

cl has not been considered so far, since it is expected that EE gives a 

small contribution to the direct photon production cross section. We 

proceed with the same steps of Sect. IV and expand zL ,(l,g*,e) as 
, 

follows: 
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( 

E; J , 
1,g2,0) = 

/ 
, 

, 

4 e 

16~~ 
6 iin 

Y Y,L , 

We obtain the one-loop corrections to El ; ,(l,i2,a) by , 

. 1= 4) 

. l=G 

. IL = NS 

. 1=y 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

taking moments of 

the relevant "short distance cross sections" which have been calculated 

in Ref. 18. They are 

qL = iin 44 -- 
NS,L =3n 

cgL = (nY)n 

, 

, 

(5.5) 

(5.6) 

-n B 
2Ij; L 

y,L= f 
, . (5.7) 

The above results are renormalization-prescription independent, since no 

renormalization is needed for the calculation of the one-loop corrections 

to 73 L,n(l,i2,a) l 

The moments of Gz can be obtained from Eqs. (4.13), (4.16), and 

(4.17) by putting there all two-loop contributions to zero and replacing 

the parameters iy T by in As the result we obtain 
, 1,L' 

1 

Jdz zn E;(z,q2) = 02cn + o(g2) (5.8) 

0 
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where , 

*NS%S,L + 'U';,L (5.9) 

and 

0 

(5.10) 

(5.11) 

and an is given by Eq. (4.15). 

From Eq. (1.9) the parton model predicts for the moments of El 

jdz zn fi;(z,q2)lpM = u2Cn PM 
, 

0 

(5.12) 

where 

'n,PM 
= 6 p 

Y Y,L 
. (5.13) 

For the longitudinal structure function, both QCD and the parton model 

predict scaling. Numerical values for En and En PM are given in Table V. 
, 

We find that the numerical values of cn are very close to Cn PM. 
, 

For large n the difference Cn-Cn PM vanishes as l/(n2 Rnn). This means 
, 

that the renormalization effects as given by the first two terms in 

Eq. (5.9) are small. In consequence, except for very small z, QCD gives 

the shape of gz very similar to that obtained in the parton model. 

Similar predictions had been made for the longitudinal photon structure 

function Fz in the photon-photon scattering:1'2 the renormalization 

effects of QCD on Fz are small, and the parton model and QCD predict the 

similar shape for Fl. 
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VI. Summary and Comments 

In this paper we have analyzed in QCD the photon structure functions 

EG and cl which can be observed in the direct photon production in e+e- 

collisions. We have used the Mueller's cut vertex formalism and have 

introduced the bare cut vertex for two photons in addition to the usual 

fermion and gluon cut vertices. The two-loop anomalous dimensions of cut 

vertices have been calculated by taking moments of the two-loop parton 

decay probability functions. The g2 corrections to the coefficient func- 
+ 

tions Ek,n(l,~2,a) in Eq. (2.21) have also been calculated. With this 

information and with the already known one-loop anomalous dimensions of 

cut vertices, we have evaluated the next-to-leading-order corrections to 

Gi and the leading-order corrections to GL. The higher-order corrections 

to EG are found to be considerably large and to be much larger than those 

to Fz in deep-inelastic photon-photon scattering. On the other hand, the 

leading-order corrections to Di are small. QCD and the parton model give 

the very similar shape for my L' 
Finally we comment on the backgrounds to the direct photon production. 

First there is a large yield of photons from 1~' (and n) mesons which are 

produced in e+e- collisions. When we compare the QCD predictions for the 

direct photon production with experimental data, we need to somehow sub- 

tract photons coming from 71'. This subtraction is in principle possible 

if we have detailed data on the TT' production in e+e- collisions. The 

ratio of the direct photon to r ' production in e+e- annihilation has been 

considered by Koller et a1.7 -- They have used the QCD formulae for frag- 

mentation functions to photon and 1~' calculated in the leading~order with 

appropriate assumptions. They have found that the y/no ratio grows with 
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q2 owing to the logarithmic increase of the photon yield combined with 

the logarithmic decrease of the no yield. Also the ratio sharply rises 

with z. The photons from rot s tend to be softer than the direct ones. 

At PEP-PETRA energies the yield of hard direct photons is expected to be 

larger than the T' yield and the separation of the photons from r" 

(and n) mesons becomes feasible. 

Another significant background to the direct photon production arises 

from the "bremsstrahlung" process in Fig. 8, where the photon is emitted 

from an initial lepton rather than from a final quark line. However, as 

stated in Ref. 7 the photons from the bremsstrahlung process and the 

direct photons have different angular correlations with the e+e- beam 

axis and the quark jet directions. This background can be quantitatively 

estimated and can thus be subtracted. 

Acknowledgements 

It is my pleasure to thank Sid Drell for warm hospitality extended 

to me at SLAC. I have benefited from discussions with many people 

including W. A. Bardeen, A. J. Buras, S. J. Brodsky, S. Gupta, J. Kodaira, 

T. Muta and L. Trentadue. I wish to thank S. Parke for advice and help 

in some of the calculations and for his personality which has made my 

stay at SLAC enjoyable. Finally, I acknowledge the finanical support 

of the Nishina Memorial Foundation and this work was also supported by 

the Department of Energy under contract DE-AC03-76SF00515. Some calcula- 

tions have been done using the MIT computer MACSYMA. 



-35- 

REFERENCES 

1. E. Witten, Nucl. Phys. B120, 189 (1977). 

2. W. A. Bardeen and A. J. Buras, Phys. Rev. DE, 166 (1979). 

3. C. H. Llewellyn Smith, Phys. Lett. E, 83 (1978). 

4. R. J. Dewitt, L. M. Jones, J. D. Sullivan, D. W. Willen and 

H. W. Wyld, Jr., Phys. Rev. Dx, 2046 (1979); W. R. Frazer and 

J. F. Gunion, ibid. Dx, 147 (1979); S. J. Brodsky, T. DeGrand, 

J. F. Gunion and J. Weis, Phys. Rev. Lett. 41, 672 (1978), Phys. 

Rev. DE, 1418 (1979); S. J. Brodsky, in Jets in High Energy 

Collisions, Proceedings of the Copenhagen Symposium, 1978 (Royal 

Swedish Academy of Sciences, Stockholm, 1979), p. 154; K. Kajantie, 

Helsinki Report No. ND-TFT-78-30, 1978 (unpublished); D. W. Duke 

and J. F. Owens, Phys. Rev. Dz, 2280 (1980). 

5. M. A. Ahmed and G. G. Ross, Phys. Lett. z, 369 (1975); F. Delduc, 

M. Gourdin and E. G. Oudrhiri-Safiani, Nucl. Phys. B174, 147 (1980), 

B174, 157 (1980); C. Peterson, T. F. Walsh and P. M. Zerwas, 

Nucl. Phys. B174, 424 (1980); W. R. Frazer and G. Rossi, Phys. Rev. 

Dz, 2710 (1980); K. Sasaki, Phys. Rev. Dz, 2143 (1980); A. C. 

Irving and D. B. Newland, Z. Phys. B, 27 (1980); A. Vourdas, 

J. Phys. @, 789 (1980). 

6. T. F. Walsh and P. Zerwas, Phys. Lett. e, 195 (1973). 

7. K. Koller, T. F. Walsh and P. M. Zerwas, Z. Phys. g, 197 (1979). 

8. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977). 

9. M. Bacg, Phys. Lett. E, 132 (1978). 

10. W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Xev. D.&.& 

3998 (1978). 



-36- 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

A. H. Mueller, Phys. Rev. De, 3705 (1978). 

S. Gupta and A. H. Mueller, Phys. Rev. Dx, 118 (1979); S. Gupta, 

Phys. Rev. Dx, 984 (1980). 

We define p, = U/fi)(Po + P,>. 

J. F. Owens, Phys. Lett. E, 85 (1978); T. Uematsu, Phys. Lett. 2, 

97 (1978); H. Georgi and H. D. Politzer, Nucl. Phys. B136, 445 (1978); 

Yu. L. Dokshitser, D. I. Dyakanov and S. I. Troyan, SLAC-TRANS-183 

(1978). 

G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980); 

W. Furmanski and R. Petronzio, Phys. Lett. e, 437 (1980). 

E. G. Floratos, R. Lacaze and C. Kounnas, Phys. Lett. e, 89 (1981), 

Phys. Lett. 98B, 285 (1981). 

J. Kalinowski, K. Konishi and T. R. Taylor, CERN Report No. CERN-TH- 

2902; J. Kalinowski, K. Konishi, R. N. Scharbach and T. R. Taylor, 

CERN Report No. CERN-TH-2917. 

G. Altarelli, R. K. Ellis, G. Martinelli and So-Young Pi, Nucl. 

Phys. B160, 301 (1979). 

E. G. Floratos, D. A. Ross and C. T. Sachrajda, Nucl. Phys. B129, 

66 (1977), Nucl. Phys. B139, 545 (1978), and Nucl. Phys. B152, 493 

(1979). 

G. 't Hooft, Nucl. Phys. s, 455 (1973). 

Our definition of nondiagonal elements differs by a sign from that 

of Eq. (14) in Ref. 15. 

A. Gonzales-Arroyo, C. Lopez and F. J. Yndurain, Nucl. Phys. B153, 

161 (1979); A. Gonzales-Arroyo and C. Lopez, Nucl. Phys. Bl66, 429 

(1980). 



-37- 

23. D. 'R. T. Jones, Nucl. Phys. z, 531 (1974); W. Caswell, Phys. Rev. 

Lett. 33, 244 (1974). 

24. A. J. Buras, Fermilab Report No. FERMILAB-CONF-80/79-THY. 

25. The increase of the ratio en/an with n has not shown itself in 

Table III yet. 

26. D. A. Ross and C. T. Sachrajda, Nucl. Phys. B149, 497 (1979). 

27. W. Celmaster and R. J. Gonsalves, Phys. Rev. Lett. 42, 1435 (1979), 

Phys. Rev. Ds, 1420 (1979); W. Celmaster and D. Sivers, Phys. Rev. 

Dz, 227 (1981). 

28. N. Kai, H. Yamamoto and K. Kato, Tokyo Report No. UT-341 (1980) 

(unpublished). 



TABLE I 

Coefficients of g4/(16*2)2 
-n -n -n -n -n 

in the anomalous dimensions yNs, y Q1cI, Y$G, YG+ and YGG$ and 

coefficients of e2g2/(16a2)2 in the anomalous dimensions En $, $& and I?: for f=4. 

n -1,n 
'NS 

-1,n 
yw 

-1,n 
YJIG 

-1,n 
YGJl 

-1,n 
'GG 

zl,n 
G 

2 36.15 61.43 -184.3 

4 85.52 90.21 -191.8 

6 116.8 118.9 -112.8 

8 139.8 141.0 - 76.60 

10 158.0 158.8 - 56.29 

12 173.1 173.7 - 43.41 

14 186.0 186.4 - 34.58 

16 197.2 197.5 - 28.19 

18 207.2 207.4 - 23.38 

20 216.1 216.3 - 19.64 

23.43 

7.169 

3.536 

1.646 

0.494 

- 0.266 

- 0.794 

- 1.172 

- 1.451 

- 1.660 

- 70.30 -249.9 -24.99 -85.60 

- 61.80 -102.8 -10.28 -37.72 

33.50 - 57.71 - 5.771 -36.11 

97.54 - 36.46 - 3.646 -35.79 

146.0 - 24.33 - 2.433 -35.68 

185.0 - 16.61 - 1.661 -35.63 

217.8 - 11.34 - 1.134 -35.60 

246.0 - 7.56 - 0.756 -35.59 

270.7 - 4.75 - 0.475 -35.58 

292.8 - 2.60 - 0.260 -35.57 
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TABLE II 

Numerical values of the parameters an, ;A, bn and pn for f=4. 

n aTl 'n 

2 4.98 -4.99 

4 1.01 0.745 

6 0.508 0.375 

8 0.328 0.243 

10 0.238 0.176 

12 0.185 0.137 

14 0.150 0.111 

16 0.126 0.0932 

18 0.018 0.0799 

20 0.0944 0.0698 

-6.95 

-3.14 

-1.92 

-1.35 

-1.02 

-0.818 

-0.676 

-0.574 

-0.497 

6.72 

1.85 

1.06 

0.740 

0.570 

0.464 

0.391 

0.338 

0.298 

0.266 



-4o- 

TABLE III 

Numerical values of the ratios Gn/an and b,/a . The n 

ratios bn/an in the photon-photon scattering have been 

calculated from the results of Ref. 2. 

n s/in b,/a n 

4 -6.88 -2.04 

6 -6.18 -2.26 

8 -5.85 -2.44 

10 -5.67 -2.59 

12 -5.51 -2.70 

14 -5.45 -2.81 

16 -5.37 -2.89 

18 -5.31 -2.95 

20 -5.26 -3.01 
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TABLE IV 

Numerical values of iMoM and the ratio iMoM - n n /an for 

f= 4 in the MOM scheme. 

n iMOM 
n 

LMOM - 
n /a, 

4 -5.39 -5.34 

6 -2.36 -4.64 

8 -1.41 -4.31 

10 -0.983 -4.13 

12 -0.735 -3.97 

14 -0.587 -3.91 

16 -0.482 -3.83 

18 -0.408 -3.77 

20 -0.352 -3.72 
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TABLE V 

Numerical values for the parameters En and En PM for f=4. 
3 

n c c n n,PM 

2 12.2 10.1 

6 0.726 0.672 

10 0.239 0.224 

12 

14 0.118 0.111 

0.0890 0.0840 

0.0697 0.0658 

20 0.0560 0.0530 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Direct production of photons in e+e- collisions. The observed 

photons are assumed not to be radiative decay products of hadrons. 

Box diagrams for the direct photon production. 

Examples of decomposition of the amplitudes for inclusive hadron 

production in e+e- annihilation: 

(4 involving two fermions 

(b) involving two fermions and many gluons 

(4 involving two gluons. 

Double lines, solid lines, curly lines, and wavy lines represent 

hadron, quark, gluon, and photon, respectively. 

The amplitude occurring in the direct photon production where large 

momenta of order q2 flow through the blob. 

Timelike cut vertices for the direct photon production. 

Moments of the transverse structure function ijT' in units of 

a211nq2/A2 as predicted by the parton model (a), QCD in the leading 

order (b), and QCD with the higher-order corrections (c,d,e). For 

comparison we choose A=O.3 GeV and four flavors for all cases. 

Predictions of the MOM scheme for the moments of ijT' (c,d,e) in units 

of a2 !Lnq2/A2. Also shown for comparison are the results of the 

parton model (a), and QCD in the leading order (b). We choose 

1\=0.55 GeV and four flavors for all cases. 

Photon bremsstrahlung off electrons and positrons. 8. 
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