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1. INTRODUCTION: 

PHENOMENOLOGY OF THE BEAM-BEAM INTERACTION 

The beam-beam interaction in storage rings exibits all the charac- 

teristics of nonintegrable dynamical systems. Here one finds all kinds 

of resonances, closed orbits, stable and unstable fixed points, stochastic 

layers, chaotic behavior, diffusion, etc. The storage ring itself being 

an expensive device nevertheless while constructed and put into operation 

presents a good opportunity of experimentally studying the long-time 

behavior of both conservative (proton machines) and nonconservative 

(electron machines) dynamical systems-the number of bunch-bunch inter- 

actions routinely reaches values of 10 lo- l(p and could be increased 

by decreasing the beam current. At the same time the beam-beam interac- 

tion puts practical limits for the yield of the storage ring. This 

phenomena not only determines the designed value of main storage ring 

parameters (luminosity, space charge parameters, beam current), but also 

in fact prevents many of the existing storage rings from achieving de- 

signed parameters. Hence, the problem has great practical importance 

along with its enormous theoretical interest. 

I present in this work a brief overview of the problem. Experimen- 

tal observations, including the last available results from the PEP 

storage ring, will be discussed here together with the different theoret- 

ical and computational models suggested for understanding of the beam- 

beam phenomena. For the sake of completeness as well as to make the 

subject interesting for a person unfamiliar with the vocabulary and 

details of the field, I start with very informal description of a single 

particle motion in a storage ring. Then purely qualitatively the 



electromagnetic force, which the particle of one bunch sees from the 

side of the other bunch, will be discussed. The dynamics of a particle 

in the presence of this force is described. 

The rest of the introduction contains the phenomenological descrip- 

tion of the beam-beam phenomena as it is seen by a machine physicist. 

The bibliography on the subject includes hundreds of titles and is 

far beyond the space and time I have. A few references which one finds 

here are given only for the use of a reader who wants to go deeper into 

the field. Some of them depict certainly the most recent work performed 

on the beam-beam phenomena. The review of some work done in the past 

one can find in books1,2 and in references.3-5 

Illustrated (courtesy of Mr. B. Gould) is the present state of the 

entire beam-beam problem. 
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1.1 One-Beam Single Particle Dynamics 

In this section I will discuss a single particle motion in an elec- 

tron storage ring with only one beam. The picture for a proton storage 

ring can be obtained from here by neglecting all the radiation effects. 

An electron in the storage ring performs rather complicated motion 

which in the first approximation can be decomposed into three coupled 

oscillations-a longitudinal one called synchrotron oscillation and 

two transverse oscillations. In the limit of no coupling the last can 

be split into horizontal and vertical betatron oscillations, correspond- 

ingly. All three oscillations are nonlinear-the longitudinal one due 

to the sinusoidal form of high-frequency electric force, acting on a 

particle, and the transverse ones due to the presence of special sextu- 

pole magnets included in the lattice to control the chromaticity of the 
* 

ring. The frequency of oscillation is dependent on the particle ampli- 

tude A. The value of the frequency in the limit A + 0 is called linear 

frequency. The ratio of the linear frequency to the revolution frequency 

is called the tune. Usually the longitudinal tune vs is much less than 

one (typically 0.05); that is, a particle performs one longitudinal 

oscillation in many revolutions. The tunes of betatron oscillations 

vX 
and vy are much bigger than one (for PEP they are around 21- 23, 

i.e., a particle performs more than twenty betatron oscillations in one 

revolution). 

In strong focusing machines (all the storage rings are such 

machines) the motion is described in terms of two proper functions of 

* 
There are also other sources of nonlinearities (such as imperfections 

'9 
of the fields, collective fields, etc.) but the important point is that 

the motion is strictly speaking nonlinear even in an ideal machine. 
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the lattice: amplitude function (B-function) and dispersion function, 

to which a closed orbit for the particle with displaced momentum is 

proportional. 

From the general condition for appearance of a resonance in the 

particle motion 

mxvx + myVy + mSVS = m , (1.1) 

where m 
X’ my9 msy m are any integers, we can ascertain the most danger- 

ous resonances provided the force dependence on coordinate is known. 

For example, the most dangerous resonances exited by the sextupole field, 

for which the effective potential behaves like x3 2 -xy , are 

3v =m (1 l 2) x 

V SC 2v =m . 
X Y 

The motion of a particle close enough to the origin is little effected 

by a nonlinear resonance. The phase trajectory of a particle is only 

slightly perturbed, staying essentially almost circular around the 

origin. At large distances from the origin, phase trajectory becomes 

completely different. In the picture of the Poincar& section appear 

additional fixed points. Each such point corresponds to a stable or 

unstable orbit, which closes on itself after a number of particle 

revolutions. Stable fixed points are surrounded by areas of stable 

motion, which are spearated from unstable fixed points by separatrixes 

("islands"). 

The coupling of the longitudinal and transverse motions causes 

appearance of side lines near each linear and nonlinear resonance [term 

with vs in equation (1.1) 1. Actual source of such coupling can be quite 

different: dependence of the tune on energy,6s7 finite dispersion 
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function at an accelerating(or anyother) cavity,67 dependenceoftransverse 

amplitude on energy,68 or transverse fields with longitudinal gradient.8 

Due to finite site of a "good" field region, as well as due to 

nonlinear character of oscillations, not all amplitudes of the particle 

oscillations are stable. If an amplitude exceeds certain limits, the 

displacement of the particle from the equilibrium orbit will grow 

steadily and such particle will be lost from the beam. The maximum 

stable transverse amplitude determines the acceptance of the machine 

(for each plane). 

An initial distribution of particles in phase space does not 

necessarily keep the same for the future times. There are many reasons 

for diffusion of the particle amplitudes towards bigger values. For 

electron storage rings the main source of the diffusion is quantum 

fluctuations of the radiation in the magnetic field. Other effects- 

intrabeam scattering of particles on each other, scattering on the 

residual atoms in the vacuum chamber, Arnold diffusion, noises in the 

power supplies, and so on-usually give smaller effects, but are impor- 

tant for a proton ring. 

The diffusion processes of any kind would (and really do in proton 

machines) bring unlimited growth of the oscillation amplitudes and con- 

sequently lead to particle losses. Fortunately, at least for electron 

rings, there exists a mechanism of damping of the oscillations due to 

radiation friction. Two competing effects-quantum excitation and 

radiation damping-tend to balance each other, determining the equili- 

brium size of the bunch. This equilibrium is achieved in a time interval 

of the order of magnitude of the damping time and is independent of the 
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initial particle distribution. Typical damping time is of the order of 

lo3 revolution periods. The equilibrium distribution function is unknown 

for nonlinear machines. For linear machines this distribution is 

Gaussian in all three degrees of freedom. 

Although the radiation damping helps to limit rms amplitudes, 

presence of tails in distribution function makes the lifetime of the 

bunch finite. Particles are slowly but steadily lost from the bunch due 

to diffusion of a small portion of them toward the boundary of the 

machine aperture. 

One of the intriguing possibilities for study of the emergence, 

development and limits of stochasticity is by measuring bunch lifetime 

for one beam operation mode of a storage ring with controlled 

nonlinearity. 

1.2 Two-Beams Single Particle Dynamics 

The presence in the machine of the second counterrotating beam 

exhibits significant influence on the dynamics of a particle. Collective 

electric and magnetic forces of the counterrotating bunch have the same 

direction and add together, giving in all formulae the additional factor 

1+ B2, where $ is the relative velocity of the particle. The same 

forces of the bunch to which the particle belongs have the opposite 

directions and subtract, giving an additional factor l- B2= l/v2. Hence, 

the force which a particle sees from an oncoming bunch is = 2y2 times 

larger than the force from the other particles in the same bunch. In 

ultrarelativistic machines the latter effect is negligibly small. 

The coordinate dependence of this force is determined by the geome- 

try and the charge density distribution of the bunch. If the length of 
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the bunch is small enough (compared to the wave length of particle oscil- 

lations) and the charge density is not too large, then the particle does 

not change its displacement considerably during the interactions. In 

this case the particle experiences delta-function-like change in its 

transverse momenta, the magnitude of which are functions of its transverse 

displacements x and y at the interaction point. 

For the three-Gaussian bunch "'the kicks" Ax' in horizontal and 

Ay' in vertical directions can be found from the corresponding potential 

function in the following integral form:g 

s 

1 
&’ = - Gbda) dr ,-~9 (x ,Y> -312 

(l-4) 
0 

1 
Ay' = - G(y/b) 

/ 

dr e-rQb,~) 1 -l/2 
(1.5) 

0 

where 

Q(x,Y) = (y/b12 + (x/al2 [p+r(l-p)l-' (1.6) 

G= 2rON / ay , (1.7) 

r. is the classic electron radius (= 2.82~ 10 -13 cm), N is the number of 

particles in thebunch, a and b are horizontal and vertical dispersions of 

the Gaussian distribution (a = fi ox, b = fi oy), and p = b2/a2 is aspect 

ratio of the bunch. The signs in (1.4,1.5) are chosen to describe an 

attractive force. They should be reversed for a repulsive one. 

The most striking reatures of the force (1.4,1.5) are its nonlinear 

character and additional coupling it produces in particle motion. The 

force is linear only for very small values of y/b and x/b where the 
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charge is distributed more or less uniformly. It reaches maximum at the 

intermediate values of x/a. At very large distances from the origin the 

force falls off as 1/Jx2+y2. Figs. 1.1-1.6 illustrate the kicks Ax' 

and Ay' as functions of x/a and y/b for the round (p= 1) and for ellip- 

tical bunch cross section (p = 0.25). 

For very small values of x/a << 1 and y/b << 1 Eqs. (1.4, 1.5) 

give: 

Ax' = - Gx 
I( ox + u 

Y > 

Ay’ = _ Gy/ px + uy) . 

(1.4') 

(1.5') 

In this approximation beam-beam interaction is linear and decoupled. 

The action of the opposite bunch can be described as an additional thin 

lense focusing (for attractive force) in both planes. Such a lense can 

be included into the lattice to find the linear incoherent tune shift 

Av and the linear change of amplitude B-function. For one interaction 

place one gets, for example, for y-plane: 

COSTS 
( 

by + Av ) = COS~ITV - 2~s~ sin2nv 
Y Y ( Y ) 

, (1.8) 

By = f30y(sin2svy )/sin2t;(uy + Avy) , (1 l 9) 

wherein appears the famous space charge parameter: 69-72 

Boy Nro 
5, = 21TYoy(ax+ ay) 

l 

Analogous expression holds for 5,: 

B 
5, = ox NrO 

2lTya 
( 

u +u 
> 

. 
xx Y 

(1.10) 

(1.11) 

In these expressions Sox,Boy mean the values of the corresponding unper- 

turbed B-functions at the interaction point; vx,v 
Y 

are the corresponding 

unperturbed tunes of the machine. 
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Unfortunately, these simple expressions hold only for a small 

portion of particles. As one can see from Figs. 1.1-1.6, the forces 

are strongly nonlinear for particles with x/a-l and y/b-l. The non- 

linear character of the beam-beam force brings up a whole set of non- 

linear resonances with different \, m . 
Y 

In addition to purely transverse resonances, there can appear (and 

play an important role) resonances due to coupling of transverse and 

longitudinal motion.Il Such coupling arises for example for head-on 

collisions if at the interaction point the dispersion function or its 

derivative is not zero. Hence, horizontal synchrobetatron resonances 

appear in machines with the finite nz. Similarly, both horizontal and 
* 

vertical synchrobetatron resonances appear with finite spurious Anx and 
* 

nY 
due to different lattice imperfections in all storage rings. Anot,her 

example is crossing of the bunches at an angle either in horizontal or 

in vertical planes. In these cases the kick depends on both transverse 

displacement and longitudinal position of the particle in the bunch, 

providing a coupling between transverse and longitudinal motion. Still 

another, synchrobetatron coupling effect caused by the beam-beam inter- 

action occurs when the bunch length is not small compared with the beta- 

function value B. at the interaction point. In this case, the magnitude 

of transverse kick again depends on the longitudinal coordinate of the 

particle (due to the difference in particle distribution along the bunch), 

thus providing a coupling mechanism. Fig. 1.7 illustrates simulated 

and identified resonance lines due to the beam-beam interaction in the 

storage ring DORISlO for several few first numbers mx, m . Of course, 
Y 

there must be infinitely more resonance lines, but the influence of a 
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resonance of higher order on the particle motion is small if its ampli- 

tude is not too big. 

1.3 Two-Beams Coherent Dynamics 

So far I have considered single particle motion taking the inter- 

action with oncoming beam into account. Now, let us consider coherent 

effects in bunch motion which are brought about by the beam-beam 

interaction. 

In linear approximation the beam-beam force induces dipole oscila- 

lations of bunches as a whole. The oscillations of different bunches 

are coupled to each other and can be described by their normal modes. 

Eigenfrequency of each mode should be chosen outside the stopband.of 

all resonances. Figs. 1.8 and 1.9, taken from the work5 present the 

stability regions for dipole oscillations of bunches for the cases of 

collisions of one-by-one and of three-by-three bunches correspondingly. 

Coherent space charge parameter is twice as big as the incoherent one 

since the beam-beam force seen by a center of a bunch displaced by y is 

the same as that for a single particle displaced by 2y in the incoherent 

motion. 

The nonlinear terms in the beam-beam force can also cause higher 

multipole coherent oscillations. The analysis of these oscillations is 

much more complicated and involves difficult and cumbersome calcula- 

tions. 12-14 Fig, 1.10 taken from the work14 illustrates the widths of 

a few first resonances of coherent oscillations excited by the beam-beam 

interaction in the system with charge compensation. 
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1.4 Beam Blow-Up (Flipping) 

For the conclusion of this long introduction it is useful to 

describe briefly what happens with the beams when they are collided. 

Normally, during storing process of both beams they are separated from 

each other at interaction points by means of special electrostatic fields 

(all other places of the machine circumference bunches pass at different 

time and do not disturb each other). When enough current is stored in 

each beam the separation field is switched out and particles start to 

interact producing the desirable (as well as the undesirable) effects. 

The behavior of bunches now completely depends on the value of a 

current stored in both of them. 

1.4.1 Weak-Beam-Strong-Beam Incoherent Instability 

Suppose first, that the number of particles in bunch "1" (weak beam) 

is much less than that in the opposite bunch "2" (strong beam). In this 

case there exists a critical value of the current and correspondingly a 

critical value of the space charge parameter 5 of the strong beam. 
y 

Below it therearehardly any visible beam-beam effects, but as soon as 

the threshold is reached the vertical size of the weak beam suddenly 

increases significantly (beam blow-up or flip). At the same time the 

horizontal size of the beam does not change significantly. The strong 

beam shows very small change, if any at all. Typical value of the 

crucial space charge parameter 5 y is around 0.03- 0.05. The space charge 

parameter of the weak beam being small because of its current, becomes 

still less due to increase in size. Fig. 1.11 illustrates beam blow-up 

in the experiment at SPF,AR.15 
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Along with the change in the bunch size, the particle distribution 

also experiences significant change. The distribution deviates from 

simple Gaussian shape; the tails become much more populated. 

Fig. 1.12 presents the results of vertical bunch profile measure- 

ments16 on SPEAR for electrons and positrons before and after the 

separation was switched out. 

The question of the rise time of the weak-beam-strong-beam 

instability is a difficult and still not resolved one. The attempts to 

measure it at SPEAR showed a value much smaller than the damping time. 

This fact was confirmed also on PETRA. 

Although the weak-strong mode of operation is hardly used by any 

storage ring routinely, the study of the weak-beam-strong-beam instab- 

ility is important. First of all this case is more simple to simulate 

on a computer since the strong beam can be considered as a source of an 

external constant force. This can give (and indeed does give) informa- 

tion on important factors to be included in considerations for the more 

complicated strong-strong case. To some extent the weak-strong case is 

also simplier from the theoretical point of view and still sheds some 

light on the whole problem. 

1.4.2 Strong-Beam-Strong-Beam Incoherent Instability 

The most usual mode of operation of a storage ring is one of main- 

taining the currents in both beams as equal as is practically possible. 

The main reason for this is of course the desire to achieve the maximum 

luminosity of the storage ring. Were the current of one beam less than 

that in another, the weaker beam would flip at much lower current mag- 

nitude, reducing the luminosity. 
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The strong-beam-strong-beam instability exhibits many common 

characteristics with the weak-strong case. One observes beam blow-up 

(usually bigger for the beam with slightly smaller current in it and 

smaller for the stronger beam), redistribution of particles in the 

bunch and increase of the population of its tails. The deviation from 

the Gaussian distribution is still more pronounced (See Fig. 1.13 for 

example. The illustration is taken from the work'). The change in 

particle distributions makes it extremely difficult to simulate strong- 

strong case in a computer study, since forces depending on the distribu- 

tion should be recalculated for each interaction separately. 

On the other hand there is no clear answer to the question of the 

existance of a threshold. It seems that in some cases such a threshold 

exists;4 in other cases the beam blows up starting from very small 

values of the current.17-lg The same holds for the tune dependence. 

In some cases there is marked dependence of the beam blow-up limits on 

the values of the tunes.1g920 For the high beam intensity only a small 

island of stability can be found on the tune diagram. As an example, 

in Fig. 1.14 taken from the worklg are shown the regions of stability 

for the AC0 and DC1 storage rings. At the same time, in some cases strong 

dependence on tune is not observed.17 An interesting situation is with the 

storage ring SPEAR. In the old version of the machine (SPEAR 1) such 

dependence has been observed.4 The beam-beam limit was raised by a _ 

factor of five by decreasing the vertical tune. Further decrease was 

impossible due to the existence of strong two-beam resonance v - 2~ =5 
X Y 

(forbidden for the two-fold symmetry of the machine with one beam). 

This effect disappeared in the modified machine (SPEAR 2>.4 
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The fate of the blown-up beam strongly depends on the beam current 

and the energy. At the maximum currents and energies for a given storage 

ring the lifetime of the beam is reduced drastically and beam is usually 

lost in very short time. At smaller currents or energies the lifetime of 

the blown-up beam seems to be unaffected and equal to the lifetime of the 

unblown beam.21 This can be used to restore normal conditions, by using 

strong dependence of the blow-up on the machine tunes. 

It is worthwhile to mention here that near, but below, blow-up limit 

the beams are highly sensitive to all kinds of perturbations. Even a 

small change of conditions usually causes the beam blow-up. 

The dependence of the effect on the number of bunches is 'also still 

not understood completely. The intensity of the beam-beam interaction 

increases with the increase of the number of bunches. In principle this 

should lead to the decrease of the luminosity at the given interaction 

place and to the decrease of the beam-beam limit. There are observations 

showing indeed such dependence; 21922 but there are also others,26 which 

can be interpreted as exhibiting maximum luminosity independent of the 

number of bunches. 

1.4.3 Flip-Flop Effect 

A remarkable controlled beam blow-up is discovered on SPEAR.22 At 

certain conditions, by changing the difference of the phase of two 

accelerating cavities, it is possible to blow-up one (flip) or another 

(flop) of two beams. The flip-flop effect is apparent only near the 

beam-beam limit at a given energy. There is also pronounced influence 

on the effect of the magnitude of the horizontal dispersion function at 
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the interaction point. Other parameters of the ring (chromaticities, 

sextupole strengths, bunch length, tunes and coupling) seem to be impor- 

tant or not depending on the question of whether or not they influence 

the separation of the bunches or the horizontal dispersion at the inter- 

action point of the machine. 

The complete understanding of the flip-flop effect is not yet 

achieved. Nevertheless the effect is successfully employed to balance 

the heights of the opposite bunches at the maximum current, hence maxi- 

mizing the luminosity of the ring. 

Preliminary observations23 show the existance of the flip-flop 

effect also in PETRA. 
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2. EXPERIMENTAL OBSERVATIONS 

The comprehensive review of the experimental results obtained with 

different storage rings is not an easy job. The difficulty arises not 

only because of wide spectra of different types, and quite different 

parameters of the storage rings (energy, space charge parameters, cur- 

rents, number of bunches and so on) but mainly because of completely 

different conditions of the measurements and the different ways of 

interpreting results. 

Even for a given storage ring the results strongly depend on the 

tunes, energy, quality of closed orbits correction, chromaticity, 

transverse offsets of the bunches at the interaction point, assymetry 

of the ring (differences in phase advance between the interaction points), 

aspect ratio of the bunch and so on, almost ad infinitum. 

To make the task easier, I will first of all concentrate on electron 

storage rings, for which data are much more abundant. For proton storage 

rings only the illustrative example of the CERN Interacting Storage Ring 

(ISR) will be given. 

Before discussing recent experimental results observed on different 

storage rings, it is useful to look first at the conditions in which 

they are obtained and the assumptions under which they are interpreted. 

2.1 Main Relationship and Assumptions 

First of all let us discuss relevant storage ring parameters as 

well as experimental conditions under which they are usually measured. 

I will list the main parameters and relationships between them, 

although the latter are all well known. 
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2.1.1 Luminosity 

Luminosity of the storage ring for the head-on collision of two 

identical beams is usually assumed to be 

g! i2 

4Te2 f Boxoy 
(2.1) 

where i is the current in either of two beams, B is the number of bunches 

in each of the beams, f is the revolution frequency of the particle with 

charge e, ux and o are horizontal and vertical dimensions of the bunch 
Y 

(rms widths if the distribution is Gaussian) at the interaction point. 

Useful physics experiments can be done with the storage ring if the 

luminosity is on the order of 10 30 cm -2 sec-l for the 5 GeV energy 

range. For higher energy this value should rise as E2. 

2.1.2 Space Charge Parameters 

Space charge parameters under the same conditions are given by 

the following formulae (compare 1.10 and 1.11). 

a) for the vertical motion: 

. 

EY 
=elBy , 

2.7~ f BEoyex+ ay) 

b) for the horizontal motion: 

ei#3 
5=- . 

X 2~ ;F BEox(ax+oy) 

(2.2) 

(2.3) 

In these formulae f3x and By are values of horizontal and vertical 

B-functions at the interaction point; E is particle energy. Both the 

luminosity 9 and the space charge parameters 5, and 5, depend on the 

bunch size which is very difficult to measure directly. But it is clear 
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that both values are sensitive to the charge distribution in the core 

of the beam rather than to the tails of it. At the same time, it is 

known4 that tails are affected by the beam-beam interaction much more 

strongly than the core. 

2.1.3. Lifetime 

The beam lifetime T for a single Gaussian bunch is given by24 

where 'c is the vertical damping time 

1 -= cy f E3 
T 2P ’ 

(2.4) 

(2.5) 

C 
Y 

= 8.85~ 10D5 m/GeV3, p = bending radius in m, and E the energy in GeV. 

CL <= - 
cl2 * 

(2.6) 

HereC is an effective aperture of the machine. The beam lifetime is 

sensitive to the distribution of the particles in the tails where the 

beam-beam interaction changes distributions significantly. That makes 

the maximum luninosity strongly dependent upon the value of the maximum 

beam current which in turn happens to be a fast function of the particle 

energy. 

2.1.4 Parameters Known, Measured and Assumed 

Among the machine parameters entering into expressions (2.1-2.6), 

the energy E, the number of bunches B, and the revolution frequency f 

are known with great accuracy. The luminosity9 and the beam current 

i can be measured directly. 
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On the other hand, several other parameters (such as f3,, f?~ > are Y 
difficult to measure. Although one can expect that B,, By should be 

modified by the beam-beam force, these functions are changed only in 

the second order of the perturbation theory and therefore usually are 

assumed to be equal to their theoretical value at the zero current. 

The same holds for the horizontal beam emittance sX and consequently 

for the horizontal beam size ox = JexBx . 

2.1.5 Experimental Conditions and Assumptions 

Experimental data on the beam-beam effect are obtained on different 

machines virtually in quite different conditions. 

a) The investigation of the beam-beam limitations. Measurements 

of this kind are done during special machine physics runs. The main 

goal of these measurements is to achieve the maximum possible luminosity 

for given parameters by increasing the currents to the point where the 

lifetime of the beam starts to decrease sharply. To maximize the lum- 

inosity of the ring both currents are usually maintained pretty much 

the same. For the SPEAR measurements25 

2(i+ - i-) 

( 
i+ + i- 

> 
< 10 % 
W 

One tries to do the same with the vertical size of the beam. At least 

at SPEAR this condition was met by means of adjustment of the phase 

between the rf cavities positioned symmetrically around the interaction 

point.22 

Experimental data obtained in this situation should be more sensi- 

tive to the particle distribution at large amplitudes (to the tails of 

distribution) rather than to the distribution in the core of the beam. 
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b), The investigation of the storage ring performance. Measurements 

of this kind are usually done during high energy physics runs in a para- 

sitic mode. Maximum luminosity is achieved in this case under a re- 

strained condition of the beam lifetime being affected by beam-beam 

phenomena or by demand to have reasonable background in experimental 

devices. These measurements should be more sensitive to the distribu- 

tion in the core of the beam. 

c> It is important also to distinguish the regions of parameters 

below and above the blow-up limit. The boundary between these two con- 
'* 

ditions is not always sharp and pronounced, Since the functional 

behavior of relevant parameters is quite different in these two regions, 

one should be specific when talking about their values and dependencies 

on energy, current, bunch number and the like. 

In all of the storage rings the longitudinal size of the bunch oR 

is much less than B 
Y' 

If this condition were not fulfilled, different 

particles along the bunch would experience different focusing and the 

results could be distorted by this effect. As we shall see later, it 

is assumed usually that the distribution of the particles is Gaussian, 

at least in the core., One needs this assumption to be able to calculate 

the space charge parameters from the measured luminosity and current. 

In some aspects there is also a difference between the strong-beam- 

strong-beam and the strong-beam-weak-beam interactions. 

2.2 Experimental Results 

An experimental fact observed on all the machines is that the hori- 

zontal size of the bunch is not influenced by the beam-beam interac- 

tion4y26 with the accuracy ~10%. 
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2.2.1 Procedure 

It is instructive first to see how one can derive the relevant 

parameters from the measured ones. 

First of all, assuming ox to be equal to q, one can find beam 

aspect ratio 0 lo y x from the measured luminosity (2.1): 

zY= i2 
CJ (2.7) 

X he2 f Box9 

Formula (2.3) then allows us to find the horizontal space charge 

parameter 

sx = 
eiBx 

HIT f BEo;(l+oy/ox) 

After eliminating oy from (2.1) and (2.2) one gets: 

2 e3L2?B 

5Y 
=Y 

Ei l+o /a ( Y x > 

(2.8) 

(2.9) 

Let US review now the recent experimental results obtained on different 

storage rings. 

2.2.2 SPEAR. Dependence on Energy 

Recently a set of new measurements of the maximum luminosity and 

the beam current versus machine energy was undertaken by H. Wiedemann.27 

The range of energy variation was from 0.6 to 3.7 GeV and is much wider 

than in all previous experiments. The data are taken during the special 

runs of the SPEAR dedicated to machine physics. Much work is done to 

adjust all the machine parameters to achieve maximum luminosity. Special 

attention was paid to balance the vertical sizes of electron and positron 

bunches to avoid the loss of the luminosity due to the blow-up effect.. 
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The fit by a power law to recent data seems to give quite different 

slopes, especially for the vertical space charge parameter, than ones in 

the previous measurements.4 The difference may be attributed to the 

fact that the energy range in the work4 was much narrower (from approx- 

imately 1.2 to 2.5 GeV). Table 1 summarizes the results of fitting to 

these measured and calculated data. 

2.2.3 SPEAR. Dependence on the Beam Current 

Table 2 summarizes the data picked up from SPEAR logbooks by 

M. Cornacchia.28 The data were mostly taken during regular physics runs 

of the machine. The fits to the data taken at high energy physics run 

are recalculated. Instead of fitting data by the least square method 

the maximum luminosity was fitted. 

2.2.4 ADONE 

Table 3 summarizes the dependencies of the maximum luminosity and 

the beam current versus energy which were taken from the report by 

S. Tazzari.21 The space charge parameters of this machine were kept 

approximately equal to each other. The fit for the space charge param- 

eters is derived from the calculated values plotted in the work.21 

The number of bunches in ADONE can be and were changed. The data taken 

with one and three bunches do not contradict the assumption 

sy-i l 

2.2.5 PETRA 

The data from the measured specific luminosity SB/i2 during high 

energy physics experiments were fitted with the help of the blow-up 
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function o assumed17 
Y to behave according to the following: 

a2 . 2 

Y 
J+ = 0 OY 

. (2.10) 

Here o. is the value of cs 
Y 

at zero current i and a is a parameter. 

From the data taken at different energies, a is found to be: 

const a= 
E4 ' 

(2.11) 

The values of aspect ratio of the beam emittances are estimated to be 

of the order of several percent at all energies. 

2.2.6 PEP 

Due to sixfold symmetry of the machine, the operation of PEP is 

performed in one-by-one or three-by-three bunch modes. The beam-beam 

data obtained in these modes differ from each other. The reason for 

this difference is not yet understood.2g Figures 2.1- 2.3 present the 

results30 of measurements of the luminosity, the specific luminosity 

g/Big and the vertical tune shift Av for different bunch currents. 

The data are taken with the particle energy 14.5 GeV. It is clearly 

seen that the initial slope ofL??(IB) for lx 1 mode agrees with the 

I: law (constant cross section of a bunch). The function saturates at 

higher current values indicating the cross section increase (blow-up). 

At the same time the luminosity curve for 3x 3 mode does not seem to 

follow 1; law even for very small current. The same, but more clearly, 

can be seen from the specific luminosity data. The 3x 3 data show beam 

blow-up starting from the lowest available current data. 

Unfortunately, there are not enough data to fulfill the analysis 

similar to one of PETRA. More data for different energies is needed for 

the comparison between two storage rings. 
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2.2.7 C'ESR 

Luminosity measurements and observations of the related beam-beam 

effect is done73 on this storage ring at the energy 5.5 GeV (the designed 

energy of the ring is 8 GeV). The maximum luminosity of 3x10 30 -2 -1 cm set 

has been achieved which corresponds to a maximum vertical tune shift of 

0.035. Luminosity curves versus current show i2 dependence up to 

i 5 4 ma for different lattice configurations. Above this value one or 

both beams flip and the saturation is seen clearly. It is found that 

small changes in tune can lead to large changes in specific luminosity 

and/or lifetime of the beam. 

2.2.8 Low Energy Machines 

The summary of experimental observations on several other machines 

can be found in Table 4, which is taken from the work.31 Representative 

samples of data for SPEAR taken from work27 and for VEPP-4 taken from 

work74 are added. The first four columns give the maximum energy, the 

vertical tune v 
Y' 

the vertical B-function at interaction point, 6 Y' 
and 

the number of bunches per beams The next four columns deal with scaling 

laws for maximum current, luminosity, beam cross-section and the beam 

strength parameter as a function of energy. The last column gives the 
1 

maximum value of the beam strength parameter Smax achieved, 

2.2.9 Intersecting Storage Rings (ISR) 

To give the reader the feeling of the order of magnitude of relevant 

parameters for proton bunched beams, I include here the results of the 

beam-beam study,32 undertaken on the Intersecting Storage Ring at CERN, 

While for the electron storage ring the beam-beam shift tune is of the 

order of 0.03- 0.05, the maximum achieved value for the same parameter 
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for the protron storage ring is 3x 10-j. This value is obtained for 

well adjusted vertical position of two beams at the interaction point. 

When beams were off-centered by approximately one standard deviation, 

dramatic blow-up was observed. The rate of the vertical blow-up in- 

creases substantially, also by the noise in the bunching RF system. 

For continuous beams the beam-beam limit was observed33 to be 

in the range O.Ol- 0.02. The difference between this result and the 

results for bunched collisions is believed to be attributed to the fact 

that for continuous beams the motion is essentially one-dimensional 

(since the vertical tune shift is much larger than the horizontal one, 

while there are no synchrotron oscillations). For one-dimensional 

motion one can expect the presence of a stable region below the 

"stochastic limit", 
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3. THEORETICAL MODELS AND TECHNIQUES 

At the present time there is no satisfactory theory for the beam- 

beam phenomena. The complexity of the physical object being, essentially, 

extremely hot plasma very far from the equilibrium makes the analysis 

very difficult. The situation is aggravated also by the highly nonlinear 

character of the beam force, the presence of other nonlinearities in the 

equation of motion, the influence of noise of different origins, and by 

nonuniformity in space (aperture of the machine) and time (damping). 

There are many approaches to the problem and many theoretical and 

computational techniques being used in the attempt to attack the problem. 

Many of these give qualitative explanation to some observed facts, but 

it is hardly surprising that all of them are unable to give comprehensive 

description of the phenomena as a whole, nor able to give ways and means 

to calculate the relevant parameters. As we shall see from the review 

of these different approaches even proper understanding of which factors 

are important and which are not is still to be achieved. I think we are 

still far from formulating proper parametrization of the problem: differ- 

ent theories give different sets of important parameters! 

Hardly in better shape is computational technique. Until now all 

computer simulations have been restricted to particle tracking. In most 

cases the results of tracking are difficult to interpret in terms of 

real machine parameters. In better cases, these results seem to be 

satisfactory to their authors and can be applied only to one particular 

machine for which they are designed. There is also one practically 

important restriction of the tracking method. If as I believe to be 

true, the nonlinear elements (sextupoles) of the machine are important 
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for correct description of the beam-beam phenomena, then the capacity 

of modern computers is not enough to do the job, at least for the future 

big machines since computing time becomes forbidding. Still more this 

is true for proton machines. While for electron storage rings, it is 

believed that only several damping times are essential to get to the 

stationary state (-10' - lo4 collisions), for the proton ring such time 

should be the lifetime of the beam (-10 lo- 1011 collisions) which is 

far beyond the ability of any computer. 

In subsequent sections I try to describe very superficially some 

different theoretical models. The aim of this description is to inform 

the reader of the main underlying ideas and obtained results. It is not 

intended here to go into details of sometimes very complicated mathematics. 

I have restricted myself to the beam-beam interactions in a storage 

ring. There is a related subject, that of the beam-beam interaction in 

a linear collider. Some interesting theoretical and computational 

work62-66 has been done in this area. This work helps to look into 

the beam-beam phenomena, studying it in a self-consistent manner; but 

since it lies out of the topic of our workshop (long-time prediction), 

and mainly because no experimental observations have been done yet, 

I do not include the subject in the present review. 

3.1 Single Resonance Models 

I follow here the work5 where one can find more details as well as 

some references to other papers on this subject. 

Two main assumptions lie in the foundation of the model: 

a> There is only one set of integers, q,p,n, satisfying~the condi- 

tion qvx + pvy = n, which dominates the motion of a single particle 
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interacting with a fixed opposite bunch. In principle there are many 

other sets of numbers, p,q satisfying this condition. The rational to 

ignore them is that the influence (width) of corresponding resonance 

drops faster with the increase of the particle amplitude the more quickly 

the numbers p and q increase. 

b) All the fast oscillating terms in the equation of motion can be 

ignored (smooth approximation). Formally that goal is achieved by sub- 

stituting the Hamiltonian by its average over unperturbed phase trajec- 

tory. Such averaging changes the volume of the phase space, which can 

lead to some errors. Besides that, this approach does not take into 

account the existence of stochastic regions and possible Arnol'd diffusion. 

Two such models will be discussed. In the first one all parameters 

are considered to be constant (static model). The second model allows 

slow (adiabatic) change of the parameters due to coupling to longitudinal 

motion (dynamic model). 

3.1.1 Static Model 

Consider transverse motion of a single particle in the presence of 

a fixed opposite bunch (weak-beam-strong beam case neglecting synchro- 

tron oscillations). 

The Hamiltonian of this problem is: 

3e= $ px2 + Kx(s)x2 py2 + K,(s)y2 + U(X,Y) E(S) , (3.1) 

where Kx(s) and Ky(s) are lattice horizontal and vertical focusing 

functions of the longitudinal coordinate s. Potential of the beam-beam 

interaction U(x,y) should be chosen in such a way as to give correct 
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"kicks"'Ax' = - au/ax and Ay' = aU/ay (see 1.4 and 1.5). Periodic func- 

tion E(S) describes the longitudinal dependence of beam-beam force. For 

short bunch it can be approximated by the &function periodic in s. In 

the vicinity of the single resonance qv, + pv 
Y 

= n (assumption 1) the 

Hamiltonian has fast oscillating and slowly changing terms. The averag- 

ing procedure (assumption 2) throws the fast oscillating terms away. 

If the particle distribution in the strong bunch is Gaussian and its 

action can be described as a rS-function kick in time, the remaining 

Hamiltonian depends on five dimensionless parameters, 

5,, 5,, vxs vy and 7 . 
X 

The tune shift Av and the width of resonance 6v as functions of parti- 

cle amplitude can be calculated. For the one-dimensional case (q= 0) 

the result is: 

Av(a) = 5 e-u [I,(a) + I;)b)] , 

c 

e 
&v(a) = 85 

-a [(1+ 2a) Isp,2(c1) + 2 nI;p,2(a)] 

S s2p2 - 1 

where & is the normalized amplitude in units of the strong 

vertical dispersion 

Jf3 pJ=- 
2cf2 

(3.2) 

(3.3) 

bunch 

(3.4) 

and Im is the modified Bessel function of the mth order. Qualitative 

behavior of Av and 6v are shown in Fig. 3.1. 

Due to fast decay of the resonance width with the amplitude 

according to the static model, the motion is stable in respect to beam- 

beam interaction in striking contradiction to experimental observations. 

This discrepancy seems to be overcome by dynamic models. 
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3.1.2 Dynamic Models: Trapping 

The static model does not provide a mechanism for transporting 

particles from small to large amplitudes. Such mechanism seems to be 

necessary to provide for particle losses and lifetime decrease. There 

are several models34'36 with time variable parameters, such as v or 5, 

which lead up to an instability. The change of the parameters may 

arise from different sources. It may be coupling to longitudinal motion, 

in which case the tune v may be modulated by synchrotron frequency us, 

or it may be some noise in the system causing the tune diffusion. The 

change of the tune makes the assumption 1 (single resonance) still less 

sound then for the static model. 

In the work36 it is assumed that the space charge force can be 

considered as a source of the tune diffusion via the tune dependence on 

amplitude. Diffusion through the single resonance leads to amplitude 

growth. Assuming the 3res to be constant, the author finds the following 

expression for the beam-beam limit: 
r-l 

SL = const y 3/2 (3.5) 

which gives the dependence of the maximum current and luminosity as 

functions of energy: 

(3.6) I 3.75 
ItlS.X 

"Y 

Lz? N y5-5 (3.7) 

(assuming ox,0 
Y N Y>* 

The dependencies (3.5) and (3.7) seem to be too slow for reasonable 

agreement with experimental observations. 
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This model seems to have a support from the computational simulation 

of J. Tennyson,37 where streams of particles are discovered along a cer- 

tain resonance tube toward larger amplitude, where they are dropped out. 

In the trapping mode134 the tune of the particle is adiabatically 

changed in time close to a single resonance value n/p. These changes 

cause the resonance islands (the separatrixes) to move. At a certain 

rate of the time change it is possible that an island will trap a parti- 

cle bringing it from one phase trajectory to another. The islands move- 

ment is completely analogous to the autophasing in longitudinal motion 

in a synchrotron, where slow increase of the magnetic field causes the 

separatrix to move toward bigger mean energy. Synchrotron oscillations 

of the particle inside the separatrix then follow its movement exibiting 

the example of trapping. As we know, the speed of the magnetic field 

change should not exceed a certain limit, which is determined by the 

dependence of the revolution frequency on energy. At this value the 

size of the separatrix becomes zero. In the same manner the speed of 

the tune change in the trapping model should not exceed a certain limit, 

which in turn is determined by the amplitude dependence of the tune, at 

which the width of the island tends to zero. 

To find the rate of particle transport toward larger amplitudes 

in the trapping model one needs an evaluation of the trapping probabil- 

ity. It is assumed that this probability is proportional to the volume 

of the island, being small for small amplitudes. It then reaches its 

maximum at a dimensionless amplitude of the order of magnitude 1-3 

(depending on the order of the particular resonance) and then drops 

toward larger amplitude again (the decrease is due to both the 



-36- 

decrease in resonance width and the distance to resonance). The net 

effect then is the difference of the number of particles brought from 

the small to large amplitude (proportional to particle density inside 

the bunch) and the number of particles brought back from larger to 

smaller amplitude (proportional to particle density in the tails of 

distribution). 

3.1.3 Method of Lie Transformation 

The application of the transfer map method38 to analysis of the 

beam-beam interaction will be discussed here very briefly, since the 

main contributor to this method, A. Dragt, will present the topic himself. 

General nonlinear transfer map m is an operator transforming phase 

coordinates 

z = ( 91' 42". Q' Pl¶ l ** P, > (3.8) 

from one Poincare section to another 

z2 = mz 1 0.9) 

The map m depends on coordinate zl. Action of each element of the 

lattice (linear or nonlinear) on coordinates zl at the entrance can be 

considered as a map transfering them into coordinates z2 at the exit. 

Hence any m can be constructed as a product of mi for each element. 

For any function in phase space f(z), a corresponding Lie operator 

F can be defined. It is acting on any other function g(z) according to 

the following rule: 

Fg = [f&l (3.10) 

Here Cf,gl denote Poisson bracket for functions f and g. Hence the 

Lie operator is a linear differential operator in the phase space. 
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For example, the Lie operator Pi associated with the particle momentum 

pi is 

pi=-a 
aqi ' 

(3.11) 

This is very similar to the quantum mechanical operator of momentum, 

the fact which has very interesting consequences in the new approach to 

classical mechanics.3g 

It is possible to construct from the Lie operator F a Lie series 

as a power series of F. Of special interest is the exponential series, 

called Lie transformation: 

exp(F) = (3.12) 

It was shown,40 that any mi can be presented in the form exp(Fi). 

For example, consider any linear piece of ring with phase advance $J, and 

$Y 
of transverse oscillations. Then corresponding Lie transformation eF 

is constructed from the operator F associated wtih the quadratic 

polynomial 

f(2> = -$(x2+p;) - >(y2+p;) . (3.13) 

The Lie operator for a sextupole magnet is associated with the cubic 

polynomial 

fc3) = Q, x3 - Q, xY2 (3.14) 

where Q, and Q 
Y 

are values proportional to the strength of the sextupole 

magnet, and so on. 

Similarly can be constructed the Lie operator for the action of the 

strong bunch on a particle motion. The corresponding Lie operator is 

associated with the potential function of the electromagnetic 

interaction. 
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The remarkable feature of the Lie transformation method is the fact 

that the canonical map can be presented as a product of corresponding 

Lie transformations depending on initial coordinates only, thus generali- 

zing the matrix method of analysis to nonlinear mechines. 

This method was used recently to study a one-dimensional model 

of the weak-beam-strong-beam interaction. The strong bunch is assumed 

to have round cross section. The Hamiltonian of the motion can be found 

explicitly for two cases: far from any resonance as well as near a 

single resonance of order p. The motion is found stable for any tune 

shift parameter of physical significance. This is hardly surprising 

since we have already seen the same result for the same model, studied 

by a different method (see section 3.1.1). Still I believe that the 

beauty and power of this method will give many more interesting results 

and not only in the study of the beam-beam interaction, but also in 

investigations of many other aspects of nonlinear behavior of storage 

rings. 

3.2 Many Resonances Models: Stochastic Limit 

The assumption which is made in simple resonance models does not 

appear to be very realistic. A picture of the simultaneous action of 

many resonances together seems to be closer to reality. As far as the 

strength of the beam-beam interaction is small enough, the separation 

between the different resonances (at least for low order resonances) 

is greater than their widths. In this case the Kolmogorov-Arnol'd-Moser 

theorem is valid and the motion of almost all particles with different 

initial conditions is stable, deterministic and reversible in time. 

The trajectories of such particles are only slightly perturbed by the 
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presence of resonance. There are exponentially thin layers in the phase 

space (near the separatrixes associated with resonances) where particles 

which happen to be there due to initial conditions behave erratically. 

In one-dimensional systems the KAM surfaces are closed and provide 

stability even for a particle inside such a layer. In multidimensional 

systems the layers associated with different resonances can intersect 

each other making it possible for the particle in the layer to drift from' 

one resonance to another and eventually away to the machine aperture 

(so-called Amol'd diffusion), This would not practically reduce the 

bunch lifetime unless there is no external noise in the equations of 

motion which can occasionally bring more and more particles inside the 

stochastic layer. 

The situation changes drastically with increase of the strength 

parameter. At a certain value of this parameter the widths of the next 

resonances become big enough to touch each other. The KAM surface 

breaks down and the motion becomes stochastic for a substantial portion 

of the phase space (initial conditions). This resonance overlapping 

situation is believed to create the beam-beam limit and is a content 

of the Chirikov criterion for stability. 

In the following I describe very briefly (just for completeness of 

the review) the most important ideas developed along this line. The 

subject links the problem of beam-beam interaction.to the more general 

problem of long-time behavior of the nonintegrable Hamiltonian systems 

and exhibit some basic concepts of nonlinear Hamiltonian Dynamics: 

resonance, closed orbits, stochasticity and Arnol'd diffusion. More 

comprehensive description and more details will be presented in the 
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next few talks and can be found in literature (see for example45-47 

and references therein). 

3.2.1 Estimate of the Beam-Beam Limit According to Chirikov Criterion 

Let us evaluate the beam-beam limit according to Chirikov criterion.48 

I follow here the derivation of the work.4g Practically the same treat- 

ment is used by Bountis.46 One finds an interesting approach5* expres- 

sing Chirikov criterion in terms of a turbulence limit of a flow in the 

phase space. 

Consider one-dimensional motion of a particle in the presence of 

the second bunch. The Hamiltonian of the motion in action-angle vari- 

ables is 

H= VJ + c Ed e 
i(m+- k0) 

m,k=--m 
(3.15) 

Term Ebb determines the dependence ot the oscillation frequency on 

amplitude: 

dw d2c00 
O1 = dJ = dJ2 (3.16) 

For d-function like perturbation in 8, ~~~ does not depend on k. 

If cm is small enough each of the other terms in (3.15) produce a 

resonance at the frequency 

k wkm = g = v + clJkm (3.17) 

The last equation in (3.17) determines the resonant amplitude Jkm. 

In phase space a resonance is surrounded by a separatrix the width 

of which is 

6Jkm = 4 J2sm(Jkm)/o . (3.18) 
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The same value in terms of frequency is: 

6wkm = CXAJ km . (3.19) 

The resonance separation around the resonance of the order m is 

A%m = l/m. Now Chirikov criterion can be formulated quantitatively if 

one finds the sum of the ratio of the widths to the separtions in a unit 

frequency interval. If one introduces the notation 

$= Cm/w . 
m 

(3.20) 

then Chirikov stability criterion becomes 

A>4 (3.21) 

The numerical investigation of the validity of this criterion on the 

model called the standard mapping51 shows that (3.21) overestimates 

stability (actual loss of stability appears for a smaller value of E). 

The same seems to be true for the beam-beam stability limit at 

least in the simple one-dimensional model with the round Gaussian 

strong bunch. Expression (3.21) gives in this case, for the space 

charge parameter: 

5<1/8 , (3.22) 

which is clearly 3- 4 times better than the experimental observations. 

It is common thinking that the limit will look more realistic for 

bunched beams if one takes into account the existance of additional 

synchrotron resonances arising due to coupling of the transverse motion 

to the longitudinal one. The overlap of synchrobetatron resonances has 

been studied by Israilev52 where it is shown that indeed the beam-beam 

limit can be reached at 5 x 0.04. For unbunched proton beams the more 
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severe iimit is believed to be connected with Arnol'd diffusion-in the 

absence of damping the needed lifetime can be achieved only below the 

stochastic limit when resonance overlapping has not developed to full 

scale. 

3.2.2 Study of Nonlinear Equations of Motion 

It is worthwhile to mention here a completely different approach 

to the beam-beam problem in which the stability limit is searched from 

the investigation of the nonlinear Hill's equation53y54 or correspond- 

ing finite difference equations.55 

Again the one-dimensional problem is investigated. Consider two 

first-difference mappings 

Xt+l = yt ' (3.23) 

Y t+l = -xt + 2yt COS~TV + <F(yt) si;2*v (3.24) 

describing the vertical motion in the presence of the &function beam- 

beam force SF(y), 5 being the strength parameter. For the piecewise 

linear beam-beam force 

F(Y) = 
J;; J;; 2 for y > 2 

J;; J;; -2 fory<-l 

(3.25) 

It appeared possible to construct an invariant curve y(x) in the 

phase plane, i.e., the curve invariant in respect to the nonlinear 

map under consideration. It contains a stable region of the motion 

for all times. 
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For each given value of v only one such curve is found to exist. 

The stability limit is determined from the following expression: 

5 AL)=== 
cos2nv (1 + cos27Tv) 

T (1 + ~COS~TV) (-sin2rv) ’ 
(3.26) 

For the ISABELLE storage ring this gives AV W 0.03. This value seems 

again to be too optimistic. 

3.3 Diffusion Model 

We have seen above the attempts to describe the beam-beam limit 

as a combined effect of a single resonance and diffusionlike change of 

its parameters. In the case when there are many rather strong reson- 

ances inside the tune change region of the particle, the motion of the 

particle can become stochastic even in the absence of special noise 

sources. That circumstance makes it"plausible to try to consider the 

beam-beam interaction in the limit where there is no correlation 

between the results of different collisions and between the phases of 

a particle at different interaction points!1-44 Such considerations 

do not pretend to constitute a rigorous theory but rather a phenomeno- 

logical model which helps to make parametrization of the experimental 

data in a suitable way and to derive some scaling laws by means of a 

few fitting parameters. The behavior of these fitting parameters is 

not described by a theory and should be taken from the comparison with 

an experiment. 

It is useful first to go through main assumptions under which such 

models are developed as well as those which will be used in the 

following considerations. 
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First of all we shall consider a one-dimensional model of the 

beam-beam interaction. Although the phenomenon is essentially multi- 

dimensional, the justification of this model at least in the first 

approximation comes from the experimental observations that the vertical 

size of the bunch is most strongly affected by the interaction while 

the horizontal size of the bunch seems to be affected very little if any. 

One may argue about the loss of some particular multidimensional 

features such as the Arnol'd diffusion, sideband resonances, and the 

like. All of these effects may be considered .to be included in assumed 

particle stochastic behavior. 

Secondly, we assume that at least some number of particles behave 

stochastically. The reason for such a behavior can be nonlinearities 

in the machine lattice, nonlinearity of the electromagnetic beam-beam 

force, combined action of many close-lying resonances, presence of a 

stochastic layer in the phase space of particle motion, etc. Note that 

1 do not include in this list the change of particle amplitude due to 

radiation quantum fluctuations making thus the consideration equally 

applicable to proton storage rings. 

We shall use in forthcoming considerations an assumption that both 

beams are identical. This assumption is not mandatory for the deriva- 

tions but is justified by experimental conditions and makes all 

formulae more straightforward. 

Also everywhere where it is appropriate, I will simplify the calcu- 

lations using Gaussian distribution, linear force, etc. Although more 

exact calculations can be fulfilled sometimes they do not seem to be 

necessary due to oversimplifying assumptions made above already. 



-45- 

3.3,1 Beam Blow-Up 

At each interaction the vertical coordinate y and the angle in 

vertical plane y' are changed as follows: 

Ay = 0 (3027) 

AY’ = 2lTs y 2 \dj, ('-d 
Y 

where b = Coy/ox) / J~-(o~/u~)~, u = y/u0 and Kb$b is a function 

describing the electromagnetic force of the opposite bunch,, For 

Gaussian distribution15 

Kb = 

(3028) 

(3.29) 

According to the main assumption a certain part of the motion due to 

the interaction (3.28) can be described as stochastic and the beam-beam 

interaction Fan be considered as an additional source of diffusion (in 

addition to all other sources which do not depend on the beam-beam force). 

We know that at least the linear part of the force cannot cause 

the stochasticity. It can be considered as an additional focusing 

force and hence should be included in the regular part of particle motion. 

Probably the same is true also for some nonlinear parts of the force. 

That is why for the purpose of calculating beam blow-up as a conse- 

quence of a diffusion-like process we should consider not all the force 

$b(u), but only some nonlinear part of it Tb(u). The way to get Tb out 
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of $b is not clear and should be considered here only as a way to intro- 

duce in the theory a phenomenological fitting parameter. It can be done 

in different manners: 

(P,(U) - (l-h) eb(-&-) , S. Kheifets15 

$,(d = (3.31) 

h$;(u) , A. Ruggiero44 

One can find still other possibilities. For a small value of h, both 

procedures give essentially the same result. 

It is reasonable to assume that for particles which behave erratic- 

ally there is a complete mixing of phases within the bunch and in the 

long run each particle can be expected to acquire any value of coordinate 

Y* In this case the beam blow-up can be found by averaging the value 

(AY’)~ over the distribution function 

(3.32) 

where the brackets < > mean averaging over the distribution function. 

In expression (3.32) 

2 , (3.33) 

where 'I is the vertical damping time (2.5) 

For Gaussian distribution 

(3.34) 

Instead of doing actual calculations we substitute in the following 

&I> * h4'(0) = 2h Jl+b2_ b 
> 

(3.35) 
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Then we'get: 

a2 = o2 + 
2s2 e2 .rBG h2 csi i2 

Y 0 

f 

(3.36) 

First of all we see here exactly the same formula (2.10) that was 

postulated in the work.17 Comparing (3.36) with (2.10), we find 

reB ho 0 a= (3.37) 

E Ox 

An expression similar to (3.36) can also be found in the paper44 (see 

Eq. (39) of this work) which gives to parameter h the physical meaning 

of the probability of finding the particle in a stochastic layer. 

Expression (3.36) was also derived by J. Rees56 from the 

assumption 

2 
*Y = 

0'0 + f B,cB2 e2 
Y rms 

where enns is the effective r.m.s. scattering angle of a particle in the, 

vertical plane, produced by the opposite bunch. 

3.3.2 Scaling Laws 

Expressions (3.36, 3.37) contain only one unknown parameter h. 

Let us consider it as a phenomenological parameter which should be 

determined from experimental data. One way to do this is to use PETRA 

results17 (2.11). It is easy to see that to satisfy E -4 decrease for 

the value a, we need the following dependence of h on energy: 

h N E-3/2 (3.38) 
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Since we are interested now in maximum values of the luminosity and the 

current, we derive from (2.10) that asymptotically at large current i 

4 
OY 

I? a2i2 or 

4-r CT+--- 
Y E2 

(3.39) 

The maximum possible value of o y limited by particle losses and beam 

lifetime should be some constant which can be written as m 
where 

Ay is an effective vertical acceptance of the storage ring. From formula 

(2.4) for Gaussian distribution we would find that u is constant with 
Y 

the logarithmic accuracy. Let us see now what consequences follow from 

these assumptions. 

a> Dependence on energy. Consider first the situation where the 

limitation arises from the beam lifetime. Assuming o = const in Y 

expression (3.39) we immediately get 

i- max 

With the help of this expression we 

(note that for the electron storage 

E4 (3.40) 

also get the following scaling laws 

ring ux - E): 

7 

5' -E2 
ymax 

(3.42) 

5 NE (3.43) 
xmax 

0 
Y 1 -N- 

a E 
X 

(3.44) 
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b)' Dependence on current. Let us now turn to experiments in which 

beam lifetime limit has not been reached yet. At a given energy one 

gets from the same expressions: 

00 -i 112 
XY (3.45) 

5 .1/2 
ymax - = 

s? N i312 
max 

(3.46) 

(3.47) 

c) Dependence on the number of bunches. For the strong-beam- 

weak-beam case we have observations made on ADONE. Expression (3.36) 

in this case should be rewritten for the blowup of the weak beam by an 

unperturbed strong beam. Assuming the same dependence of h on E we have 

in this case 

02--$ const 
Y (3.48) 

The last equality corresponds to conditions of the ADONE experiment.21 

Hence, 

i- E5& max 

5 
E3 

ymax N z 
(3.51) 

5 N E2 xmax - 
6 

(3.52) 

1 The scaling (3.49)seems to be in quite good agreement with the experi- 

mental data21 on the strong-beam-weak-beam interaction at ADONE both 
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on E and on B. On the other hand, 5, and 5, were maintained equal. 

That makes the comparison of the energy dependence meaningless. The 

dependence on B is not contradictory to the experiment. 

Tables 5- 7 present the summary of the theoretical and experimental 

values for different parameters relevant for the beam-beam interaction. 

Keeping in mind the number of assumptions and the approximations made 

the agreement seems to be astonishingly good. 

3.4 Computational Models 

In this section I will discuss several simulations of the beam-beam 

interaction done on computers. All such simulations are performed by 

tracing a set of particles with different initial conditions through 

many interactions. Motion between the interactions is assumed to be 

linear (i.e., simple rotation in phase space with constant amplitude). 

Hence, the nonlinearities of the lattice are neglected. 

The main attraction of the computational method for the investiga- 

tion of the beam-beam phenomena (as well as many other complicated 

objects) is that this method presents a unique possibility to see the 

behavior of a sample of particles when the solution of the equations 

governing their motion is unknown. The finite capability of a computer 

forces us to neglect some features of the motion, thus making the method 

ag approximate as any other. The approximation can be more or less 

physically sound, but it is always there. We see that the computational 

method is always applied to a certain physical model in the same way as 

the analytical method is. To some extent both methods can be considered 

as complimentary to each other since the analytical method is-usually 

applicable only if there is a small parameter in the model. 
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The com&tational method usually exhibits a lot of troubles in the case 

of the presence of a small parameter. 

There is also a substantial disadvantage in using the computational 

technique. It demands much skill to extract from the results of computa- 

tions any general natural law-if it is possible at all. On the other 

hand, this method is sometimes the only one that is available. 

Out of many simulations done,37y47p57-61 I picked out rather arbi- 

trarily only some done recently. I believe they quite substantially 

represent bright and dark sides of all computational efforts. 

3.4.1 Tennyson's Model 

The investigation of the weak-beam-strong-beam interaction in the 

electron storage ring is reported in work.37 Two-dimensional motion is 

studied (that is no synchrotron oscillations are included). The follow- 

ing features of the motion are considered in both transverse planes: 

a) linear transformation between interactions, 

b) radiation damping of oscillations, 

c) quantum fluctuations, and 

d) the beam-beam interaction. 

In the last, the vertical component of beam-beam force depends on the 

horizontal motion and is approximated by a Gaussian function in x. The 

dependence of the horizontal force on y has been omitted completely. 

In each run sixty-four different initial conditions, all corresponding 

to one standard deviation of the strong-beam in both planes were traced 

for the number of iterations corresponding to three damping times for 

each given energy of the particle. 
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First of all, the model exhibits blow-up in vertical direction and 

no significant change in horizontal size of the bunch. The blow-up 

occurs somewhere between the values of space charge, parameters 5 .02 

and .06 and disappears if either radiation effects or beam-beam space 

charge parameter are put to zero in horizontal motion. 

The effect does not depend on fluctuations in the vertical plane. 

The blown-up beam shows a substantial tail of particles. 

Additional study of the cause of the blow-up discloses an interesting 

mechanism of rapid diffusion of a few particles along the resonance 

line. After such a particle reaches fairly large amplitude, it streams 

out of resonance and then is damped back to small amplitude. 

The resonance particularly under suspision as being the main 

transporter of particles is 

2vx + 6v = 5 . 
Y 

The reason for such effectiveness by this resonance is that the resonance 

tube is almost along the A axis. 
Y 

Hence, small horizontal displacement 

(believed to be caused by quantum noise) can produce large vertical 

displacement. 

3.4.2 Piwinski's Model 

This mode160 also deals with the weak-beam-strong-beam interac- 

tion. All three degrees of freedom are considered here. Damping and 

quantum fluctuations of radiation are also taken into account. 

Charge distribution of the strong-beam was assumed to be Gaussian. 

The "kicks" Ax' and Ay' are given in the integral form (1.4, 1.5). 

The integrals were tabulated for the grid of 75x 200 points with the 

distances of 0.2ax and 0.2~~ between them. Exact kick experienced by a 
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particle by the passage through the strong-beam was interpolated for 

each collision. 

The tracking is performed for PETRA parameter ax/o 
Y 

= $,/By = 15, 

us/B = 0.1, v = 25.2, v 
S 

= 0.07 and different v . Three different 
Y X Y 

particle energies (7, 11.3, and 17.9 GeV) and three different numbers 

of bunches (1, 2 and 4) are studied. The initial coordinates of parti- 

cles were uniformly distributed in phase and Gaussian in amplitude. The 

typical number of particles is 125. They were traced for up to twelve 

damping times. 

Special attention is paid to possible asymmetries and distortions 

in the machine. In particular, differences of betatron phase advances 

between interaction points (including the change of this value due to 

synchrotron oscillation for a particle) and spurious horizontal disper- 

sion function are investigated and show drastic influence on the beam 

blow-up. Small vertical dispersion at the interaction point as well as 

linear coupling of horizontal and vertical oscillations due to skew 

quadrupoles show no effect on the blow-up. 

The results of simulation clearly demonstrate appearance of many 

additional resonances arising due to disturbances of the storage ring 

and synchrotron oscillations. The resonance augmentation of y,, is 

seen even for the smallest space charge parameter studied (5=0.02), 

and is pronounced stronger with increasing 5 to 0.06. 

I think that observed influence of phase asymmetry strongly supports 

the hypothesis of a possible important role of machine nonlinearities 

in the beam-beam phenomena. Indeed, together with residual closed 

orbits, the nonlinearities can be responsible both for phase asymmetries 

and for additional resonances. 
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3.4.3 Talman's Model 

This computational mode161 is the only one, as far as I know, 

which is designed to study the strong-beam-strong-beam effect. Many 

particles ( -100 in each of the two beams) are tracked for many turns 

(- 3000, which corresponds to approximately three damping times -r> in 

six-dimensional phase space. Radiation damping, quantum fluctuations 

and vertical coupling are taken into account. 

For a period of 0.3~ one bunch is held rigid. From the tracking 

results for the particles of the second bunch, smooth distribution and 

the horizontal and vertical fields of this bunch is calculated. Then 

the roles of the two bunches are reversed. 

The possibility of particle loss is incorporated by installing a 

mask (typically set at +lOox and ll00 
Y 

for corresponding deviations). 

In this way the lifetime of the bunch can be found. For the conditions 

giving "good" lifetime, the luminosity is calculated from the equilibrium 

particle distributions. It is found that the regions of "bad" lifetime 

correlate with the positions of the resonances of the nonlinear 

equation of vertical motion parametrically "pumped" by the horizontal 

oscillations. 

A comparison between the experimental observations and the results 

of computations shows good agreement both in the dependence of g(i) and 

in the values of imax beyond which the lifetime is too short (see Fig. 3.2). 

The sources of the beam blow-up as seen by the authors of all three 

computational studies are discerned quite differently. It is noise in 

the first,37 machine distortions in the second60 and strong coupling to 

horizontal motion in the third.61 The same difference holds in respect 
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to a mechanism of the blow-up. It is a single resonance in the first, 

simultaneous action of many resonances in the second and parametric 

amplification of the vertical oscillations by horizontal in the third. 

Such controversy is hardly surprising and might point to the 

existance of all three (and maybe even more) reasons for the beam 

instability. 

CONCLUSION 

Considering the state in which the beam-beam problem exists, what 

kind of feeling might one experience? Is it frustration or excitement? 

The answer is of course subjective. 

Personally, I am more exhilarated-the physics with and of the 

storage ring is progressing rapidly after all -rather than disappointed 

with all the failures of proper description of the beam-beam phenomenon. 

We still have not been able to kill a bird, but it is a challenge to 

have it alive, too! 
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TABLE I 

Dependence of SPEAR parameters on the particle energy E, 

in GeV. The fit is done27 by a function f = kEq. 

i max 1.2 3.6 in ma 

ZY 
U 

0.5 -1.0 
X 

f k q Comment 

2-z 0.033 6.6 in 1030 cmB2 set-l max 

5, 0.022 0.87 

5Y 0.011 2.3 
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TABLE II 

Dependence of SPEAR parameters on the beam current i, 

in ma. The fit is done by a function f = ki'. 

f Ea k 4 BY Comment 

b .Lz? 1.5 0.030 1.95 high 
max 

2.5 

3.7 

0.046 

0.054 

1.55 

1.45 

energy 

physics 

runs 

b 
0.052 1.41 10 cm machine 

.s? 1.95 max physics 
1.95 1.45 20 cm runs 

uY 
0.59 

U 0 
X 

5Y 
2.4 0.33 

a in GeV. 

b 1030 cme2 -1 set 
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TABLE III 

Dependence of ADONE parameters on the particle energy E, 

in GeV.21 The fit is done by a function f = kEq. 

f k q Comment 

2 max 

5 N 5Y 
X 

0.64 

0.068 

7 

1.57 

in 1030 cme2 see-l 

i max 105 4.34 three 

(in ma) bunches Strong-Beam- 

Weak-Beam 
one 

42.4 4.12 bunch 
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Machines 

AC0 

TEPP-2M 

7EPP-4 

ADONE 

DC1 

DORIS 

SPEAR 

E 

(GeV) 

TABLE IV 

Some Experimental Observations 

aertical 
Tune 

.829 

3.086 

9.1 

3.05 

1.79 

5.18 

5.17 

&Y 
(cm> 

400 

5.6 

5.0 

340 

200 

30 

10 

r Scaling Laws/E 
B 

l-2 

1 

3 

1 

360 

1 

1 (El LZ? (El s” (El 5 (El 

y3.5 

4.5 
Y 

Y1 

Y3 

3.6 
Y 

Y5 

Y4-Y6 

Y4 

Y7 

Y2 

Y4 

y6.7 

Y2 Y 
0.5 3.1 

.65 2.6a 

1.84 

1.5 Y2 

Y0 

Y2 

1.5 
Y 

1.85 Y0 

5.0 Y0 

2.0 2.4 
Y 

1.5 

6.6 

4.1 

1.0 

4.5 

?n the case of VEPP-2M, these data are extracted from a contribution 
to the 1978 Dubna Conference. 

5 max 

( ) 1o-2 
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TABLE V 

The power q in the power law f(E) w Eq. 

Experiment 
Parameter I Model Equation Comment 

SPEAR ADONE PETEU 

h -- 3 2 3.38 

9 6.6 7 max 7 3.41 

i 
max 3.6 4.5 4 3.40 Strong-Strong 

i 4.12 max 5 3.49 Weak-Strong 
4.34 

% 2.3 1.5 2 3.42 

5 0.9 1 3.43 
X 

ZY -1 -1 IJ 3.44 
X 

a -4 -4 2.11 
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TABLE VI 

The power q in the power Law f(i) N iq 

Parameter 
Experiment 

Model Equation 
SPEAR ADONE PETRA 

2 1.4 1.5 3.47 
max 

9 spmax -0.5 -0.5 

uu 0.6 0.5 3.45 
XY 

<Y 0.4 0.5 3.46 
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TABLE VII 

The power q in the power law f(B) N Bq. 

Parameter 
Experiment 

Model Equation Comment 
SPEAR ADONE PETEU 

i 
max 

5 
ymax 

0.8 

-0.8 

0.5 

-0.5 

3.49 Strong-Beam- 

Weak-Beam 
3.51 
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FIGURE CAPTIONS 

Fig. 1.1 Horizontal kick Ax' (in mrad) as a function of vertical 

displacement y in units of vertical dispersion b of the 

opposite Gaussian bunch. The calculations9 are done for 

PETRA parameters (current per bunch Ib = 20 ma, round beam, 

P = 1). 

Fig. 1.2 Vertical kick Ay' (in mrad) for the same conditions as 

Fig. 1.1. 

Fig. 1.3 Horizontal kick x1 (in mrad) as a function of horizontal 

displacement x/a. Elliptical beam with aspect ratio 

p= 0.25. All other parameters the same as in Fig. 1.1. 

Fig. 1.4 Horizontal kick Ax' as a function of vertical displacement y/b 

(see caption to Fig. 1.3). 

Fig. 1.5 Vertical kick Ay' as a function of horizontal displacement x/a 

(see caption to Fig. 1.3). 

Fig. 1.6 Vertical kick Ay' as a function of vertical displacement y/b 

(see caption to Fig. 1.3). 

Fig. 1.7 Resonances in vertical motion due to beam-beam interaction. 

Results of computer simulation for DORIS storage ring." 

The ratio of the maximum to the minimum betatron amplitude 

is shown. Only those resonances are shown for which the 

amplitude increase exceeds 50%. 
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Fig. 1.8 Stability region of the dipole coherent oscillations for 1x1 

bunch collision.5 The picture repeats itself with the period 

Av = 0.5. v on abscissa is l/2 of the actual machine tune. 

Fig. 1.9 Stability region of the dipole coherent oscillations for 3X 3 

bunches collision.5 The limit space charge parameter Slimit 

is plotted versus v which is actually the number of vertical 

betatron oscillations for l/6 of the ring (the distance between 

the next two interaction points). 

Fig. 1.10 Resonance web for higher modes of coherent betatron oscilla- 

tions.14 The shaded areas around the resonance lines show 

the widths of the resonance due to beam-beam interaction. 

The space charge parameter 5 = 0.05. Only the resonances 

are shown, the widths of which are greater than 10 -3 . One can 

see that the largest available working zones are located along 

the difference coupling resonance vx = v . 
Y 

Fig. 1.11 Beam blow-up in the weak-strong case as measured on SPEAR.15 

The solid line represents calculations according to diffusion 

phenomenological model (see Section 3.2 and expression 3.33 

for the parameter n used as abscissa). 
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Fig. 1.12 Vertical.beam profile measurements on SPEAR.l' Curves 

correspond to the following conditions: 

L 

N Bunch I+ (ma> I- (ma> Condition 

1 electron 1.70 6.8 Beams are Separated 

2 electron 1.70 6.8 Beams Collide 

3 positron 1.75 6.9 Beams Collide 

4 positron 1.75 7.0 Beams are Separated 

Fig. 1.13 Beam blow-up for the strong-strong case. The density distri- 

bution is measured4 with the help of scrapers by observing 

the reduction of beam lifetime as a function of the scraper 

position y. For a Gaussian bunch the value y/oy calculated 

from the beam lifetime (see expression 2.4) would be a linear 

function of y. 

Fig. 1.14 Operation zones foundlg on the storage rings AC0 (a) and 

DC1 (b). 

Fig. 2.1 Results of luminosity measurements30 on PEP for two collision 

modes lx 1 and 3x 3 bunches. The deviation from I2 law starts 

for lx 1 mode at bunch current 3 4 ma, while for 3x 3 mode 

there is no threshold. 

Fig. 2.2 Specific luminosity ( L$? = 
sP 

g/BIi) for PEP.30 

Fig. 2.3 Space charge parameter 5, (tune shift) for PEP.30 
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Fig. 3.1,' Schematic behavior of tune shift and resonance width as 

functions of particle amplitude (out of work5). 

Fig. 3.2. Comparison of the experimental observations at CESR and 

the results of computation according to Talman's mode16'. 
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