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two-photon processes. We find that in contrast to the case 
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effects. We suggest that these will serve as useful tests 

of QCD. 
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1. INTRODUCTION 

Today quantum chromodynamics (QCD) is regarded as the most promising 

candidate for the field theory of strong interactions. The quantitative 

test of QCD has now become one of the most important tasks imposed upon 

particle physicists. Now that the proof of the factorization of mass 

singularities is completed,l perturbative QCD calculations can be 

attempted in a wide range of deep inelastic processes. 

Among the most interesting processes is the two-photon collision 

which appears in e+e- colliding experiments.2 Many authors have studied 

this process by now.3-10 In this paper we point out that clean tests of 

QCD effects are expected to be operative in the two-photon process. This 

is because the leading behavior, with respect to Q 2 , of the photon struc- 

ture functions is exactly calculable as was first shown correctly by 

Witten. Also the WeizsZcker-Williams approximation allows us to study 

the structure functions of the electron as well as those of the photon 

on equal footing. 

First we derive the photon structure functions in the framework 

developed by Curci, Furmanski and Petronzioll (refered to as CFP). 

Particularly, our presentation will be helpful to clarify the parton 

view of the Q2 evolution of the photon structure functions. It also 

exhibits naturally how the factorized collinear mass singularities of 

the photon structure functions are to be absorbed into the hadronic 

components of the target photon. With this study on the photon structure 

functions, we then investigate the azimuthal asymmetries of jets in the 

deep inelastic e+e- scattering, aiming at clean and hopefully critical, 

tests of QCD. 
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The azimuthal asymmetries in lepton-hadron deep inelastic scatterings 

were first studied in the context of QCD effects by Georgi and Politzer.12 

They claimed that the azimuthal asymmetries in the above reactions would 

provide clean tests of QCD. But it was subsequently shown by Cahn13 

that similar nonzero effects in the azimuthal asymmetries would result 

from the naive parton model (NPM)14 by incorporating primordial trans- 

verse momentum kT. Moreover, it was shown by Bingtruy and Girardi" 

that it is very difficult to discriminate the QCD effects from the pri- 

mordial kT effects since both contribute competitively to the azimuthal 

asymmetries in the case of the lepton-hadron scatterings. We find that 

this difficulty arises primarily from the inherent nonperturbative QCD 

ambiguities remaining in the structure functions of the hadron target. 

We show in the present paper that in the deep inelastic e+e- scat- 

tering via two-photon exchange where the structure functions of the photon 

and, as a result, those of the electron are exactly calculable up to the 

leading order of Rn Q2, one is free from the above-mentioned ambiguities, 

thus can predict the enhanced QCD effects for the azimuthal asymmetries 

against the background effects due to primordial kT. We claim that in 

contrast to those in the lepton-hadron scatterings the azimuthal asym- 

metries in the two-photon process could be useful to make clean tests of 

QCD. In the later sections we present the detailed features of the 

azimuthal asymmetries in perturbative QCD calculations. 

In Sec. 2 we study the photon structure functions. In Sec. 3 parton 

cross sections for our problem are presented. The main results for the 

azimuthal asymmetries are reported in Sec. 4. In Sec. 5 we give our con- 

clusions and some remarks. Appendices A and B are included to give for- 

mulae for anomalous dimensions and calculations for parton cross sections. 
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2. PHOTON AND ELECTRON STRUCTURE FUNCTIONS 

In this section we derive the photon structure functions to the 

leading order of Rn Q2 in the CFP framework. Although the obtained 

results are well known, the recently developed technique of CFP allows 

us to exhibit very nicely how the factorized collinear mass singulari- 

ties associated with the point-like photon dissociation into a quark- 

antiquark pair are to be absorbed into the hadronic components of the 

target photon. We identify the hadronic components as the vector meson 

dominance (VMD) contribution to simplify our arguments. 

Also one big advantage of the present method is that the justifi- 

cation of the usual procedure of jet calculations, i.e., the convolution 

of the universal Q2 dependent structure functions with parton cross 

sections, can be done very easily in the framework adopted here. 

With the photon structure functions given, it is straightforward 

to obtain the structure functions of the electron in terms of the well- 

known equivalent photon method due to Weizsacker-Williams. 

Following Ref. 11, we use the light-like gauge and the minimal 

subtraction scheme for dealing with mass singularities. 

First we discuss the general method for obtaining the Q2 dependence 

of the "structure function of partons". Assume there are several kinds 

of partons': &,$,cS,... = q,&G,y,... where q,; stand for quark or anti- 

quark, G for gluon, y for photon, and indices for flavor and color 

degrees are suppressed. We denote the structure function of parton cc by 

I (2.1) 
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where x is the Bjorken variable of deep inelastic scattering on parton 

~1. The symbol B means "bare", thus FE contain the mass singularities 

generated in 4+~ dimensions.'l 

Following the procedure shown by CFP, i.e., the two particle irre- 

ducible ladder expansion to factorize mass singularities, we define the 

"renormalized" structure functions F~((Q2/~2),x,as(p2),aem) and the 

"renormalization constantsll *Cd x,as(112) dem' (l/s)) which are related 

(or defined) to satisfy 

, ash2) Gem 9 i,-g ( dy FR Z 
B lJ2 

,Y &,(P2) 9aem 

(2.2) 

Xj ( dz rgci z ,ash2) 9aem, $ > 6(x-yz) . 

0 

Taking the x moments, we obtain 

, N,as(v2) ‘aem, + g d’L~~(l-1~) 
u 

x r dern,$ l (2.3) 

Since FE as introduced-in Ref. 11 is a "bare" quantity and does not 

depend on-u, we should have 

. 
dFB = 0 

'dl.l ci 

and 

Therefore, 

d R 
!J cFa 

R 
- yBaFB = 0 

(2.4) 

. (2.5) 

(2.6) 



-6- 

where 

The total derivative over p is given by 

. 

d 
CiiTpap it- + B(gS,E) $-+ Bem(e,E) $ 

S 

where 

BkS’4 = fa,) + + as 
and 

B,,(e,E) = B,,(e) + -!j Ee 

, 

, 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

are the Peterman-Stueckelberg-Gell-Mann-Low16 B-functions in 4+~ 

dimensions. 

In the following we only consider the case of lowest order in oem, 

SOY taking the limit s-to, we obtain from (2.6) and (2.8) 

( l-l & + B(gJ $- 
> 

FR a = $Yfi, 
S 

, (2.11) 

where from (2.7) we have 

Yf3dN, 
a 

as(u),aem 
)- ( 

= - B(g,,c) $--- + B,,(e,E> ae Tg6 r 
-1 

( > 6a (2.12) 
S ) 

since p oBdoes not have explicit u dependence. 

Solving (2.11) we obtain 

F; 
2 

% ,N,as(v2) = F~(~,N,~~(Q~) dem) 
1-I 

, (2.13) 
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where the anti-time ordering is defined by 

b 

T*exp [- 1 J 
f(t) dt ~2 fdtn jndtnBl . ..j2dtl 

a n=O a a a 

x t;ctl) 7(t2) . . . 
f3 
f(tn) 9 

and as(Q2) = as ((Q2/u2) ,as(u2)) satisfies 

LI & + B(g,> $- as(Q2) = 0 
S > 

. 

(2.14) 

(2.15) 

In the lowest order of olem the anomalous dimension matrix is effectively 

given by 

f-t 
Y = 

'GG ‘GY 
, (2.16) 

because the Y'S of the bottom row are at most O(aem) and couple to func- 

tions of O(clem), therefore start to contribute only to the part of O(aEm). 

Substituting (2.16), we get 

T* exp (2.17) 



-8- 

We define the renormalized Q2-dependent structure functions 

ficc( (Q2h2) ,x> by 

[dx xNB1 fiu($,x) 5 T* exp[rlIi $$- dg16u l 

S 

(2.18) 

Then we have 

1 

,ws(u2) dy 

x [dz f;u($,z)s,x-yz) . (2.19) 

Finally, defining fiu ( (Q2/u2) ,x,ash2) Gem' (l/d) by 

fia 
2 

$ ,x,as(Q2) 'aem> E 
u 

l) = /dy f;@,Y) 

xi ( dz kt z,as(~2),aemy~ 6(x-YZ) 
> 

, (2.20) 

0 

we obtain 

dy $(I ,Y ,as(Q2) ,a,,) 

It is to be noted that in (2.19) and (2.21) the structure function is 

factorized into the hard parton cross section F8 R(l,~,as(Q2) ,aem) and the 

universal Q2-dependent parton structure function fiu. By the usual 
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procedure the outgoing partons encountered in calculating 

F#,~,a~(q2) ,aem) can be identified as exclusive jets. Then if we are 

interested in the generalized structure functions Ft((Q2/~2),x,w's, 

as(Q2) 'aem, (l/d) including the jet variables w's which describe jets 

produced in the final state of deep inelastic scattering on parton a, 

we just substitute Fi(l,y ,us(Q 2 ),uem)by the exclusive parton cross 

section F ~(l,y,w's,us(Q2),oem)in (2.21). In this way we obtain 

L, = jdy $(I ,y,w' s,a,(Q2) *aem) ,aem, E 
0 

When the target is a usual hadron h, we define its Q2-dependent 

structure function by the convolution 

2 
X % .z,as(112) 6(x-yz) . (2.22) 

1-I 

6(x-34 , (2.23) 

where the italics a,b stand for q,; and G, and fB,(x,(l/e)) is the Gare 

parton density in the hadron. f ah (x,Q2) can also be expressed as 

, (2.24) 

where 

1 

f:h(x) = Y,.,(uz),O,~)jdz f;h(z,;)S(x-yz) . (2.25) 

0 0 

fahb,Q2) 3 or equivalently fth(x), must be finite according to the KLN 
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theorem.17*18 From (2.22) we thus get the usual procedure of convoluting 

the Q2-dependent structure functions with parton cross sections 

s (u2) ) = ]dy Fz(l,y,w's,as(Q2) $0) 

0 

1 
X 

I 
dz fa+Q2) 6(X-yz) . (2.26) 

0 

In the case.of a photon target, the situation is somewhat different. 

The target photon 'y' has the bare parton densities 

fB 1 
a'y' ( > x9 - E = S(l-x) 6 

ay 
+ f~$~)(x,+) + o(atm) , (2.27) 

where the first term represents the contribution of the target photon 

acting as a bare parton y , while the second stands for the hadronic 

components inside the target photon which are typified by the VMD con- 

tribution. Also we note that in the CFP framework we have 

r 1 
( ) 

= a(l-x) + 0 atrn ' yy XyE ( ) 
. (2.28) 

Then, convoluting (2.27) with (2.20) and using (2.28), we obtain the 

finite Q2-dependent structure functions of the target photon 'y': 

f a,,,(x,Q2) 

(2.29) 

where the italics a and b denote q,q and G, and the renormalized parton 

densities f R(W) 
a'y' corresponding to the VMD component of the target photon 
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is given by 

fRtVMD)(x) = r a'y' a-t ( x,as(u2) 'aem $ > 

1 

y,as(v2) 8, -$ 
)S 

(2.30) 
0 0 

This result exhibits explicitly the manner in which the collinear mass 

singularities associated with the "renormalization constants" 

*ay( x,as(P2) 'aem; WE)) are absorbed into the hadronic components of 

the target photon. 

Following Ref. 11, we now calculate I"s. It is straightforward to 

obtain the p's to the order needed to get the leading behavior of FB. 
Y 

The results are 

rqq w 2 ash> 
= 6 (1-x) + E TPqq(~) ; rqG(x) = $ 

as(P) 
yPqG(X) ; 

*Gq(~) = -$ 
as(u) 
2aPGq(X) 

2 a,(u) 
; rGG(X) = wex) + ;TPGGcX) ; 

(2.31) 

where the P's are the well-known Altarelli-Parisi" probability functions 

and 

a 
rqy(x) = 5 $ [1 x2+ (l-x>2 1 . . (2.32) 

The other T's may be set equal to zero. Taking the x moments of (2.31) 

and (2.32), we get y's from (2.7). Since the obtained y's turn out to 

be the same as the anomalous dimensions appearing in the operator product 

expansion (OPE), we substitute them into (2.17) and obtain the following 

known results from (2.18): 
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1 

/ 
dx xN-1 

0 

fR 
( ) 

x,2 
qiqj p2 

= 
( 

6 
ij 

1 
2f 

1 

J 
dx xN-l fR 

0 
qiG 

(2.33) 
and 

= >,,Q" dqy 
A2 N 

x (e; - <e2>) + <e2> 
l+d; 

% 
, 

3a 
= 2f * Rn 

where f is the number of flavors , G is 

%= l++s+d~+<sd~-~Gd;q 

and d's are cited in Appendix A. 

(2.34) 

, (2.35) 
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Now from (2.29) we have 

f a,y,(x,Q2) = + fz, (x,Q2) (2.36) 

with 

and a,b = q,G,G. Since in (2.33) and (2.34) all d's are positive, we find 

that for very large Q2 the second term due to VMD is suppressed. So the 

photon structure functions F 
a'y 

,(x,Q2) is predominated by the photon- 

parton contribution fR .,( (Q2/u2> ,x) which is exactly given by (2.34). We 

observe that this leading contribution behaves like Rn Q'. Performing 

the inverse Mellin transformation from (2.34), we obtain the x dependence 

of fy( (Q2h2) ,x). We present our results for 3 flavors (see Fig. 1). 

For the case of 4 flavors, refer to Ref. 9. 

Although fVMD a'y' is expected smaller than the next-to-leading order 

correction of f R in the Q 2 
w 

+a~ limit, in the following analysis at large 

but finite Q2 we include fvMD 
a'y 

, particularly to estimate the possible non- 

perturbative contribution of primordial kT to the angular asymmetries. 

On the other hand we expect that the next-to-leading order correction to 

the distribution functions will not affect substantially the angular 

asymmetries because the latter mainly reflect the characteristics of 

parton cross sections but not of the distribution function. 

fVMD a'y' is basically unknown in the present scheme since f 

is not given in (2.37). Therefore we use for these parts the vector 

dominance model (VDM) and assume simple structure functions for vector 

mesons as many authors do.4*6yg Moreover we neglect the gluon distri- 

bution from VDM and the Q2-dependence in the assumed structure functions. 
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This simplification is valid for our present study since our point here 

is to show explicitly 

tic signatures of the 

For f Ty, (x> we 

FW 

that their corrections do not spoil the characteris- 

leading QCD effects for the azimuthal asymmetries. 

get by VDM 

. (2.38) 

From the experimental value of I' 
pO+e+e- 

we obtain roughly 

f2 
P w 2 
4Tr 

Assuming f 
A0 

a (l-x)/x and 50% of the gluon component we finally get 

(2.39) 

where the average momentum <x> . 
91 

carried by the quarks inside p" is 

taken to be 

0.25 for u,<,d,z 
<x> qi = 

0 for s,S,c,C 

. (2.40) 

It is rather a rough es‘timation but sufficient for our purpose. 

The electron structure function is obtained using the equivalent 

photon approximation. Since we restrict ourselves to the single tag 

events, we should use the following form of the equivalent photon 

spectrum (in the leading approximation) 

2 
dN Clem "max l+ (l-~)~ - - 
dx = 2lT lJn 4m2 X 

e 

(2.41) 
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where x is not too close to 0 or 1, and the electron is constrained to 

lie inside a cone of half-angle 8 max' By the convolution 

1 

f,,(x,Q2) = 
s 

$ 2 faty, , (2.42) 

X 

we get the structure functions of the electron. 

The results of the leading QCD part are shown in Fig. 2 for 3 flavors. 

For the VMD part we can obtain the results from (2.39), simply replacing 

the factor (l-x)/x by 

3. PARTON CROSS SECTION 

Now we calculate the parton cross sections which we need for our 

purpose. The kinematics are shown in Fig. 3 and the contributing diagrams 

are given in Fig. 4. We introduce the usual variables 

p1*p2 
$9 PT (3.1) 

where q=kI-k2, Q2E-q2 and, as illustrated in Fig. 3, the azimuthal 

angle $ and the transverse momentum pT are defined in the frame where 
3 

;;ri;, . The results are20 

do i a2 
= as(Q2) + 

Q2z (l-zp)(l-xp) 

dxpdydzp dp; d@ 2nQ Y xP 

x ci(Ai+Bicos~+Cicos2~) (3.2) 



-16- 

where e 
4 

is the charge of the quark hit by the hard photon with momentum 

9* The suffix i= a,b stands for the diagrams (al)+ (a2), (bl)+ (b2) of 

Fig. 4, 

C a =C2(R)=$ , 'b = T(R) = + , 

and Ai, Bi, and Ci are given as follows:20 

1+x2z2 

Aa = 8(1-y) xpzp + [,+ (1-Y12] (I-xp)(l-zp) + pp Cl-xp) Cl-zp) 1 , (3.3a) 

+, = 16(1-Y) xp(l-xp) + [I+ (1-y)2] [X;+ (1-Xp)2] zc;;;;(2 , (3.3b) 
P P 

Ba = -4(2-y)(l-y)' (3.44 

& x (l-x ) '/i 
Bb = -4(2-y) (w ' zp(l-zp) [ 1 P P 

Cl- 2xp) (l-2zp) , (3.4b) 

ca = 4(1-y)xpzp , (3.5a) 

cb = S(l-y)Xp(l-Zp) . (3.5b) 

Replacing e(,(Q2) by a e2 
em 4 

and the color factor Cb by Cc=3 in the formulae 

of Fig. 4b, we get the cross section for the diagrams Fig. 4c with 

AC=% , Bc = Bb , cc = Cb . 

Since experimentally we are not yet in a position to distinguish 

quark jets from gluon jets nor from antiquark jets, we should find an 

alternative way of defining the direction of the hadron plane. Suppose 

we require z 
P 

to be larger than l/2. Then the sense of the direction of 
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the hadron plane is redefined in terms of the "more energetic jetH axis. 

With the definition (3.1) we have 

Pl'P3 = l-z 
Pl.9 P l 

(3.7) 

Then we introduce the following newly defined z' : P 

' f max PCP2 
zP 

- . 
(3.8) 

P1.9 

The corresponding'B;s are obtained from (3.4) by noting the sign change 

in the substitution z -t l-z 
P + 

, + IT+@: 
P 

B'a = -4 (2-Y) (1-y) "(~+-)+x~[(&--~z~ -(7)+(1-z;)] , (3.4'a) 

B.;, = -8(2-y) (1-y)’ bp(~-xp)]L (2xp- 1) [(&-i&(')?j , (3.4'b) 

where z' is constrained to the region 
P 

1 -<z'<l 
2 P 

. (3.9) 

It is to be noted here that Ba and Bi are always negative and that 

this fact is characteristic of the vector coupling of gluons. 
If we 

calculate them with scalar gluons, we get 

B a,scalar a 2(2-y) (1-Y) qg@J [xp(l-Zp) + (l-xp)zp]' (3.10) 

B' a,scalar a 2(2-y) (l-y)+[xp(l-xp) 1% [(q ";, - (gYyz;i], 

( 1 -<z'<l 
2 P > 

. (3.10') 
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B a,scalar and B' a,scalar are always positive. It should be noted that the 

sum of direct terms (i.e., ((al)12+ I(a2)1 2 in Fig. 4a) has essentially 

the same structure in both cases of the scalar and the vector couplings, 

and the difference comes from the interference terms. This means that 

the negative definiteness of Ba and BL is not at all a trivial kinematical 

result and that it is very important to observe it for the test of per- 

turbative QCD. 

The details of the above calculations are given in Appendix B. 

Finally we present the parton cross section with primordial kT in the 

framework of NPM:13 

da a2 e2 
=em 

dxp dydzp dp; d$ Q2y 

2 

1+ (l-yj2 + 8(1-~)~ t 
4 

Q 

x  6(1-xp) d(l-zp) 6(p; -k;) 
l 

(3.11) 

4. AZIMUTJUL ASYMMETRIES 

It is a straightforward problem of convolution to get the azimuthal 

asymmetry -formulae for <COSI$> and <cos21$>. We regard partons as jets 

and measure $I with regard to "the more energetic jet," that is, the jet 

with the larger z. jet' Thus the z jet of "the more energetic jet" may be 

identified as the z' 
P 

introduced by (3.8) in the previous section. 

Since typical three jet events are expected to be rare in the Q2 

region where we have sufficient event number, some well-defined procedure 

should be used to determine the hadron plane and 4 experimentally. The 

most natural one is as follows (see Fig. 5): 
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(1) Choose a Lorentz frame where the virtual photon is parallel to 

the target electron (or positron), e.g. the C.M. frame of them. 

(2) Determine the hadron plane so as to minimize the acoplanarity21 

with respect to the outgoing hadrons under the condition that 

the chosen plane should include the axis of the virtual photon 

and the target electron (or positron). 

(3) Divide the outgoing hadrons into two groups (jets) by another 

plane including the above axis and being perpendicular to the 

hadron plane. 

(4) Calculate z jet for each group as 

'jet = P*q (4.1) 

where P is the momentum of the target electron (or positron). 

(5) Determine the angle 4 between the lepton plane and the half of 

the hadron plane containing the group (jet) with the larger 

'jet' 

We present the results for the electron structure functions with 

three flavors because the charm contribution is expected to be suppressed 

due to its large mass in most of the Q2 range considered here.22 Even 

if we have the charm contribution at very large QL, its effect results 

in the increase of the cross sections, but does not affect very much the 

characteristics of the effective ratios of the cross sections such as 

<cos$> and <cos24>. 

We calculate the azimuthal asymmetries with fixed Q2 and % at a 

given s= (100 GeV)2, using the following formula: 
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'0s (P 

do i do(') X 
dxp dQ2 dz. 

Jet dp; d9 
fietE,Q2) 6(%- Sx,) 

d"H dQ2 
(4.2) 

where da(') is the cross section in the leading order of Rn Q2, and i 

stnads for a parton (q,t,G and y). fae (a=q,q,G) was introduced by 

O-42), whereas fye is equal to dN/dx defined by (2.41) and contributes 

to the "direct photon" process which will be discussed later. The formula 

for <cos 2$>%,Q2 can be obtained replacing cos 9 by cos 2$ in the above 

Eq. (4.2). We have used the relation 

Q2 = %YS (4.3) 

and put A=500 MeV. 

To compare our results with those of the naive parton model @FM), 

we estimate the latter by assuming the following primodial kT distribu- 

tion in the VMD part of the photon structure functions and using (3.11): 

(4.4) 

There is no room for this kind of kT in the leading part of the photon 
I 

structure functions which is proportional to Rn Q2/A2. For numerical 

purpose we take <<> = (400 MeV)2 as in Ref. 15.23 

We remind you here that in the contributions to the azimuthal asym- 

metries there are the "direct photon" processes shown in Fig. 4c besides 

the perturbative QCD processes corresponding to Figs. 4a and 4b. The 

"direct photon" contributions turn out to be substantially large. There 
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are backgrounds when we want to detect the azimuthal asymmetries as a 

QCD effect. But we emphasize that these QED contributions are calculable 

without ambiguity and enter as a theoretically well-determined quantity. 

In fact, their experimental detection is itself an interesting problem. 

We should not forget that hadrons in a jet are expected to be dis- 

tributed symmetrically around the jet axis with the average pT of about 

300 MeV. This pT spread works to diminish the azimuthal asymmetries. 

The best method to take this effect into account is to perform the Monte- 

Carlo simulation used in jet analyses, but here we simply adopt the pT 

cutoff method as a substitute for the elaborate Monte-Carlo simulation. 

We present the results with a simple pT cutoff of the jet momentum 

requiring pT 2 300 MeV as well as those without pT cutoff. 

We show the xE p de endence of the azimuthal asymmetries for Q2 =5 GeV2, 

25 GeV2 in Figs. 6-11. The QCD as well as "direct photon" contributions 

to <cos$> are sensitive to the pT cutoff (compare Figs. 6 and 7). This 

means that we must be very careful to make definite predictions. But the 

pT cutoff method seems to be a good alternative to the Monte-Carlo simu- 

lation and Fig. 7 may be compared with experiments. 

Note that the characteristic features in the xB dependence and the 

relative importance between the QCD and "direct photon" contributions 

are not changed very much by the cutoff effect. Where xB is large the 

"direct photon" contribution is dominant, whereas at smaller xE it tends 

to be suppressed and we can clearly see the enhanced QCD effects. In 

particular around xE = 0.2, <cos$> is overwhelmingly dominated by the QCD 

contribution. 
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To discriminate the QCD effect from the kT effect of NPM, the Q2 

dependence is helpful (see Fig. 8). QCD with pT cutoff predicts gradually 

increasing I<cos $>I with Q2 (though it is mainly due to the pT cutoff), 

whereas NF'M with VMD predicts I<cos$J>/ to decrease rapidly with increasing 

Q2- 

The asymmetry <cos24) arises predominantly from the 'direct photon' 

contribution and is insensitive to pT cutoff (compare Figs. 9 and 10). 

Thus its absolute value is a reliable prediction. For the reasons stated 

before the values with pT cutoff (i.e., Fig. 10) are to be more realistic. 

<cos~$> has little to do with QCD test, but it is certainly worthwhile 

comparing experimental results with our calculations since it will verify 

the "direct photon" coupling very clearly. Its Qz dependence with a fixed 

%=0.2 is shown in Fig. 11. 

The cross sections are shown in Figs. 12 and 13. 

There might be disturbances to azimuthal asymmetries due to fluctua- 

tion of parton kT as in Drell-Yan processes24 which appears to be caused 

by soft gluon bremsstrahlung. If there should be these disturbances, 

our result for <cos$> would be changed. (<cos2@> would not change 

becuase it came mainly -from the "direct photon" contribution.) But even 

if these effects were contributing, we could get rid of them by changing 

the experimental determination of 9. We suggest to determine the hadron 

plane disregarding the momentum axis of the virtual photon and the target 

electron (or positron). A possible choice of $I is the following: 

(1) In the frame where q" =0 and Gll$ (= momentum of the target electron 

or positron), select those hadrons of momentum p which satisfies 

the condition $=z>O (which means "not emitted in the forward 

hemisphere of the target"). 



-23- 

(2) Define Psum 5 z,(i) where 
i 

the summation is over all hadrons 

selected in (1). 

(3) In the frame with q"=O and ;;llz& (not s), determine $ following 

the same procedure as that suggested previously, but replacing P 

by P' = (~~,,l,-~,,) in (4.1). 

This method is related to the following calculational constraints of 

xP 
> % and z' < x 

P P 
in the previous calculations. That is, only those 

events satisfying these constraints contribute to the azimuthal asym- 

metries of the new 4. 

Another merit of the above definition of 4, is that we can single 

out as the pure "direct photon" events satisfying the conditions x > si 
P 

and z' i: x 
P P 

those events without any jets in the forward hemisphere of 

the target electron (or positron). We call those events accompanying 

a forward jet "the QCD events." (Actually this class of events contains 

some "direct photon" events which are not counted in the above selection.) 

We could measure the angular asymmetries of each category of events 

independently. In the "direct photon" events P' will be parallel to P 

in almost all events because the characteristic value of kT of the target 

virtual photon is of the order of electron mass. So we can safely use P 

instead of the elaborately defined P'. 

In the following we present our results for the azimuthal asymmetries 

with respect to the newly defined 0. We show the results without pT 

cutoff in Fig. 14 and those with pT cutoff requiring pT 2 300 MeV in 

Fig. 15. <cos2$> of "the QCD events" may be too small to be detected. 

<cos Cp> is again sensitive to pT cutoff and that of "the QCD events" 

after the cutoff is small as shown in Fig. 15. (If the effective pT 
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cutoff due to the hadronization is to be smaller, it will of course be 

more enhanced.) For the "direct photon" events both <cos$> and <cos 2@> 

seem to be large enough for their detection. (The increase of <cos2$> 

after the p T cutoff is due to the drop of the direct photon cross section 

with pT cutoff and is somewhat artificial.) 

The QZ dependence of the azimuthal asymmetries is shown in Figs. 16 

and 17 for various cases. 

The cross sections for the "direct photon" events are shown in 

Fig. 18. 

5. CONCLUSIONS AND REMARKS 

The photon structure functions are studied in the framework of 

Curci, Furmanski and Petronzio. A focus is given on the renormalization 

mechanism of the collinear mass singularities in the case of the target 

photon. The electron structure functions can be studied on equal footing 

due to the equivalent photon approximation. 

Then the azimuthal asymmetries in the deep inelastic e+e- scattering 

are investigated. The detailed results are shown in Figs. 6-11. <cos$> 

is large but expected to be diminished considerably in hadronization 

processes. We take this effect into account phenomenologically by 

requiring the'pT cutoff of pT 1 300 MeV. The signals and characteristics 

of <cos$> seems to be enough to be detected. Its Q2 dependence will be 

helpful to distinguish QCD from NPM. <cos2$> is large and expected not 

to be diminished much in hadronization processes. It serves as a very 

good test for the "direct photon" contributions in the photon deep 

inelastic scattering. 
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The method is suggested to get rid of possible backgrounds due to 

parton kT from soft gluon emission or from any other mechanism. In this 

method <cos@> of "the QCD events" is diminished and seems difficult to 

detect. Their <cos2$> detection is likely to be harder. On the other 

hand, <cos$> and <cos2$> of the "direct photon" events (i.e., events 

with no forward jet of the target electron or positron) turn out to be 

large and we conclude that they can provide clean signals for the "direct 

photon" process. 

Finally we remark that the higher order corrections and the in- 

clusion of charm quark effects are left as future problems. 
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APPENDIX A 

ANOMALOUS DIMENSIONS 

We list the expressions for the anomalous dimensions which appeared 

in the text: 

NS C2 (R) 
$J = 80 ' - N(N:l) + ',, =( i - hi , 

2+N+N2 
N(N+l) (N+2) 

, 

dGq = 2C2 (R) 2+N+N2 
N 8O N(N2 - 1) 

co 

(N+lj4(N+2) + 
1 1 4T (R) 
a - ) 1 R+N-1 + 3C2(R) ' 

0 = 
% 

2+N+N2 
N(N+l) (N+2) 

where - 

and 

B. = +x2(~) - $T(R) 

N2 - 1 
C2(R) = 2~ , T(R) = + , C2(G) = N 

for SU(N) color gauge group with f flavors. 

, 
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APPENDIX B 

CALCULATION OF PARTON CROSS SECTIONS 

The calculation is most easily done in the frame where q"=O and 

;;Il$ . 

We define the unit vectors in this frame as follows: 

and 

E .E =o, s i 
c2 = -1 

S 
(i = O,T,L) 

Defining the leptonic tensor 

<y> = .L 
spin 2 Tr(Kl Y' g2 Y’) , 

(B. 1) 

(B.2) 

(B.3) 

we find 

<LUV> spin 

Q2 
22 + d-v TT ss 

+- 2(2-Y) Cl-YP 

Y2 

&V + &V 
OT TO ' (B-4) 

. 

We define the hadronic tensor 

with the normalization 

(B-5) 

<p[p'> = (21Tj3 2p" 63(;-;r) . 05.6) 
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The crods section is then given by 

1 
do = 4pl*kl 

d3p3 
(2a)32p0 3 

x <LVV> spin <w > IJ.V spin (2~r)~ d4(kl+pl-k2-p2-P3) 

1 d3k2 

= 4p1* kl (2a)32k0 

d3P2 (4Taern)'ez <L"v>spin <w > 

2 (2d32p; Q2 Q2 
W spin 

x'(27T) 6+((Pl+q-P2)2) 
I q=kl-k2 

. (B-7) 

Since we have 

6+((Pl+q-P2)2) = zp6 2 (1-x,)(1-zp)Q2 03.8) 
xP 

d3p2 dp;dz d$ 
= 

(2n)32P; (2~)~4z~ 

d3k2 Y dy dx 
= 

(2~)~2k; 
"pl*kl 

(27.r) 3 

we finally obtain 

. - do 
9 

2 2 
aemeq 

32a2 
_41_ 
Q2 

<LUV> 
vin <w 

Q2 
> 1.1v spin 

, 0.9) 

, (B.lO) 

fP (l-xp)(l-zp)Q2 (B.ll) 
xP 

When the initial parton is a quark, we find 
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<wpv >g spin = g;(Q2) C2(R) -2q2 
(Pl'P3) (P2'P3) 

+ (Pl-P2) + 
(Pl*q)2+ (Pi q)2 

q2 
(P- y)] 

= 4*as(Q2) C2(R) (l-x )(1 z > 4xp 2xp 
P;P;+P;P; 

P -P Q2 

2x z + (l-z )2+ (l-x )2 

2x g "+ (terms proportional to q',qv) . 
P 3 

(B. 12) 

For a gluon as the initial parton, we have 

<Wuv>G spin = +42) T(R) - 2q 2 
(Pl'P2) (PlWP3) 

+ (P2-P3) + 
(P2*q)2+ (P3*q)2 

q2 
(P- y)] 

4xp = 4*a,(Q2) T(R) z (1-z ) 2xp 
P;P; + P;P; 

P P Q2 

l- 2(z (l-z )+x (l-x ') 

2x p g "+ (terms proportional to qFi,qv) . 
P I 

(B.13) 

Using the relations 
. 

P; = $[(l-xp) Cl-zp) +x z 
P 

p p&E+ $(l- Jf+; 

+ Q 2 (I-zp)(l-xp) 
i 1 

% 

xP 
cos (I E; 

+ Q L (1-zp)(l-xp) 1 
% 

xP 
sin$ ci , (B.14) 
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pY = 2x 
.A- 

P [ 
xp(l-zp) 

G 
- Q &l-zp)(l-xp) 

xP 1 cos $ E ; 

- Q &l 
"P 

-zp> ( I-xp) 1 5, 
sin+ E 1J 

S 

we obtain the formulae in Sect. 3. 

If we calculate with scalar gluons, (B.12) becomes 

1 

+ (terms proportional to q', qv> 

1 

. 

(B.15) 

(B.16) 
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FIGURE CAPTIONS 

1. The photon structure functions with three quark flavors. 

2. The electron structure functions with three quark flavors. 

3. Kinematics, kl and k2 are the momenta for incident and outgoing 

electrons which couple to the virtual photon. pl is the momentum 

of the incident parton. p2 and p3 are the momenta of the scattered 

partons. 

4. The Feynman.graphs for parton cross sections. 

(a) Electron-quark scattering. 

(b) Electron-gluon scattering. 

(c) Electron-photon scattering. 

5. The experimental determination of 0. 

6. The x.g-dependence of <cos$> without pT cutoff. 

(1) QCD. 

(2) NPM with <<> = (400 MeV)2. 

(3) (1) + "direct photon". 

(4) (2) + "direct photon". 

7. The %-dependence of <cos$> with the condition pT 2 300 MeV. 

(1) QCD. 

(2) -NPM with <<> = (400 MeV)2. 

(3) '(1). + "direct photon". 

(4) (2) + "direct photon". 

8. The Q2-dependence of <cos@> at xU = 0.2. 

(1) QCD + "direct photon" without pT cutoff. 

(2) NPM + "direct photon" without pT cutoff. 

(3) QCD + "direct photon" with pT 1 300 MeV. 

(4) NPM + "direct photon" with pT 1 300 MeV. 
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9. The' "H -de endence of <cos2$> without pT cutoff. p 

(1) QCD. 

(2) NPM with <k$ = (400 MeV)2. 

(3) (1) + "direct photon". 

(4) (2) + "direct photon". 

10. The %-dependence of <cos2+> with the condition pT 2 300 MeV. 

(1) QCD. 

(2) NPM with <k$> = (400 MeV)2. 

(3) (1) + "direct photon". 

(4) (2) + "direct photon". 

11. The Q2-dependence of <cos2$> at xD = 0.2. 

(1) QCD + "direct photon"< without pT cutoff. 

(2) QCD + "direct photon" with pT 2 300 MeV. 

12. The %-dependence of the total cross section for electron deep 

inelastic scattering (& = 100 GeV). 

13. The Q2-dependence of the total corss section for electron deep 

inelastic scattering (& = 100 GeV). 

14. The %-dependence of the azimuthal asymmetries with the improved 

definition of I$ (yithout pT cutoff). As to the "direct photon" 

events, the result is almost Q2-independent. 

15. The %-dependence of the azimuthal asymmetries with the improved . 

definition of 4 (with the condition pT -> 300 MeV). 

16. 'The Q2-dependence of the aximuthal asymmetries for the "QCD events' 

(3-l = 0.2). Broken line: without pT cutoff. Solid line: with 

pT ;r 300 MeV. 
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17. The Q2-dependence of the azimuthal asymmetries for the "direct 

photon" events <% = 0.2). Broken line: without pT cutoff. 

Solid line: with pT 2 300 MeV. 

18. The %-dependence of the cross section for the "direct photon" 

events. Broken line: without pT cutoff. Solid Line: with 

P T 2 300 MeV. 
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