
SLAC-PUB-2694 
February 1981 
(T/E) 

ASYMPTOTIC FREEDOM* 

Sidney D. Drell 

All Souls College 
Oxford, England 

&td Stanford Linear Accelerator Center 
Standford University 

Stanford. California 94305 

Maurice Goldhaber first introduced me to the physics of the nucleus in 1946 at the 
University of Illinois, when the mesons of Yukawa were viewed as supplying the 
nuclear “glue” and the challenge to understand the saturation of nuclear forces was 
the analog of today’s studies of “asymptotic freedom.” Nuclear physics was then still 
in a relatively primitive state, but in his discussions and formal presentations, 
Goldhaber always traversed the path directly to the basic physical ideas. It is in that 
spirit that I dedicate to Maurice Goldhaber this discussion of asymptotic freedom in 
quantum chromodynamics (QCD) for his 70th birthday festschrift. 

Asymptotic freedom means the weakening of the effective color charge in QCD at 
small distances. We are familiar with the opposite behavior in quantum electrodynam- 
ics (QED), in which the effective charge, or interaction strength, increases at short 
distances. This QED behavior is understood as a normal shielding phenomenon in a 
quantum description of the interaction of charged virtual particle-antiparticle pairs 
with the radiation field. These virtual pairs are polarized in the neighborhood of a 
charged source, thereby creating a shielding cloud. A charge viewed (i.e., probed) 
from a distance greater than the electron Compton wavelength of about IO-” cm will 
be shielded by this polarized cloud of virtual electron-positron pairs; within this cloud, 
a probe will “see” the stronger bare charge e, (FIGURE 1): 

e, = I$ po(r)d3rl > If b,(r) + p,(r)ld’r E le. 

Precise experimental confirmation of this shielding phenomenon has existed for 30 
years since very early measurements of the Lamb shift in the hydrogen fine 
structure.’ 

The analogous shielding of the color charge occurs in QCD. In this case, we say 
that virtual quark pairs are polarized and shield the color charge sources; the more 
different flavors of quarks there are, the greater the shielding. However, a new 
physical phenomenon occurs in QCD and is the source of the “asymptotic freedom” 
behavior.* Expressed most simply in rough physical terms, QCD is a non-Abelian 
gauge theory, and by contrast to QED, its quantums (the gluons) themselves carry the 
color charges, thereby spreading out the color charge of the sources of matter. As is 
well known, the interaction between two distributed static charges is weaker than that 
between two point charges of the same strength when their charge clouds overlap one 
another. Herein lies the origin of asymptotic freedom in QCD. 

In more precise terms, the interaction between two static point charges is exactly 
Coulomb in QED if only the radiation field is quantized, but the charged particles are 
treated’ classically, so that no shielding cloud of virtual pairs is created. However, in 
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QCD we no longer can introduce the concept of static point charges. A point charge 
may be anchored in space as infinitely massive, but its different color components will 
fluctuate in the internal symmetry, or color, space as a result of the commutation 
relations of non-Abelian gauge theory. There is an analog of this behavior in 
nonrelativistic quantum mechanics: the individual spin vectors cannot both be fixed in 
a system of two interacting spins, namely, if 

H  = AJ, . J2 

j, = i[J,, H] - AJ, x Jz # 0 (1) 

j, = i[J,, H] = -j, f 0. 

Thus, in QCD with two fixed color charges, which we represent as vectors in the 
internal symmetry (color) space, we have 

P(X) = P,(X) + P*(X) 

P, - ib,, HQCDI # 0 (2) 

162 = ib2, HQC,I + 0. 
Equation 2 expresses the non-Abelian character of QCD. The fact that QCD is a 

gauge theory tells us that we have a differential law of current conservation relating 

FIGURE 1. Polarization contribution to the charge density. p. is the charge density of the bare 
charge, and pp is the charge density of the induced polarization cloud of virtual pairs. 

the time change of the (color) charge density with the divergence of a local current. 
Thus, for two (approximately) nonoverlapping charges, we can write in QCD 

p, + div J, = 0 
(3) 

b + div J, = 0. 
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It is now evident from Equations 3 that, even though we may introduce two fixed point 
charges p, at X, and p1 at x1 f x,, these point charges will necessarily be surrounded 
by current distributions. Furthermore, these current distributions cannot be localized 
since they are carried by the massless gluons of the color gauge field. Inevitably, the 
color sources p(x) are spread out in space, and we are describing the interaction of two 
distributed charge distributions. This follows necessarily from the non-Abelian 
(Equations 2) and gauge nature (Equations 3) of QCD. The net effect is that in QCD, 
we are necessarily describing the interaction between two distributed charges, and, as 
is well known, when they overlap, the interaction is reduced in strength and, relative to 
the Coulomb force, grows weaker as their separation decreases. 

This is the end of the physical story about why the running coupling constant in 
QCD mayweaken at small distances between two fixed (but not static) point charges. 
This antishielding correction, along with a partially compensating but smaller 
shielding, appears because of fluctuations of the color gauge field. The normal 
shielding contributions due to the matter field, as discussed earlier, will also occur 
when the matter field is quantized. If there are too many degrees of freedom (flavors 
of quarks) in the matter field, the shielding will dominate, as is well known, and 
“asymptotic freedom” will be lost. However, the basic and dominant antishielding 
effect is due to spreading out of the sources of color charge due to quantum effects in 
the gauge field. They arise and can be studied, both formally and physically, without 
including the pair effects of the matter field, which can be described simply in terms of 
heavy sources anchored to fixed points in space.’ 

Our starting point is the Hamiltonian of the color gauge field (gluons) plus fixed 
sources of color charge: 

H =ld’x%(x) 

B(x) = ; 2 [E,’ x E,T + B, x B, ] - ; 4 . O*C#J. (4) 
‘ ,-I L 

This is identical in form to QED with static sources. There are, however, important 
differences, beyond the fact that the transverse electric field E,T, the magnetic field B,, 
and the scalar potential $I have different color components, here written in a vector 
notation (with PI* - 1 components for an SU(n) of color; for notational simplicity, we 
assume that n = 2 and use a three-component vector notation in color space). The 
magnetic field, which- in QED is the curl of the vector potential, is here given by a 
nonlinear relation 

B, = d,A, - a, A, + gA, x A, (I’, j, k cyclic) 

and Gauss’s law for the static potential 4, defined by Ei = EiT - a,& becomes 1 

V24 I 
(6) 

- 44 x 44 1 
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We rewrite Equation 6 as 

V24 - -g(l + gA,a,A-lx)-‘(p - Ai x E,T), (7) 

where repeated indexes are summed and A = V2. 
We work in radiation gauge: a,Ai = 0 and Ai, E,T satisfy the familiar equal-time 

transverse commutation relations; that is, 

[AF(x,, f). EF ( y, I)] = -&d,,T(x - y). (8) 

In terms of the normal-mode expansion, 

c(l7 N 
A,“(;, t) = x - a ~_,, 2 mv (C (I, X)~“‘J”J-“’ + h.c.1 (9) 

~ lit,(l, X) = 0 

E,Ta(x, f) = - A&, t) 

and 

[P(l’, A’), Cb(l, A)] = dabdX\.d,,l’. 

The additional nonlinear terms in Equations 5 and 6, or 7, are characteristic of a 
Yang-Mills, or non-Abelian, gauge theory in which the directions in color space rotate 
under a local gauge transformation. The gauge-invariant Lagrangian in the presence 
of fixed color sources p(x, 1) is expressed as 

. f” - gp . A, 

with 

f,, = a,A, - &A, + gA, x A,. 

The field equations are the Euler-Lagrange equations that are derived by the 
- principle of least action, and the generalized Gauss’s law is a constraint equation for 

the component with no-time development; that is, Equation 6 follows from 

On the basis of Equations 4, 5, and 7, we can now simply and directly calculate the 
interactional energy between two fixed charges by perturbation theory in the color 
charge g. 
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To illustrate the antishielding, we need calculate only to order g’, that is, the g’ 
corrections to the Coulomb interactions due to the radiation-field fluctuations. This 
requires calculating the contributions to order g” to the interactional energy between 
two fixed charges as contained in Equation 4. First-order perturbation theory gives the 
contribution 

AE, = (O~-‘/2~d3~~~ V’1$10), (IO) 

and second-order theory gives 

A.% - x 
(OI-1/2$d3X~.V2~I,)(n1-‘/2Jd3x~.V2~10) 

(11) 
nto E, - En 

where 0) ‘denotes the radiation-field vacuum and only the interactional energy 
between two fixed charges, defined by 

Pk I) - Plk t) + P*(X, 2) (12) 

and forming a color singlet (the quark-antiquark potential) is retained in calculating 
Equations 10 and Il. 

Introducing Equation 7 in Equation IO and integrating by parts, we find for the 
interactional energy 

AE, = -g2 s d3x A-‘p, . (Ol(l + gA,4A-lx)-*10)p2 

” -g*ld’x[p, . A-‘p2 + 3g*(Olp, . A-‘A$$’ x A&A.“ x p210)]. (13) 

The first term is recognized as the Coulomb interaction. The vacuum expectation 
value of the quadratic correction is readily evaluated in momentum space by use of 
Equation 9 and the Fourier expansion of the charge density 

p,(x) = ;x p,(k) eik,+X~),. 
k 

We find 

where A is the ultraviolet cutoff, and C2 is the quadratic Casimir, which for SU(2) is 
equal io 2. Since the divergence is only logarithmic, there is no need for special care in 
treating it; it may be absorbed into the coupling-constant renormalization by standard 
means. Equation 15 shows antishielding since the effective potential strength is 
greater for large separations R = IX, - X,1 than for small ones; that is, the 
logarithmic enhancement in Equation 15 increases as the effective k value decreases 
or, equivalently, as R - I/k, increases. The diagrammatic representation of this 
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11-79 3731A2 

FIGURE 2. Diagram that corresponds to antishielding contribution to Equation IS. Dashed 
and wavy lines are, respectively, instantaneous Coulomb and transverse gluon propagators. 

contribution can be inferred from Equation 13, recognizing that A-’ is the instanta- 
neous Coulomb propagator, and is illustrated in FIGURE 2. 

To the’ same g’ order, we must also evaluate the second-order contribution of 
Equation 1 I. In this case, the static potential appears four times. As we see from 
Equation 7, two of the 4s in Equation 11 must create and destroy dynamical gluon 
pairs via the field term gAi x E,T; thus, the intermediate state 1 n > contains such a pair 
of transverse gluons. By straightforward calculation with Equations 7 and 9, we get 

E, = 2g4 
z (OI- $d3XP2 * A-‘& X E,TIn)(nlJd’xp, * A-IA, x E,TIO) 

n-2 gluons Eo - En 

The sign of Equation 16 is consistent with normal shielding, as it must be, according to 
the general spectral theorem, since it records the contribution of physical quantums- 
the transverse gluons-in the intermediate state. The corresponding graph is FIGURE 
3. The sum of Equations 15 and 16 agrees with the well-known result2.3 for the running 
coupling constant. If we normalize the charge at mass g*, so that 

2 

g2 -+ gp2(p) = g2 1 + $$ C2 In $ , 
1 P I 

the interaction can be rewritten 

II-79 3731A3 

(17) 

. 

FIGURE 3. Diagram that corresponds to shielding contribution to Equation 16. Dashed and 
wavy lines are, respectively, instantaneous Coulomb and transverse gluon propagators. 
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indicating a logarithmic enhancement - In pR relative to the Coulomb law with 
incrasing R. Equivalently, the running coupling constant 

C, In p*R* 
1 

(19) 

decreases with decreasing separation. This is the crucial asymptotic freedom behavior 
of QCD. 

There is another simple and intuitive way to illustrate the spreading of the color 
charge due to fluctuations of the radiation field. We interpret the right-hand side of 
Equation 7 as an effective charge density, p&r), and compute the mean square color 
radius for a fixed source. To order g’, this computation, again, requires performing a 
second-order perturbation calculation of the ratio 

(Olj-d’xr*mb) + zo’ (OI$d3xr2p,,In)(nl-~2$d3x~.V2~10) 

(r2) = 
E, - En 

WV 
(0)jd3xp,,&J) + x2 

(O(~d’xP,rr(n)(nI -$j-d3x4. V*4(0) 
n+ll E, - En 

The two-gluon state n > is created by the field source gA, x E,T in Equation 7. Just as 
its contribution to the interactional energy corresponds to shielding and reduces the 
effect of charge spreading in Equation 16, here it also reduces the square radius. 
However, charge spreading due to the first term is the larger effect. We calculate as 
before, only here it is necessary to introduce an infrared cutoff to control the 
divergence from large-distance contributions that are weighted heavily by the r* factor 
in the numerator of Equation 20. We do this by the substitution 

k* - k* + b2 

in the effective charge density 

(01.-V2410) -g (Ol(l + gA,diA-‘X)-‘IO) 

The final result to order g2 is 
, 1 

(r*) =r:+-$C,+, (22) 

where 1,’ denotes the mean square radius of the bare source p(x). The correction to the 
distribution of the color charge in Equation 22 is infrared divergent but positive, 
indicating a spreading of the source. 
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With the inclusion of matter pairs, there are additional shielding corrections 
according to the substitution’ 

11 --+ 11 - 2/3 nr (23) 

where nr is the number of different flavors of quarks that contribute.4 Finally, we 
remark that the energy-momentum tensor is an operator with zero anomalous 
dimensions, and this calculation can, in principle, be extended to higher orders in g* to 
exhibit the renormalization group series,’ that is, 

1 
1 +x+x2+ *-a--. 

l-x (24) 

Such extensions are clearly handled much more efficiently by covariant graph 
techniques, as invented by Feynman originally to escape from the cumbersome 
procedures of “old-fashioned perturbation theory.” Here, as shown, the latter provide 
a direct and intuitive physical picture of the interactional energy and of “asymptotic 
freedom.” 

The breakdown of the perturbation expansion for large distances or stong coupling 
is evident in this calculation. Indeed, according to Equation 24, a singularity occurs 
eventually, a result not unrelated to the Gribov ambiguity6 for strong fields. In this 
connection, it is interesting to note that to the lowest order in g2, In (A'/k') corrections 
resulting from the non-linear term in the definition of the magnetic field of Equation 5 
have no role. This is because the additional term lacks a derivative relative to the 
nonlinear terms in the generalized Gauss’s law of Equation 7 that we have calculated. 
However, when one considers the large-distance behavior of QCD, it is important to 
include the effects of the low-frequency-even the zero-frequency-modes. It is, in 
fact, just the nonlinear terms in Equation 5, which introduce quartic amplitudes in the 
Hamiltonian, that presumably are central to the analysis of confinement.’ 
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