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ABSTRACT 

In this paper it is shown that in QCD a new set 

of high energy processes are calculable. Firstly, 

many meson exclusive processes are shown to be control- 

lable. Secondly, a new type of exclusive semi-inclusive 

+ meson process (for example e + e- + ncone + anything, 

where II is unaccompanied in phase space) is shown to be 

controllable by renormalization group approach. Possible 

experimental confrontation is discussed. 
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1. Introduction 

Precise quantitative test of QCD is very desirable. A lot of recent 

work has focussed itself in making rigorous prediction from QCD which do 

not depend on detailed uncalculable bound state dynamics. Most of such 

predictions are based on the proof of factorizability of soft dynamics 

from the short distance process and then using Callan Symanzik' equations 

to control the evolution of the process as the large momentum increases. 

So far noteworthy progress has been made in rigorously predicting 

inclusive, semi-inclusive and exclusive processes of certain types. In 

the inclusive processes deep inelastic lepton scattering,2 total e+e- 

cross section, inclusive annihilation of heavy quarks and level widths 

of an onium state below the continuum are noteworthy.3y4 All such pro- 

cess though in quantitative agreement with experiment, are not conclusive. 

The distinctive feature of QCD, the scaling violations which scale like 

log Q2 are difficult to distinguish from a small power. Also, as all the 

details of final states are ignored, the other distinctive features of 

QCD get averaged over. It is thus useful to study semi-inclusive and 

exclusive channels. Most of the semi-inclusive processes so far studied 

have the feature of isolating a few particles all having large invariants 

with each-other, and "anything". The unidentified particles in anything 

in fact involve a lot of particles which are travelling parallel to the 

particles identified. The simplest and a crude way to think about such 

semi-inclusive processes is to think of the cross section of production 

of partons in the directions of the final hadron desired, convoluted 

with the fragmentation of these partons into the desired hadrons. Again, 

because of large averaging over final states such processes have had 

great disadvantage in becoming a good quantitative test. 
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In the exclusive process where every particle is identified such 

averaging problems do not exist, but they are usually too small a cross 

section that as quantitative tests they have not as yet been decisive, 5-9 

although the power law behavior is consistent with QCD. 

Theoretically, in non-Abelian gauge theories, no connection exists 

between exclusive processes, semi-inclusive and inclusive processes. 

In this paper we present more processes that can be controlled rigorously 

in non-Abelian theories. The first set of processes is in fact nothing 

but just a generalization of the exclusive processes to many more parti- 

cles in final state. The second set of processes is a unusual admixture 

of exclusive, semi-inclusive processes. In these it is required that 

the identified hard particle does not have any hard parallel moving 

particles. 

These processes though rigorously controllable are down by powers 

of Q2 as compared with inclusive processes, but may provide important 

tests as numerically they are much larger than the exclusive processes, 

but still have the information of exclusive processes. These processes 

also have a very distinctive signature and that makes us more hopeful 

that they might be experimentally accessible. Of course, the higher 

order a correction to these processes would not be necessarily small. 

The organization of the paper is as follows: 

II. For the sake of notation e+e- + 2ll is reviewed. 

III. The proof of factorization for e+e- + NX is given. 

IV. The proof of factorization for e+e- = II+anything where in a 

cone of angle N a around II there are no hard particles, is given; 

and predictions for the process are made. The predictions for 
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the'case when is a heavy quark state, will be treated somewhere 

else. In that case everything is calculable. 

V. Other processes where we expect such factorization to work are 

pointed out, and finally we discuss the nice feature and possible 

drawbacks of the processes that we study here. 

II. e+e- + 211 

We begin by considering the exclusive process of two pion produc- 

tion. Our treatment closely resembles that of Duncan and Mueller.' We 

repeat the essential details of the pion form factor in the time like 

regime so as to state the notation used in the rest of the paper. 

So consider the following five point function illustrated in 

with external legs amputated 

Fig. 1 

~,$+k1~p2’kp) = L 16 (y5y+),181 (y5y-)0282fi4xl d4yld4x2 d4y2 

x exp (-i(kl- pl)xl + i(pl +kl)yl + i(k2 +p2)y2 - i(k2 - p2)x2) 

X (0 IT j,, (0) -J'Bi (y,> ~8;(y2) i,;(x,) ~~~‘~2’ 10) 

The large momentum components in the above are pl-w kl-w p2+m k2+ N O(Q) 

and the rest of the components are of the order of @(m/Q). The dominant 

contribution to the amplitude r 2 
IJ 

asQ +-co comes only from the following 

regions of momenta. (A) Large momenta to the right, that is 

(kl-pl-rl?~r~ -@(m2), and (r2-p2-k2)2wr;m@(Q2); (B) Large momenta 
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to the left, i.e., (kl-pl-rl)2wr: N @(42) , and (r2-p2-k2)2~r~-@(m2); 

and (C) All momenta @'(Q'). The regime where all these momenta are order 

@(mQ) and r2 * 3 1s order m2 is suppressed for spinor theories (see Fig. 2). 

This allows us to oversubstract and extract the dominant contribution 

and obtain a factorization of soft parts and hard parts. The hard part is 

the five point two particle irreducible Green's function #P(Q,$l,gl,i2,&2) 

which is now evaluated at the special point such that the small components 

of order m are set to zero and large components are the same. The soft 

parts are then the oversubstracted wave functions or distribution ampli- 

tudes.5p6 Obviously for each pion there exists such an amplitude function. 

Therefore, 

?~(~1~~1'~2~~2~4(~ +p ,2+; 
12 

; (2) 

pi3 
CPvkvki) 

i L reg Bay Bl (2~~)~-4'0 (2p1)2-~+isxo1B1 
(pl+ki ;ki-Pl) 

XX -reg(pl+kl ;kl-~1) ; (3) 

x;"; (pl+kl 
11 

;kl-pl) f Sd4x(0/N3(~~l(-~)qB~~~~12P)e-ik1x . 

(4) 
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Now def&ng 

/ 

4 
n1 d ki v z- Kreg 

olBl 
1 ~(Plykl*ki)(y5Y-)u;Bi(ki-)n1 

(2rI)4 alBl%Cll 

I 
d4x1d4yl e 

i(pl+kl)xl -i(kl- P&I 
= e 

X (OIT$Jy,) $(X1) N3(h543 iD"'>+lo) 

x s -1 
ctci 1 

( kl-pl) S&(p1+k1) 
. (5) 

It is convenient to define (kl-/pl-) =x1 and (k2+/p2+) =x2; and then 

therefore 

&$Q.P1’P2’kl~k2) 2- x + (Y5Y+Vn1(Pl~kl))~n1n2(Q2) 
Q -+- np2 4P1- 

’ & (y,u-vn2 (P2yk2)) ’ 

2+ 

(6) 

In the above the x1 and x2 are the momentum fraction variables- BY 

expanding-in x1 and x2 one has separated the soft wave function (dis- 

tribution ,amplitudes) which comes with the oversubstracted operators 

inserted into the wave function. The Eq. (6) is just the statement of 
A 

light cone expansion where 5 is the usual coefficient function or 
pnln2 

the singular functions and the tr y5y-V ( *'(p, &I) are the matrix elements 

of the operators. 
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A 
It is now easy to obtain a Callan Symanzik equation for T 

Pnln2 
(Q2) 

by making a soft mass insertion in $(Q,p1,kl,p2,k2). If such an 

equation exists, when one makes such an insertion in the TF(Q,~l,~l,~2,$) 

it is down by powers of l/Q, as all momentum are of order of Q. But, if 

such an insertion produces terms of the same order as Y~(Q.plJy2,k2) 

as would happen in theories where the hard moments may go around a soft 

line (as in 4' in 6-dimensions) a useful C.S. equation would not exist. 

On inserting it in the distribution amplitudes one gets the anomalous 

dimensions. Hence 

c?B~~~~~~(QZ) = x 
A 

Y 
ni Yni 

~~nin2(Q2) + ~ Yn2ni ~~nl,i(Q2) (7) 
% 

where giis the usual Callan Symanzik operator as defined in Ref. 6. 

Using the above formalism and calculating the cross section for e+e-+2II 

after averaging over initial electron positron direction 

(2l9 4E1E2 do 8n202 = - ~ 
d3p 1 d3p2 3Q4 

FN 

FN = b$12 (2fl)464(pl+p2-Q) 

&l = <2nIjPjO> . 

So, we finally get to the leading anomalous dimension 

= i-h2 a - - c2(f> f; (ff(Q2)(Q;h) (36) 2 

3Q6 N2 2 
C 

+ inverse fractional powers of log Q2 , 

(8) 

( ) ':h = Is the charge2 for the relevant quarks in the given pions. 
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111. e+'+ e- -t Nil 

After having set down the notation in the last section and learning 

the necessary rules for factorization and derivation of Callan Symanzik 

rules, now we would turn to the rather simpler related task of proving 

that the same can be done for e++e- + NII in a certain kinematic regime. 

Here, we would do so for the case of pions at large angles with each 

other. 

For N;:2, the amplitude depends on 3N-2 variables. We shall choose 

a reference frame where the incoming photon is at rest q= (Q,O,O,O) and 

the other 3N-3 variableswould label the magnitudesand angles of the 

various II's. Thus, 

Plu = (Fl,O,O,-~l) 

p21-l = ( F29-P2 sin82,0,-p2cos@2) 

p. = Ei, ( -pisin6icos$i,-pisineisin$i,-picosei) . (9) 1lJ 

The independent variable are taken to be Q, pi, Bi, $i. And ei, $i 

are held fixed as Q-tm. Define 

X exp(-i&(ki-Pi)xif iT(Pi+ki)Yi) 

x (O/Tj’(O) ncJI,, (Yi>) flG,f (Xi) 10) 
N i Ni 

x n",~, (Pi+ki) Sg:B;(ki-Pi) 
N ii 

. (10) 
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It 'is rather trivial to check that factorization works as in the 

previous section with almost no change. The result finally of following 

the oversubstraction on each leg finally gives 

$(Q,Pi,ki) ~ Q -too f i(YgY-('i'i))aiBi 

X d4k; Kze; B,a 1 (pi,ki,k;)(YgY+(‘i~i)),r B’ Sv(Q,ii,‘i) l (1’) 

iiii ii 

where Y-(O~,$~) =' (l/JZ)(Ei+ Ipil>. Expanding in the usual variables 

ki-(ei’+i) 
x. = 

1 pi- (eiy’i) 
, 

we get 

(12) 

The power law of course agrees with the usual power counting 

arguments.lO To show that a Callan Symanzik equation exists is 

altogether different. Let us recall all the regimes and difficulties 

that can exist. 

Firstly note that the nuclear form factors do not have a Callan 

Symanzik equation although factorization works. This happens because 

of a double flow regime, which leaves certain propagators in the hard 

part on the mass shell, and the large momenta route around it (Fig. 3). 

This also happens in pion form factor in I$: theory. (See Ref.~ 6, Page 

1643, last paragraph.) See Fig. 4. Also, the Callan Symanzik equation 
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would not exist if Landshoff pinch singularities exist. This happens in 

II-II scaling at large angles (see Fig. 5). These singularities occur in 

R-II scattering when the near on-shell quarks scatter with another near on- 

shell quark, into on-shell quarks moving in the direction of the final 

pions. That is all the quarks in the diagram are near shell. Such pinch 

singularities spoil Callan Symanzik equation.5'7 (See Ref. i, Page 163). 

It is easy to convince one self that the pinch singularities of II-II 

scattering diagram, that could occur in e++e-a4ll do not occur and are 

in fact down by powers. The reasons for why this occurs is easy to see. 

The hard momenta from the photon has to be transferred to all the fermions 

lines and hence there exist at least 3 propagators which are off-shell by 

order Q2 at least, thus obviating this problem. This will be true in 

general. The double flow regimes are also suppressed by powers because 

of the fermion propagators near the photon line have to be always @(Q2) 

off mass shell, and then one simply looses too much in phase space in the 

double flow regimes. 

Let us therefore sketch the argument in general. Consider the 

diagrams where a set of pions cannot be separated from the rest of the 

pions, in the hard part, by just cutting gluon lines (see Fig. 7a), the 

usual arguments for 2 pion form factor work and generalize because the 

fermion 1ine.s near the photon are always off-shell by @(Q'). 

The part of the argument where a set of pions can be separated from 

the rest of pions by cutting only gluon lines is argued in two stages (see 

Fig. 7b). The pions which are produced by gluons work essentially in the way 

the heavy quarkonian decay into 2 pions work (Ref. 8). Firstly, one notes 

that if the two gluons finally create more than two pions then they must be 

again off-shell by @(Q2). If they give rise to only two pions then once 
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again the argument is just the one that was relevant to the four pion 

case dealt with before. 

Also note all other soft cancellations are automatically guaranteed 

to occur as in the two pion case, (Ref. 6, Sec. III and also last of 

Ref. 3, Sees. IIC, IIIC) as all relevant invariants between any given 

two pions are order Q2. This can be best seen by rotating the 

reference frame to let the pion whose soft interactions with others are 

under observation to fly in the -Z direction and boost if further in the 

-Z direction, so as to have all the rest of the particles only have -- 

components large. In this case it is clearly seen to be the same (as 

far as soft objects are concerned) as the two pion case. 

Hence, using this we verify the existence of a Callan Symanzik 

equation. We get 

(13) 

where Y, n, are the same as in the pion form factor in time like regime. 
ii 

IV. e++e- -f II cone +-anything 

In this section we would like to show that factorization works not 

only in semi-inclusive II as discussed earlier,3 but also in this regime 

which we refer to as the exclusive-inclusive regime. Let us therefore 

start by stating the kinematic regime. Let the pion have a momentum 2p, 

the photon Q. We work in a frame where 

q = (Q,O,O,O> 

P = (p,C,O,-P) = , pl- -@($), P, = 0) 

Define (4p*q)/Q2 = x. 
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We demand that in a cone of finite angle around the +Z direction 

there are no particles that carry energy 2 1-1 where !A is the QCD scale. 

That is all hard particles in 'anything' satisfy the requirement that 

X 1 x a, where 'a' is order 1. + So in the center-of-mass frame we are 

looking for a typical event that looks as shown in Fig. 8. 

The relevant cut - amplitude is, as shown in Fig. 9, 

W(Q~plJy,~l) = &(Y~Y&~~~(Y~Y_)~ c1 Jd4x1d4x2 d4yld4y2d4x 
22 

X 
,iqx i(pl+kl)xl -i(kl- pl)yl 

e e e 
i(pl+ gl)x2 e-i(el- p1)y2 

+(+u2(x2) ?B2(~2) jy(x))T(+ul(xl) $.+(yl) j”((J)))trun l 
(14) 

Now, in this process it is clear that any line that runs across 

a cut must have a large pl- component unless all the components are 

zero. Using this observation and the fact that in the pion form factor 

double momentum flow regimes are not possible, we shall derive the 

factorization and Callan Symanzik equation for these processes. 

Define T to the set of six point completely amputated connected 

diagrams and a, A, o', A' four point connected diagrams amputated on 

the right-but not left as shown in Fig. 10. 

It is easy to see that all the propagators in r are the hard 

propagators in the dominant regime and the hard momentum can reach up 

to a certain point in the pion legs denoted here by a and a'. X and A' 

are the diagrams with soft momentum only. It is easy to see that the 

large logs build up in the pion legs. The usual twist two large legs 

that one might get from the loop integrations like kl in Fig. 11 are 
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in fact Lot large at all. They are in fact seen to be log a and as a is 

chosen 8(l) these are in fact constants that do not scale with Q2 and are 

therefore @(a,) corrections. 

The usual problems of structure functions at x-+1 are also not pres- 

ent as we have restricted ourselves to x fixed and not near 1. Also by 

restricting ourselves to be away from x near 1 we eliminate the problem 

of large logs of the exclusive pion by the d4k integration in Fig. 12. 

This is so as the fermions are moving at large angles with respect to 
2 

each other the k2 integral is not allowed to go to D . Once, one has 

convinced oneself of the topology of large momentum flows and seeing that 

all propagators in T are hard, it is trivial to derive factorization and 

the final result is 

x Kreg ly, 0 @'OL' pl' ( $(Q& ,il ,il) 
1111 

' (y5y+),;k3; E~~E;a282(pl~“l.“i) l 

(15) 

Expanding in the usual variables Xi = (kl+/pl+) and xi = (Ri/pl+), 

and deriving the usual C.S. equation we get 

@+ . 2 
nln2(Q ) = ~ ynlni din2(Q2’ + ~ Yn2n; ‘nln;(Q2) . (16) 

The cross section is 

8112a2 (211)3 2EII + = - - W(Q2 ,a,x) . 

d Pll 3Q4 
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The dominant contribution to the W in the leading approximation 

come from the graphs shown in Fig. 13. The cross section is for the 

leading term 

da a sin2e 2 

YE= 
f3Q6 

16f; c;(f) (Qch)2 &(Q2) fb,a) 

+ terms down by fractional powers of logs . 

f(x,a) = - 

+ 2(1-x) 
2 (1 + $ (l;c2) - ,(l- ;)(+$} (17) 

X 

where c = a(l-x) defines the cone restriction. 

V. Other Process and Discussion 

It is rather obvious that the factorization of e++e- + nIcone + 

anything of the last section did not very crucially depend on the fact 

that the particle II came from a y*. The factorization and Callan 

Symanzik equations are therefore expected to go through in all cases 

where such a defined final state is produced in any given initial state 

reaction. - Notably in p+p + Scone +anything also we expect the 

factorization.to work. So also in deep inelastic electron scattering. 

P+P+n cone+anything process may be rather interesting, as the leading 

particle epxerimental cut, might pick out these contributions selectively 

and hence could be the reason for (y/II')-p: at fixed xT as these con- 

tributions are in fact higher twist we expect (da/dp1)]"- (l/p:) giving 

this result.ll 



-15- 

The problem in making a rigorous prediction is to eliminate all the 

cut-vertices that would occur in the initial state and hence a clean 

prediction seems a little difficult. Therefore, we have not tried to 

make explicit calculations. 

It is easy to combine these II's i.e., particles (mesons) that come 

out singly with the particles that come in jets. The factorization in 

that case is just a combination of the previous cut-vertex for each hard 

particle in the jet, and two operators for each meson. 

The cross section for e++e- + II cone+anything is small but has a 

very distinctive signature and hence it may be possible to observe it. 

The signature of these events are one hard pion recoiling against two 

"jets" with a calculable normalization in terms of fII makes these pro- 

cesses extremely attractive, and we emphasize that it can be rigorously 

controlled. When the meson is a heavy quark state, much more may be 

said about the process and it is under investigation. 
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FIGURE CAPTIONS 

1. r,,(Pl+p2~k2). 

2. Dominant momentum flows in T &pl+p2'k2)' 

3. Nuclear form factor double flow diagrams. 

4. Pion form factor @i double flow regime. 

5. Landshoff pinch diagrams in II-II scattering. 

6. Possible Landshoff regime in e++e- -+ 4rI. 

7. (a) A diagram where a set of pions cannot be separated from the 

rest by cutting only gluon lines. 

(b) A diagram where a set of pions can be separated from the 

rest by cutting only gluon lines. 

8. A typical exclusive semi-inclusive event in e++e- -t ncone+anything. 

9. W(Qq,kl,R1)- 

10. The large momentum and soft momentum subdivision. 

11. The twist 2 large logarithms in the II form factor. 

12. The exclusive pion large logarithms. 

13. The leading diagrams for e++e- + IIcone+anything. 
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