
SLAC-PUB-2681 
February 1981 
(A) 

PRESENT SLAC ACCELERATOR COMPUTER CONTROL SYSTEM FEATURES* 

V. Davidson and R. Johnson 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

Abstract 

The current functional organization and state of 
software development of the computer control system of 
the Stanford Linear Accelerator is described. Included 
is a discussion of the distribution of functions 
throughout the system, the local controller features, 
and currently implemented features of the touch panel 
portion of the system. The functional use of our 
"triplex" of PDPII-34 computers sharing common memory 
is described. Also included is a description of the 
use of "pseudopanel" tables as data tables for closed 
loop control functions. 

System Configuration 

The present accelerator control system has evolved 
slowly for more than ten years. Over the past two 
years we have come to have a system which is basically 
a star network. At the center are three PDPll-34's 
sharing common memory. Fifteen arms radiate outward 
connecting to various mini/micro computers. A few 
local processors are connected using parallel links, 
but most links are 9600 baud asynchronous. Eight arms 
consist of a PDP8 heading a secondary partyline of 
twelve microprocessors. The PDP8's and microprocessors 
are all local controllers containing monitoring and 
control loops as described below. All together the 
system includes three PDPll-34's, ten PDP8's, 31 Intel 
8080 systems, 66 Motorola 6800 systems, and one PDP9. 
This summer we plan to install Intel 8086 multibus sys- 
tems to replace the PDP9 and one of the 6800 systems. 

PDPll Triplex 

The PDPll triplex, under the RSX-llMt operating 
system (V3.2), provides touch panel software as the 
operator interface, specialized functions such as mag- 
net conditioning, link interfacing, etc. Common memory 
contains status arrays, digitized analog arrays, buffer- 
ing for displays and inter-cpu communications, and touch 
panel tables. 

In general, one PDPll provides the network inter- 
facing, task initiation via touch panel buttons, panel 
and global data selection, and effects controls which 
originate as touch panel pushes. Another PDPll pro- 
vides the display system interfacing; manages all normal 
touch panel displays of analogs, status; and messages; 
and provides a few special displays. The third PDPll 
currently provides "higher order" functions such as 
magnet conditioning, logging of data, special analysis, 
etc. It also serves as the program development computer 
and as a spare for the other PDPll's. Each PDPll has 
80k of local memory and 48 k of common memory. Each has 
an RR05 removable disk drive. The program development 
computer additionally has a second RR05 drive, an RLOI 
drive, a tape drive, and a Versatec line printer. 

The operating system is single user and the exec- 
utive is unmodified. However, we have modified the 
SAVE task to prevent memory clearing and the INSTALL 
task to provide a NOLOAD feature which inhibits actually 
loading a common partition image into memory. Both 
features were required for booting the systems in a 
common memory environment. Also, we use a driver sub- 
routine to send unsolicited data to a task and/or 
request or resume a task. Until recently, we have not 

* Work supported by the Department of Energy, contract 
DE-AC03-76SF00515. 

t Digital Equipment Corporation trademark 

had hardware interrupt capabilities between CPU'S, so 
each has a system task to monitor various common mem- 
ory buffers for activity. Task communication between 
CPU'S and display data are handled by drivers which 
interface to common memory arrays rather than hardware 
interfaces. File transfers are done via a deposit and 
retrieve one-block-at-a-time scheme. Handshaking is 
generally done via common memory flags. 

Touch Panel Software 

Touch panel software consists of a collection of 
programs which run on two of the PDPll's to provide 
the operator interface. It provides the basic func- 
tions of panel selection; global selection; task ini- 
tiation; push button controls; and displays of analog, 
status and messages. It uses panel and global tables 
(one for each of 16 terminals) and analog and status 
arrays in common memory. Touch panel tables actually 
consist of two separate binary tables. One contains 
the static text, graphics, and button coordinates and 
is used only by the panel select program to initialize 
the display of a newly selected panel on a terminal. 
The other is the table which is kept in common memory 
(one for each terminal) for reference by all online 
functions. 

In addition to these two tables, the panel compil- 
er permits one to design a pseudopanel to describe a 
set of elements to be used by the closed loop set 
programs. This mechanism uses the compiler to generate 
control blocks for elements so that control subroutines 
used for touch panels can also be used by other pro- 
grams to retrieve data from common arrays and to effect 
controls. These control blocks form part of an online 
control data base which is separate from the touch 
panel tables. 

The source data bases containing parameters for 
all elements in the system, all touch panel sources, 
and the panel compiler (a PLl program) are located on 
the SLAC computer center system. We compile panel 
tables and other secondary data bases and download 
binary tables to the PDPll's for online use. 

Global (Terminal) Data 

In addition to each of the 16 separate panel tab- 
les in common memory, there is also a separate table 
of global data for each terminal. This is data that 
does not change as different panels are selected on a 
given terminal. Presently we have the following global 
selects available: elements for control and analog 
display; accelerator sector and beamline for indexing 
control, analog, and status displays by sector and 
beamline; rate selects for dynamically modifying slew 
rates, DAC increments; setpoint and slew rates for DAC 
controls; and field values and time increments for bit 
controls. Planned, but not implemented, is the ability 
to select whether the digital value displayed for an 
element is its current value or another of its param- 
eters such as its upper/lower DAC limits, tolerance 
maximum/minimum, slew rate, etc. 

Local Controllers 

As presently implemented all local functions are 
driven by local tables whose parameters are set by the 
PDPLl's. For program diagnostics or special table 
changes outside normal control functions, local con- 
troller memory can remotely be read or written from the 
PDPll's by a read/write function. Also, there are 

(Contributed to the 1981 Particle Accelerator Conference, Washington, D.C., March 11-13, 1981.) 



typically four other basic functions: DAC control with 
slewing, bit control with variable field width and on 
time, status or binary state monitoring, and analog 
digitizing and monitoring. There is no operating sys- 
tem; all basic functions are table driven foreground 
or background loops. 

Some table parameters are predefined at program 
assembly or load time, while others are dynamic, orig- 
inating from touch panel data or special online pro- 
grams. Generally, local control is effected by a loop 
response to table entries rather than to the direct 
reception of a network control packet. The tables pro- 
vide the interface between the net and the local control. 
Likewise, monitor loops flag changes in tables which in 
turn are monitored by a network monitor loop which sends 
off changes as rapidly as possible. 

DAC Control 

The DAC control mechanism can be used for control- 
ling any digital value whether DAC or memory location. 
The local controller has a slewing loop which has a re- 
peat rate of ten times per second. For each DAC, or 
digital value, to be controlled there is a table entry 
for each of the following items: the current value, 
the requested value, the upper and lower DAC limits, 
the integer and fractional portions of the slew rate, 
and a counter for fractional slew rates. Should the 
limits be invariant and the same for all elements in a 
given controller, single constants rather than tables 
are used to save memory. 

The local slew loop monitors the slew rate (integer 
plus fraction) and if nonzero compares the requested 
value with the current value. If different, the slew 
value is added to (subtracted from) the current value 
at each loop execution until the current value reaches 
the requested value. The slew rate table entries for 
that element are then set to zero and no further change 
takes place. 

Asynchronously, control packets may arrive. These 
carry data which the receiving routine sets in the 
tables. Currently implemented are three packet types: 
stop, increase/decrease by delta (the packet provides 
a signed delta to be added to the current value to 
yield a new requested value), and setpoint (which is 
the new requested value). Newly calculated requested 
values are subject to the DAC limits. Although we have 
not as yet implemented it, DAC limits could be deter- 
mined by the central computers and remotely set as 
required. To provide " instantaneous" changes, the slew 
rate is set to the maximum DAC range and to provide 
a stop it is set to zero. 

In addition to being explicitly or globally speci- 
fied, slew rates and delta values can be further modi- 
fied dynamically by specifying global rates. MEDIUM 
leaves specified rates unchanged, SLOW forces a one 
DAC-unit/second rate, and FAST forces four times the 
given rate. Additionally,all rates can be single step 
(one change per button push) or continuous (while one 
has his finger on the button). 

As yet, we have not implemented physical control 
knobs apart from the touch panel control surfaces. 
Should we wish to, we could readily implement them 
using touch panel coordinates which are off the screen. 
We have 16x by 16y control bits but use only 10x by 13~. 
Knob activity could be interpreted as a button push of 
an off-the-screen button, with slew rate or increments 
determined from the knob rotation by whatever algorithm 
is desired. 

Bit Control 

The Bit Control Mechanism is used to control the 
binary state of bits in a field from one to eight bits 
wide. Bits can be pulsed on for a given time (dt)or set 
to a given state. This mechanism is used for motor,pro- 
gram, on/off,open/close,etc. control. As with the DAC 

control there is a local control loop (l/60 second 
period) which reacts to table entries for each ele- 
ment or bit field. These table entries are: the cur- 
rent field data, field mask, on time count (dt), and 
mapping data as required to map field data to memory 
or I/O address. The local timing loop monitors the dt 
table and if an entry is positive, decrements the count 
and reacts as follows: a l-to-0 transition clears the 
field in the mapped address and sets dt = -1. Other 
transitions set the field in the mapped address. Ef- 
fectively, an initial dt greater than one produces a 
pulsed output, an initial dt equal to one will clear 
the field, and an initial dt equal to zero will set 
the field producing a dc output. Control packets may 
arrive asynchronously. They carry the time (dt), the 
field mask, and the new field data. Data arriving is 
inserted into the appropriate tables by a packet re- 
ceiver routine. 

Continuous actions can be programmed in two ways. 
First the push can send a packet to set a field to one 
state while the release could send a second state. Or 
a push could send a given state continuously while 
your finger is on the button producing a local re- 
triggerable one-shot effect. 

Status Monitoring 

The local monitor loop period is about l/10 
second. Current states are compared to the state of 
the last scan on a per byte basis and are subject to 
a filter mask. Changes are saved in a fourth table. 
Although we have not as yet implemented it, the filter 
mask could be dynamically changed via a control packet 
from the central computers. A network monitoring loop 
continually cycles through the changed list, trans- 
mitting the current state and changed bits of any bytes 
flagged as changed. In the central computers, status 
bytes are updated in common memory and individual bit 
changes processed for status and message displays. 
Individual status bits (elements) can be displayed on 
touch panels as l/O, boxes, or bars. A few are routed 
to special display routines. 

The message display program manages a scrolling 
text display of status messages together with their 
time of occurrence and general geographical location. 
Data base parameters determine how the display is to 
react to a state change of a given element. There is 
a parent-child masking scheme whereby secondary fault 
messages occurring with a primary fault are not dis- 
played. Elements can be entirely masked, state 
changes can be appended to the bottom of the display, 
and if desired, any previously shown fault messages 
erased. Message displays can be put on any panel with 
the number and length of the text lines and characters 
sizes specified. 

Analog Monitoring 

In general, digitized analog data is acquired and 
placed into a current value table in memory by a rou- 
tine which manages an A-D converter. A local loop 
(period l/5 second) monitors three states of an ana- 
log's value: hardware errors (e.g., overrange), 
tolerance limits, and changes of value for the purpos- 
es of sending unsolicited current data to keep the 
central computer data up-to-date. There are six tables 
with an entry for each element monitored. These are: 
the current value, the previous scan value (for CornPar- 
ison to the current), a delta for determining if the 
value has changed enough to send to the central compu- 
ters, maximum and minimum values for determining out- 
of-tolerance conditions, and a status word for flagging 
changes and saving current error states. A changed 
flag bit can be set via a control packet from the 
central computers, providing a solicited analog read 
capability. The local controller network monitoring 
routine scans the changed table and sends to the 

-2- 



central computers the current digitized value and the 
status of any analog flagged as changed. 

Upon receipt of the AM (analog monitoring) packet, 
the PDPll interrupt routine saves the new value in 
common memory. Asynchronously, an analog display 
program regularly monitors all currently selected touch 
panel tables and updates the panel displays from data 
in common memory. Values associated with an increase/ 
decrease type of button are updated about five times 
per second while the button is being pushed. 

Presently, analog values can be displayed digit- 
ally as an n.m. format (n=total digits, m=number of 
decimal digits) using a y = a+bx algorithm for units 
conversion, an eight digit decimal equivalent of the 
raw binary, a verticle or horizontal bar, or a verti- 
cally moving asterisk. Polynomial expansions and 
displays are done by special programs outside the touch 
panel routines. For the digital displays character 
size can be specified. For the bar displays, bar 
scaling can be specified. 

Summary 

With our present distribution of functions, the 
local controllers can have high duty cycle control and 
monitor loops to provide rapid responses for large 
numbers of elements. Tables used to drive the local 
loops not only provide a simple interface to the net- 
work aspects of control but are an effective clutch 
preventing overloading, pile up delays, and overrun 
effects. Display routines, in a separate cpu from the 
control routines, do not affect control response, even 
if the display overhead becomes quite large at times. 
Also, high bursts of control activity are readily 
absorbed. The deposition of analog values directly 
into common memory by the link drivers and the un- 
solicited sending of other packets received by drivers 
directly to tasks reduces context switching permitting 
the system to run smoothly. 

Reference 

K. Crook and R. Johnson, "A Touch Panel System for 
Control Applications," Digital Computer Applications 
to Process Control, 5th IFAC/IFIP Conference, The Hague, 
June 14-17, 1977. 

-3- 


