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I. Introduction 

Transverse and longitudinal instabilities for a 
bunched PEP beam with a Gaussian distribution are 
treated using the standard technique1 in which in- 
stability problems are solved by looking for eigen- 
values of the linearized Vlasov equation. The eigen 
solutions are conveniently expanded in terms of the 
Laquerre polynomials, and the eigenvalues are given 
by a symmetric matrix whose elements can be expressed 
in infinite series. 

We will follow the well-known formalism1 to 
obtain the matrix formula, and then apply it numeri- 
cally to PEP ring to estimate the transverse coherent 
tune shifts. The impedance used is that estimated for 
the PEP RF cavities. The agreement with experimental 
data seems reasonable. 

II. Analysis 

(A) Transverse Case 

We use the following coordinates to describe the 
motion of a particle: x and 8 are the transverse and 
longitudinal positions; rx, Ox, rs and 0, are polar 
coordinates in transverse and longitudinal phase spaces; 
w8 and ws are the unperturbed betatron and synchrotron 
angular frequencies. 

The linearized Vlasov equation can be written in 
terms of the transverse impedance Z,(w) as2 

2 co 
cNe w 

x gm(rA)r'sdrA = 0 (1) 

Here assumption has been made that the bunch dis- 
tribution is: 

J, = fo(rx)go(rs) + fl(rX)gm(rs)e 
iex+im$, -iDmt 

(2) 
with-the second term as a perturbation term consisting 
of a dipole oscillation for the transverse motion and a 
m-th mode oscillation for the longitudinal motion. We 
have also assumed that the tune shift Au+,, is smaller 
than ws. In the absence of perturbation, the mode fre- 
quency is given by $,, = w8+mcrls. The other quantities 
in (1) are: 

e = 

E, = 
w = 

0 

v6 = 
vs = 

electron charge 
particle energy 
revolution angular frequency 
betatron tune wg/wo 
synchrotron tune w,/w, 
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V m = Qmlwo = v8+mvs for transverse case 
or mvs for longitudinal case 

C = speed of light 
Awm = G,-w8-mws for transverse case 

or Gm-mws for longitudinal case 
5 = chromaticity Av8/(Ap/p) 
a = momentum compaction factor 
N = number of electrons in the bunch 

Jm(x) = Bessel function. 

Equation (1) can be rewritten as 

m  

- iAwm P  (rs) gm(rs) + 
J 

k(rs,ri) gm(rL) dr: = 0 (3) 
0 

where 

p(r,) = g,'(r,) rs= weight function 

k(rs ,rA) = ~~2~(Pwo+"m)Jm[(P+vmm 5)rs] 
P 

’ Jm K  
p+vm-i ri rsr: . ) 1 

Note that the weight function defined here is the 
reciprocal of Sacherer'6.l This choice of weight func- 
tion makes Eq. (3) self adjoint. With this property 
the eigen solutions belonging to different eigenvalues 
of Eq. (3) are othorgonal to each other provided the 
scalar product of two arbitrary functions is defined as: 

m  

(f,d = s p(r,> f(rJ dr,) drs - (5) 
0 

A standard way to solve Eq. (3) is to first expand the 
solution in terms of a set of base functions. For a 
Gaussian bunch with rms bunch length OR (R = average 
machine radius), the base functions are most conven- 
iently chosen, according to the Storm-Liouville pro- 
cedure,3 to be 

Y, = Pn($)eg(-$) 

Here P,are the Laguerre polynomials.3 
We expand the eigen solution of Eq. (3) as: 

pm(rs) = c At Yn(rs) 
n 

(6) 

By making use of the orthogonal condition of Y,'s, we 
obtain from Eq. (3) a matrix equation- for the coeffi 
cients g : 

p-2) At - iAwm$ = 0 (8) 

(Contributed to the 1981 Particle Accelerator Conference, Washington, D.C., March 11-13, 1981.) 



where 

pwo+"m)lk n ' 
(4 ,h) 

and the bunch spectrum I:) is defined as: 

x j-l)k+n(k+g+$)!(k+a+Q)... (k+&+%-n) 
k! (k+2&+1)! 

(For odd m  = 2a+l> 

and 

(9) 

(10) 

co 2k+29. 

w (-l)k+nI:(k+ll)!12 
k=n-R : k! (k+211)! (k+II-n)! 

(For even m  = 2E) (11) 

where a=4 ocp + vm- (c/a)] and (n+g) is understood 
to be (n+$)(n-%) . ..s. 

Series' (10) and (11) converge rapidly for param- 
eters that concern us. Particularly, for m=O case 
(the 'rigid' mode), the summation can be worked out, 
we have: 

(12) 

Having these matrix elements calculated, the co- 
herent tune shift and growth rate are given by the 
eigenvalues of the matrix iH b-J . The real part gives 
coherent tune shift while the imaginary part gives 
growth rate (damping rate if negative). 

The mode number m  specifies "azimuthal" distribu- 
tion of the perturbation, as indicated by Eq. (2). In 
our treatment we assume the mode frequency shifts are 
smaller than the synchrotron frequency, and therefore 
we can ignore the coupling among different azimuthal 
modes. This assumption restricts our calculation to 
be valid for relatively weak beam currents. [For strong 
beam currents, different azimuthal modes do cou le, 
one has to treat a "transverse turbulence" case E 

and 
.I 

For a given azimuthal mode m, there are infinite 
number of "radial" modes, each corresponds to an eigen 
solution of Eq. (3). The Eq. (8) gives in principle the 
frequency shifts and growth rates of all the radial 
modes for a given azimuthal mode number m. 

(B) Longitudinal Case 

The above recipe can be repeated for longitudinal 
motion. The trick here is that for a Gaussian bunch the 
longitudinal equation has exactly the same weight func- 
tion as Eq. (3). Therefore the whole treatment will be 
the same as the transverse case except that the impedance 
2, is replaced by 211/p. 

We present here only the results for the matrix 
equation for the radial modes with azimuthal mode number 
m: 

where 

(13) 

(4 = 
Gkn 

and 12) is defined in Eqs. (10) and (ll), but with 
P+vm - (S/a) replaced by p+mv,. Equation (13) is 
valid for the instability growth rates of the radial 
modes. To obtain the frequency shifts, one must include 
an additional term which has been ign0red.l The addi- 
tional term in frequency shift comes from the fact that 
the unperturbed Gaussian distribution produces a non-- 
zero longitudinal wakefield. The same situation does 
not happen in the transverse case because there the 
unperturbed distribution does not produce any transverse 
wakefield. 

III. Computation 

(A) Impedance 

We calculated transverse mode frequency shifts and 
growth rates for PEP. As we will see later, the co- 
herent frequency shifts are comparable in the horizontal 
and vertical betatron motions for PEP. This leads us to 
the hypothesis that the PEP impedance mainly comes from 
the RF cavities (which have basically round cross sec- 
tions) rather than from the vacuum chamber (which may 
have a flat elliptical cross section).5 In our calcu- 
lation, we have used an estimated transverse impedance 
consisting of an algebraic sum of resonator impedances, 
each of which represented by 

Z+d = Rs W R /W . (15) 
1 

There are 120 cavities in total around the ring, 
lumped in three RF stations; each cavity contributes 
approximately 23 resonator impedance terms to the total 
impedance. The 23 values of R, and UR for one of the 
PEP model cavity was measured before installation.6 
The frequencies uR ranged from about 0.6 GHz to about 
2 GHZ. Considering the diversity among these cavities, 
we have assumed a random distribution in WR with average 
variation of -+2.5%. For simplicity, the Q  values are 
assumed the same for all the impedance terms of all 
cavities: Q=9000. 

(B) Results 

The calculation involved the summation of infinite 
series'. To speed up the computation we used integral 
to replace the summation for smooth parts of impedance. 
For bunch spectrum Ik), we used an spline function to 
approximate the surmnation.7 

In contrast with the usual head-tail calculations,' 
our results of instability growth rates do not depend 
sensitively on the chromaticity 5. This is due to the 
fact that we have used an impedance that contains 
narrow-band peaks. In our calculation, we have set 
5 = 0. 

We have calculated the transverse coherent mode 
tune shift Av and the growth rate r-1 as functions of 
the unperturbed tune v8. The results are shown in 
Figs. 1 and 2 for the lowest radial mode for the case 
of m=O (rigid bunch mode). It is found that the 
coupling among radial modes does not significantly 
affect the results for the lowest radial mode. To 

;@ai;,~~;, . 
1 and 2, it is only necessary to calculate 

(12) although a more elaborate calculation 
wz: done to justify this approximation. For higher 
order radial modes, however, coupling effects are im- 
portant. The growth rate vanishes at integral and half- 
integral tunes, in consistence with Ref. 9. 
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Fig. 1. Coherent betatron tune 
versus the unperturbed betatron 
the rigid bunch mode m = 0 with 
GeV, 1 ma single-bunch beam. 
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Fig. 2. Instability growth rate (damping 
rate if negative) versus the unperturbed 
betatron tune for the rigid bunch mode 
m=O with a 14.5 GeV, 1 ma single-bunch 
beam. The radiation damping rate at 14.5 
GeV is 110 set-1. 

The dependence on the Q-value of the impedance 
peaks is somewhat sensitive. In the range of Q=5000 
to 10000, our results may vary by about a factor of 2. 
Our  results therefore is accurate only to within such 
a factor. 

Experiments" were performed in PEP to obtain the 
coherent betatron tune shift per 1 ma increase in beam 
current. Weak (~5 ma) single-bunch beams were used in 
these experiments. It was found that 

Avx/ma w -0.002fma 

Avyh s5 -O.O03/ma 

These values are in reasonable agreement with the cal- 
culated value of w  -O.O02/ma. 
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