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ABSTRACT 

I study a class of lattice versions of QED with fermions with the 

aim of clarifying the relationship between the fermion spectrum (doubled 

or not), continuous chiral symmetry, the range of the lattice inter- 

actions, and the validity of perturbation theory. Theories of this class 

with an undoubled spectrum, such as the SLAC formulation, have infinite- 

range interactions and infrared-divergent perturbation series. The in- 

frared singularities can be removed by a resummation of the series. I 

then carry out a renormalization program for SLAC QED after which the 

a -t 0 limit of the theory is finite and coincides with continuum QED. 

Finally, I consider the nonperturbative structure of SLAC QED. 
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1. INTRODUCTION 

Rigorous formulation of a continuum quantum field theory normally 

involves defining the theory as a singular limit of a cutoff or regu- 

larized theory. In perturbation theory many satisfactory regularization 

schemes exist, including Pauli-Villars, dimensional regularization, and 

others. However, for nonperturbative studies of gauge theories, interest 

has focused on the lattice regularization, which has the virtue of pre- 

serving exact local gauge invariance. Block-spin renormalization group,' 

Monte Carlo,2 and rigorous mathematical methods3 have provided a great 

deal of information concerning the phase structure and continuum limit of 

pure gauge theories on a lattice. 

The extension of lattice techniques to realistic theories such as 

QCD has been hindered by uncertainty regarding the proper treatment of 

lattice fermions. Straightforward transcription of the Dirac equation 

to the lattice by replacing derivatives by nearest-neighbor differences 

leads to the so-called spectrum-doubling problem: the continuum limit of 

the latticized Dirac equation describes 2 d fermions rather than just one, 

where d is-the number of dimensions of space-time which are latticized. 

Of the many proposed solutions for this problem, two will be discussed in 

this paper. Wilson4 adds a term with no y-matrix structure to the lat- 

tice Dirac equation. This term functions as a momentum dependent "mass", 

giving the extra fermions masses on the order of the cutoff and removing 

them from the spectrum in the continuum limit. As an additional mass 

term, it also destroys the global chiral symmetry of the Dirac theory at 
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m = 0. The SLAC group5 obtains the correct fermion spectrum and pre- 

serves chiral symmetry by transcribing the continuum derivative as a non- 

local lattice difference operator. The definition is such that in momen- 

tum space the lattice derivative acts as multiplication by ip . 
1-I 

Clearly, if the spectrum-doubling problem is connected with chiral 

symmetry, then it must be fully understood before 1,attice methods can 

give reliable information about the symmetry structure of QCD. Indeed, 

an important issue connected with chiral symmetry in any gauge theory is 

the axial anomaly. Any lattice gauge theory with continuous chiral sym- 

metry must answer the following question. In consequence of the contin- 

uous symmetry, there will be a conserved axial current on the lattice. 

The naive manipulations leading to a non-anomalous Ward identity for this 

current are valid in the presence of the lattice regularization. Does 

the continuum limit of this current exist? If so, doesn't that yield a 

continuum axial current with no anomaly, and isn't that impossible? 

The straightforward transcription of the Dirac equation answers this 

question by doubling the spectrum: the anomaly is cancelled between the 

different fermion species.6 The Wilson formulation answers by explicitly 

breaking the lattice chiral symmetry. An extra term appears in the Ward 

identity and becomes the anomaly in the continuum limit.6'7 In this pa- 

per I will show that the SLAC theory encounters infrared divergences in 

perturbation theory which need careful treatment. Order by order the 

continuum limit of the conserved axial current does not exist due to 

these infrared divergences. 

It is becoming generally recognized that an undoubled spectrum, 

continuous chiral symmetry, and locality of interactions are incompatible 
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though desirable properties of a lattice fermion scheme. Indeed, in the 

literature one can find the claim6'8 that a lattice fermion theory with 

undoubled spectrum and continuous chiral symmetry is itself impossible, 

although the arguments in support of these claims involve additional as- 

sumptions. One purpose of the present work is to clarify the relations 

between these three properties of lattice fermion schemes. 

Before using a particular regularization scheme for nonperturbative 

investigations, one would like to have confidence that it yields accept- 

able results in the familiar context of perturbation theory. Sharat- 

chandra' has shown that Wilson's formulation of QED on a four-dimensional 

Euclidean lattice passes this test. He showed that in perturbation 

theory a multiplicative renormalization of fields and parameters suffices 

to remove all divergences in the a + 0 limit of the S-matrix, which then 

agrees with the S-matrix of continuum QED. The main purpose of this pa- 

per is to give the corresponding analysis for the SLAC version of QED. 

In this case multiplicative renormalization does not suffice: additional 

counterterms are required. This is to be expected, since once long-range 

interactions are admitted the SLAC Lagrangian is by no means the most 

general one consistent with its symmetries. The analysis, like 

Sharatchandra's, should extend to QCD as well. 

Perturbation theory with SLAC lattice fermions has been studied by 

Karsten and Smit in the four-dimensional Euclidean lattice formula- 

tion.6,10,11 They computed both the one-loop vacuum polarization and the 

WA triangle diagrams. They concluded that the axial current did not 

develop an anomaly in the continuum limit. Its matrix elements, along 

with the vacuum polarization, were nonlocal, not Lorentz covariant, and 
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infrared singular in the continuum limit. Furthermore, the theory ap- 

peared nonrenormalizable in that infinitely many Green's functions were 

superficially divergent. Nakawaki12 reached similar conclusions from a 

study of the SLAC theory in Hamiltonian form. In this paper I show that 

the perturbation expansion of Karsten and Smit breaks down owing to the 

infrared singularities. I describe a resummation of the perturbation 

series which removes these divergences, and carry out a renormalization 

program to all orders of the modified expansion. The renormalized 

Green's functions at each order in this expansion go over, for a + 0, to 

those of continuum QED to the same order. 

The paper is organized as follows. Section II reviews the fermion 

doubling problem and explores the reasons it occurs. The SLAC group's 

solution to the problem is discussed, and the "topological" connection 

between spectrum doubling, chiral symmetry, and the range of interactions 

is explained. In Sec. III I summarize Sharatchandra's arguments for the 

renormalizability of Wilson's lattice QED, which form the basis for the 

arguments I subsequently apply to the SLAC theory. In Sec. IV I show 

how continuum QED in a fixed gauge can be faithfully transcribed onto a 

lattice. The SLAC derivative and long-range interactions appear auto- 

matically. Although this is not the SLAC lattice gauge theory which has 

been discussed in the literature, it provides a simple counterexample to 

the claim that no lattice version of QED with undoubled spectrum and 

continuous chiral symmetry is possible. Section V begins the discus- 

sion of the SLAC lattice gauge theory studied by Karsten and Smit. I 

derive the Feynman rules, check the classical continuum limit of the 

Lagrangian, and exhibit the conserved currents and Ward identities. The 
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theory appears nonrenormalizable by power counting. However, the per- 

turbation expansion is shown to be invalid due to infrared divergences 

which arise as a direct consequence of having an undoubled fermion spec- 

trum. The summation of tadpole diagrams is shown to remove both the 

infrared divergences and the problems with power counting. Section VI 

begins the discussion of renormalization. The obstacle to direct appli- 

cation of Sharatchandra's methods is the inability to expand integrands 

in powers of external momenta. I divide the integrals into subregions, 

in each of which the Taylor expansion in external momenta is possible. 

I then give the prescription for order-by-order construction of counter- 

terms, and show that in the presence of the counterterms the a +- 0 limit 

gives ordinary continuum QED. Section VII supplements this rather ab- 

stract discussion by applying the renormalization prescription to one- 

and two-loop examples. Although detailed calculations are not carried 

out, the form of the necessary counterterms is clarified. I consider to 

what extent the counterterms can be generated by resealing fields and 

parameters. Finally, I show that in the renonnalized perturbation ex- 

pansion the conserved axial current still has divergent matrix elements. 

These can be made finite by redefining the current, at the cost of in- 

troducing the usual anomaly. Section VIII summarizes the conclusions and 

points out remaining problems. In particular I consider whether the 

properties of the SLAC lattice gauge theory established in perturbation 

theory will persist in the exact nonperturbative solution. 

Notation: The Einstein summation convention is not used in this 

paper. Summations will be indicated explicitly. 
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11. LATTICE FERMIONS 

This section reviews the spectrum-doubling problem of lattice fermi- 

ons and motivates its solution via the "SLAC derivative". 

Consider the Klein-Gordon equation for a scalar field, 

( a2 -- 
at2 

V2+m2 $(Z,t)=O , 
) 

(2.1) 

The problem of transcribing this equation onto a three-dimensional lat- 

tice with continuous time is solved by making 0 a function on lattice 

sites indexed by 2 and replacing V2 by an appropriate difference opera- 
-t 

tor. Plausible choices are V:, Vt, Vi, and "*V+, where 

vi f(g) = i f(;: + Z') 
[ 

- f(2) 1 
0; f(Z) = i f(Z) 

[ 
- f(;: - di) 3 

, 

, 

v: f(Z) =&f(;:+z*, 
[ 

. 
-f(Z-Z') . ‘I 

(2.2a) 

(2.2b) 

(2.2c) 

(In this paper the variable g indexing lattice sites will always carry 

dimensions: xi =nia where a is the lattice spacing and ni is an integer. 
. 

;f;i is a vector of length a in the i direction.) The spectrum of the 

lattice Klein-Gordon equation is found by seeking solutions of the form 

+(-&) rv .-iEt eig*g , 
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leading to the dispersion relations 

8: : E2 = %xeikia sin2 $cia + m2 , (2.3a) 
a i 

V2 : E2 = 4 a2 Ceeikia sin2 +kia + m2 , (2.3b) 
1 

v: : E2 = Lxsin2 kia + m2 a2 
i 

$i+$+ : E2 = $xsin2 $kia -I- m2 
a i 

, 

. 

(2.3~) 

(2.3d) 

(On an infinite lattice ki is a continuous variable which can be chosen 

to run from -x/a to % /a. The notation A = r/a will sometimes be used.) 

All these expressions reduce to the usual continuum dispersion re- 

lation when a + 0 with g fixed. However, $+ - and ? are not Hermitian: 

the energy in Eqs. (2.3a) and (2.3b) is not real. The remaining possi- 

bilities differ only in the period of the sine functions. Equation 

(2.3d) has the 2a/a periodicity of the lattice while Eq. (2.3~) has 

period v/a. This signals spectrum doubling. For an acceptable spectrum 

only the spatially constant (2 = 0) solution should m inimize the energy. 

For Eq. (2.3~) this solution is degenerate with seven others having 

ki = x/a for some values of i (I$ alternates sign in some lattice di- 

rections). About each of these solutions there is a band of long-wave- 

length excitations, resulting in eight low-lying particle states in the 

continuum limit compared to one for Eq. (2.3d). 

It is not coincidental that Eq. (2.3d) alone is satisfactory. The 

gradient of a function f(c) on lattice sites is naturally defined as the 
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function on links which is the sum (with sign changes for the orientation 

of the link) of the values of f at the sites bounding a given link. 
. 

This is VTf. The divergence of a function f,<3 on links is a function on 

sites given by the sum (with sign changes for orientation) of the values 

of fi on links impinging on a given site. This is c Vif - i' Hence the 
2 
I 

Laplacian is naturally given by $-*$+. The different derivatives repre- 

sent the lattice boundary and coboundary operators,3 which are not equal. 

From a more abstract point of view, what is happening is the fol- 

lowing. Associated with a scalar, vector, or antisymmetric tensor field 

there is a differential O-form, l-form, or 2-form. A rotationally co- 

variant differential operator acting on the field can be expressed in 

terms of the exterior differential operators d and 6 acting on the form. 

A natural latticization is available by associating n-forms with 

n-cochains (functions on sites, links, or plaquettes for n = 0,1,2) and 

d and 6 with the boundary and coboundary operators represented here by 

Vi and ? 0. The problems with fermions arise because they fall into 

spinor, rather than tensor representations of the rotation group and SO 

have no associated n-forms. 

Consider now the Dirac equation, 

(iv.3 -m)$=O , (2.4) 

which is seen to have the same dispersion relation as the Klein-Gordon 

equation by applying iy.3 + m to both sides. Assume this equation is to 

be latticized by substituting a difference operator for the spatial de- 

rivatives, 9 being defined at lattice sites. This assumption is by no 

means necessary, but it does guarantee that the lattice Dirac equation 
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will have the usual chiral invariance when m = 0. The fermion dispersion 

relation will be that of the Klein-Gordon equation whose Laplacian is the 

The acceptable dispersion re- square of the Dirac difference operator. 

lation (2.3d) cannot be obtained! 

The Dirac equation requires a Hermitian difference operator whose 

square is an acceptable Laplacian. The SLAC group5 achieves this in 

terms of the Fourier transform of a lattice function f(z), 

1A 

/ d3p e 
a-f + 

f& , 1pex ?(;) , (2.5) 
-h 
X -A 

by defining Vj f(z) as the inverse transform of ip j 33 l This leads to 

the exact relativistic spectrum E2 = p2 + m2 on the lattice. In coordi- 

nate space the definition is 

V f(Z) = 2 (-l)n+l [f(Z + nZj) - 
j n=l na 

The nonlocality of this operator is essential for avoiding the 

f(Z - nZj) . 1 (2.6) 

spectrum doubling. Indeed, a general derivative operator may be written 

vjf& =x0.(;: - ;) f (;) , (2.7a) 

;: J 

with Fourier transform 

(2.7b) 

where the factor i has been extracted for convenience. The fermion dis- 

persion relation will be 
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(2.8) 

and spectrum doubling occurs if cEi(;) = 0 has solutions other than 
-t 
p = 2&r/a. Usually Ej(G) = E(pj)Jis a function of pj alone, but in any 

case one can fix p i = 0, i # j, and study the function E(pj) = Ej(p) 

alone. Hermiticity requires E to be real, a satisfactory continuum limit 

requires E(pj) + p. as a + 0 with p, 
J J 

fixed, and on general grounds 2 has 

period 2n/a. It is evident from Fig. 1 that if 5 is continuous, it has 

at least one zero for 0 < p. 
J 

< 2n/a, with a band of low-lying states 

around this zero to become an extra fermion in the continuum limit. The 

SLAC derivative (Fig. 2) escapes this conclusion due to its disconti- 

nuity at p. = r/a. One recalls that the Fourier coefficients of a dis- 
J 

continuous function fall off as l/n or slower, so D,(z 
J 

- G) is neces- 

sarily nonlocal. This argument, which also appears in Ref. 6, is a 

simple and intuitive case of the more general topological theorem of 

Ref. 8. 

It is amusing to note that, because a Fourier series converges to 

the mean at a point of discontinuity, the SLAC function E(pj) = pj for 

pjE(-a/a,n/a), extended periodically, does have a zero at p. = v/a. 
J 

However, there is no band of low-lying states surrounding this point. 

It is quite possible for s(pj) to have more than two zeroes. The 

choice 

Vjf(Z) = & 
[ 

f(;: + zj, - f<;: - 2Zj) 3 , 

for example, leads to "spectrum quadrupling". 
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It should be evident from this discussion that there are interesting 

geometric and topological issues connected with latticizing fermions. 

Further research along these lines is in progress. 

III. WILSON's LATTICE QED 

This section reviews Wilson's4 lattice formulation of QED and 

Sharatchandra'sq conclusions concerning its perturbative renormalizabi- 

lity. The method of Sharatchandra's proof is summarized in some detail 

since it provides a canonical set of arguments for establishing the per- 

turbative equivalence of lattice and continuum theories. The analysis 

of the SLAC lattice QED formulation in this paper will be based heavily 

on these arguments. 

Throughout this paper, detailed discussions of lattice perturbation 

theory will be carried out in the four-dimensional Euclidean, rather than 

the Hamiltonian, formalism. This makes available the technical conve- 

niences of the straightforward path-integral quantization and manifest 

symmetry between time and space coordinates characteristic of this 

formalism. 
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Wilson's lattice QED action is: 

I = a4 $A,, ( x> 1 2 

$(x + au)e 
ieaAu(x) 

- $(x - aM>e 
-ie&u(x-au) 1 

- a4 C V(x) -& 
[ 
Q(x + a )eieaAU(X) + Jl(x _ a )e-ieaA~(xvau) - 2$(x) X¶l.l lJ 1-I 1 

- a4 C m?W$W , (3.1) 
X 

where Fuv(x) = V;ilv(x) - V>u(x). (The y-matrix convention is 

For e = 0, the free fermion action is constructed using the deri- 

vative V iI 
iJ 

and would therefore yield a doubled spectrum if not for the 

additional terms in the third line of Eq. (3.1). In momentum space these 

terms read 

-( 2 
a sin2 + Ppa 

) 
S (P)?(P) , 

and they vanish for p + 0 or for a + 0 with p fixed. However, they give 

"masses" of order A to the extra fermions with p 
!J 

= r/a, removing them 

from the spectrum in the continuum limit. They also explicitly break 

chiral symmetry, as is appropriate for a "mass" term. 

The coupling to the gauge field is introduced in a manner consistent 

with invariance under the local gauge transformations 
! 
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A (x) + Au(x) + V;X(x) . IJ 
(3.2) 

The second term in Eq. (3.1) serves to fix a “covariant" gauge. The form 

of the photon kinetic energy (not periodic in $) identifies this as the 

noncompact formulation of QED; the compact formulation would replace 

F;\)(X) by 
iea2FPv(x) 

Finally, note that the lattice derivatives in Eqs. (3.1) and (3.2) are 

used "naturally" in the sense of Sec. II: Vi is used to create the 

plaquette variable F 
UV 

from the link variable Au while Vi forms the 

scalar divergence of the vector A . 
!J 

Expanding the exponentials in Eq. (3.1) and introducing the Fourier- 

transformed fields permits one to read off the Feynman rules from the 

coefficients of the terms in the action. For the photon field it is 

convenient to define the Fourier transform by 

ip*(x+&au)" 
A,,(P) , (3.3) 

so as to get real expressions for propagators and vertex functions. For 

example, the Fourier transform of -iV;$(x> will be (2/a) sin(%pUa) x,,(p) 

rather than (l/ia)(l-e -ipua > $(PL Some of the resulting Feynman rules 

are given in Fig. 3. 
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Strictly speaking, the Feynman rules require an integration over 

the momentum of each internal line. In the continuum theory, many of 

these integrations are trivial because of the momentum-conserving delta 

functions. On the lattice, however, one has at each vertex a factor 

a4 c exp i(xk)*x = (~IT)~ 6ier(xk) , 
X 

where 

6 per(4) 3 5 S(q + 2nA) . 
n=-cn 

(3.4) 

It is shown in the Appendix that because the Feynman integrands are 

themselves periodic functions of momenta, the trivial integrations can 

still be done. Thus even on the lattice one can label Feynman graph 

lines with exactly conserved momenta and perform nontrivial integrations 

only over a set of loop momenta. 

Sharatchandra showed that this set of Feynman rules defines a mul- 

tiplicatively renormalizable lattice QED: fields and parameters can be 

resealed so that when a + 0 the Green's functions are finite and iden- 

tical to those of ordinary QED. (In fact, Sharatchandra considered com- 

pact QED, which is technically more complicated.) This is demonstrated 

in four steps. 

1. The Feynman rules reduce to the continuum Feynman rules when a + 0 

with momenta fixed. Since the Feynman rules reflect the momentum- 

space coefficients in the action, this merely means that the action 

has the correct classical continuum limit. However, it does imply 
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that if a normal diagram (one containing no multiphoton vertices) 

converges as a -t 0, it agrees with the continuum result for the 

diagram. 

2. The list of primitively divergent diagrams and their superficial 

degrees of divergence (for a -t 0) coincides with the list for con- 

tinuum QED. For normal diagrams this can be shown by bounding 

lattice quantities by continuum quantities. For example, for the 

photon propagator, 

implies 

Now imagine shrinking some internal fermion propagator to a point 

in a normal diagram. The loss of this propagator increases D by 

one unit, but a two-photon vertex is created which carries an ex- 

plicit factor a according to Fig. 3. Hence D is unchanged. This 

argument generalizes to show that the presence of multiphoton 

vertices does not interfere with power counting. 

3. All Feynman integrands possess Taylor expansions in powers of their 

external momenta. Ignoring infrared problems, e.g., by assuming 

a photon mass, this means that the BPH procedure of subtracting 

the first D+l terms in the Taylor expansions of divergent sub- 

graphs, with combinatorics handled by a forest formula, can be 
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implemented. It follows from point (1) that normal diagrams take 

on their continuum values when a + 0 after the subtractions are 

done. If a divergent subgraph contains a multiphoton vertex then 

it has the form aN times an integral of @'(l/aN+D), N11. After 

M-1 subtractions this becomes aN@(l/a N-l ), so all such diagrams 

vanish when a + 0. 

4. It remains to enumerate the counterterms which are required to im- 

plement the BPH subtractions. As in the continuum theory, the 

Ward identities are useful here. They are derived, as usual, by 

making a change of variables corresponding to an infinitesimal 

gauge transformation in the path integral for the vacuum functional 

in the presence of sources. The action proper is invariant under 

such a transformation but the gauge-fixing and source terms are 

not. The Ward identities state that the contribution of these 

terms does not affect the vacuum functional. It should be evident 

from Eqs. (3.1) and (3.2) that the Ward identities differ from 

their continuum versions only in the replacement of a., by V.,. They 

read, in momentum space, 

CSU(k)I'u(p + k,p) = S,'(P + k) 
?J 

c S,,(k) ~,,,$k) = 0 
w 

CI I-J 

+P) , 

, 

(3.5) 

(3.6) 

c S~(kl)IUVXr(kl,k2,k3’kq) = 0 9 (3.7) 
1-I 

where Suck) E 3 sin%kua and Iuvhn is the photon-photon scattering 
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amplitude. By substituting the Taylor expansions of the amplitudes 

into the Ward identities and using the lattice cubic symmetries one 

can show that I !lVAlT is not divergent, the divergent terms are at worst 

logarithmic, and the momentum dependence and tensor structure of 

these terms is exactly as in continuum QED. Because the action 

differs by terms of order a from the continuum QED action, it fol- 

lows that multiplicative renormalization of fields and parameters 

generates precisely the needed counterterms, plus additional terms 

of order a Rn a which have no effect when a + 0. 

These arguments have been reviewed in detail so that the reader will 

understand exactly what ingredients go into a proof of perturbative 

equivalence of lattice and continuum field theories. In Sec. V I will 

discuss the problems that arise in applying the same arguments to the 

SLAC version of lattice QED. 

IV. FAITHFUL LATTICE TRANSCRIPTION OF QED 

In Sec. II it was pointed out that with the SLAC derivative one can 

construct a lattice free fermion theory with continuous chiral symmetry 

and a sensible spectrum. I now give an "existence proof", showing that 

in fact a lattice QED can be formulated which continues to enjoy these 

properties and makes sense in weak-coupling perturbation theory. This 

serves as a simple counterexample to statements in the literature that 

no such formulation is possible.6r8 

The idea here is to make contact between continuum and lattice field 

theories via a momentum-space formulation which both share. This tech- 
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nique has been used by the SLAC group5 and by others13 and in fact moti- 

vates the introduction of the SLAC gradient. 

The Euclidean action for ordinary continuum QED reads: 

I = - c G(x) i yppp + ieA,,(x)]JI(x) 
P 

- mJI(x)J1(x) . I (4.1) 

The first step is to fix the Coulomb gauge and eliminate the dependent 

variable A 0 by means of its equation of motion: 

I 

- miJ(x>$(x) - c e$b)YjAj (x)$(x) j (4.2) 

+ e2 
/ 

d4x1 6(t - t') 

8711; - 
- $‘mmJtwMx’) l 

x"II 1 
It is to be emphasized that I is manifestly gauge-invariant because it is 

written in terms of gauge-invariant fields: 
+ 
A is now the transverse 

photon field and 3, is the Coulomb gauge (physical) electron field. All 

gauge degrees of freedom have been removed. These degrees of freedom are 

not true quantum variables and should not be included in the transcription 

to the lattice. The action (4.2) is now written in momentum space: 
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k2:(k&-k) - ;(k)y*k$(k) - m~W$(k) 

-e d4p d4q 

(2n) 4 
%&*ikih) S4(p + 4 - k) (4.3) 

+ L e2 d4pd4qd4!2 1 
2 (2a>8 (t - ill2 

$+(k);(R)$+(p)T(q)64(k+p-II -q) 1 . 
Next, impose a cutoff A on the magnitude of each component of momentum 

in Eq. (4.3). (This is why it was necessary to write I in terms of 

explicitly gauge-invariant variables. Had that not been done, gauge 

invariance would have been lost at this point.) The resulting action 

could equally well be interpreted as the momentum-space action of a lat- 

tice field theory, namely: 

I lattice = a 8c 
XSY 

-$ d(x-y)~(x)*~(y) - a8 c q(x) i y,D,(x-y)*(y) 
X¶Y,FL 

- a4Cm$(x)7j(x) - al2 
X 

C ef(x,Y,Z)GCx>YjAj (Y)+(Z) 
x,y,z,j 

+ al6 C 
x,x’ ,Y,Y’ 

+ e2g(x,x' ,y,y’)~+(x>~(x’)~+(y)~(y~) , (4.4) 

where 

*4 
d(x-y) = dk 

(2a)4 

k2eik*(x- y) 
, 

s 

* 4 
Du(x-y) = % 11 ik eik*(x-y) 

, 
-* (XT) 
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A 

fb,Y,Z) = / 
d4kd4pd4q e i(k*x - p-y - q*z) 

S4(P + 9 -k) , 
-A (2x1 8 

A 

gh,x' ,Y,Y’> s 
= d4kd4pd4qd4Q 1 

-A (21r)12 lLT12 

ei(k*x+p*y- R-x' - q*y') 4 6 (p+k-R-q). 

The nonlocal coefficient functions here are all translation-invariant and, 

except for g(x,x',y,y') which contains the noncovariance associated with 

the Coulomb interaction, invariant under the lattice 

Du(x- y) is just the SLAC derivative operator. Note 

formulation there is no possibility of assigning the 

to the links of the lattice: all fields are treated 

and may as well be situated on the sites. 

cubic symmetries. 

also that in this 

photon field As(x) 

on an equal footing 

The lattice theory (4.4) may be quantized by the path-integral 

technique provided one integrates only over transverse gauge fields with 

&&k) = 0. It is evident that in all respects - including perturbation 

theory - the theory is equivalent to Coulomb gauge continuum QED regular- 

ized by a momentum cutoff. To each continuum operator there corresponds 

a lattice operator, obtained by a double Fourier transform, with the same 

regularized matrix elements. The fermion spectrum is sensible and there 

is chiral symmetry for m = 0. Also, there are no umklapp processes: 

momentum conservation in Feynman diagrams is exact rather than periodic, 

and propagators and vertex functions are identical to those of continuum 

QED. The theory can be given a finite a + 0 limit by including in the 

momentum-space action the counterterms needed to renormalize continuum 

QED. Because of the momentum-cutoff regularization, photon mass counter- 

terms will be needed. For I+~ theory in l+l dimensions all necessary 
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counterterms are known exactly and this program has been carried out 

explicitly by Bronzan.13 

Although this procedure provides a lattice theory which faithfully 

represents continuum QED, it is not a lattice gauge theory. A lattice 

gauge theory possesses a local gauge group on the lattice under which the 

action is invariant but the fields transform nontrivially. The above 

theory does not qualify because the gauge freedom in the fields was re- 

moved before transcription to the lattice. In the next section I dis- 

cuss the lattice gauge theory constructed using the ST.& derivative. 

The lattice theory constructed above possesses neither a local gauge 

symmetry nor periodic momentum conservation. It is easy to understand 

qualitatively why these properties are connected. At a technical level, 

perturbative proofs of Ward identities require shifts of integration 

variables which are made possible by periodicity. More generally, con- 

sider a term in the lattice action 

F(xl,x2,- x,)4(x,)~(x,). l 4(x,) ,  

where (p is a generic field. Assuming that F is translation invariant its 

Fourier transform F(pl,p2... p,> can have support only when c pi = 0 

mod 2r/a. To obtain exact momentum conservation F must be so chosen that 

its support lies in the subregion c pi = 0: not all momenta can be al- 

lowed to become large simultaneously. This is the case for the coeffi- 

cient functions in Eq. (4.4). However, a gauge symmetry which is local 

in coordinate space will affect the high-momentum components of fields. 

A gauge-invariant coupling term will couple high-momentum components of 
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fields, so that in general the support of F cannot be restricted to 

Lpi = 0. 

V. SLAC LATTICE GAUGE THEORY 

A. Introduction 

This section begins the discussion of the lattice gauge theory with 

action 

I = a4 c -!- F2 (x) -t a4 
x,ll,v 4 lJv 

Y 
8 -a c imY 1-I + D,,(x - Y)+(Y) exp iea c 

X9YYl.l z=x 
A,,(z) 

4 -a c mSW$W , 
X 

where Fpv(x> = V:ALI(x) - VzA,,(x) , 

(5.1) 

= (-1) xJa 4 
/a x if xu # 0 but x = 0 for all v # u 

!J V 

= 0 otherwise, (5.2) 

Y 
and the notation c Au(z) means the following. Owing to the presence 

in Eq. (5.1) of tl?SLAC derivative function Du(x-y), the summation 

need only be defined in case x ~ f Yp but xv = y, for all v # p ~(x and y 

are separated in the p direction only). In that case it means the sum 
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of the values of AP on the oriented links between x and y: 

Y 
c 
z=x 

All(z) means 

(yu-xv-a)/a (xl-r-yp-a) /a 

8 (Yp - XJ c c 
n=O 

Au(x+naP) - e(xu-yu) 
n=O 

Au(y+naP) . 

For e = 0 the fermion action is that of the SLAC formulation, with un- 

doubled spectrum and continuous chiral symmetry for m = 0. The action 

is invariant under the gauge transformations of Eq. (3.2). Since the 

photon action is exactly as in the Wilson formulation it should be clear 

that the Ward identities are still given by Eqs. (3.5) - (3.7). In 

particular, the nearest-neighbor derivative, not the SLAC derivative, 

appears in Ward identities. (Nakawaki12 has considered a lattice theory 

in which all derivatives are taken to be ik in momentum space. This 
u 

simply replaces Su(k) by k everywhere without affecting the arguments 
lJ 

to follow.) However, the consequences of the Ward identities are vastly 

different for the theories (3.1) and (5.1) due to the different fermion 

spectra. This will emerge shortly. 

The theory (5.1) possesses a conserved electromagnetic current which 

can be identified by considering the coupling to an external field: 

CO--' 
?J 

uJ,$d = 0 , 

jp(z) = 
61 

a46Art(z) Aext = o 
u 

(5.3) 

= -ea 5 xFy F(x)y D (x-y)+(y) exp iea 5 A (w) + h.c. l 

lJlJ 
W==X 

i-I 

x  lz <y 

lJ i-I 1-I 

zv=xv ,v#u 
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There is also an axial current, conserved for m = 0: 

C V,jz(z) = 2im$(z)y5$(z) , 
u 

(5.4) 

j:(z) = a5 C x,y $(x)y,v5Du(x-Y)$(Y).~P iea 5 Au(w) + h*c. 
W=X 

x 'Z <y 
IJ 1-I lJ 

ZV =xv ,v#lJ 

Both these currents are gauge invariant. 

By expanding the exponential in the action and introducing Fourier 

transforms, one derives what I shall call the naive Feynman rules. 

These are given in Fig. 4. Momentum conservation in this theory is once 

again modulo 2n/a. The first point to observe is that the continuum 

Feynman rules are indeed recovered when a + 0 with all momenta fixed. 

This verifies that the action has the correct classical continuum limit, 

a fact which is not immediately apparent from Eq. (5.1). The most 

striking feature of the naive Feynman rules, however, is the presence of 

infrared singularities in the vertex functions. The one-photon vertex, 

for example, 

5 (P) - 5 (p+k) 
e-f lJ S,,(k) , 

behaves as -2neyu/akU as ku + O+ with p + r/a from below and 
1-I 

plJ + kiJ 
+ n/a from above. This is a consequence of the discontinuity in 

EP(p) at P ?J 
= .rr/a, and thus, indirectly, of the Ward identity (3.5) re- 

lating the vertex to the fermion propagator. These singularities have 

important consequences for the renormalization program a la Sharatchandra. 

Due to the singularities and discontinuities in the vertices, naive 
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Feynman integrands do not possess Taylor expansions in powers of external 

momenta. Furthermore, the singularities alter the results of naive power 

counting. A diagram with F external fermion lines and B external boson 

lines would normally have superficial degree of divergence D = 4-(3/2)F-B. 

Here, however, for each external photon line there is a factor l/SV(k) 

which sits outside'the integration and does not help to converge it. The 

integral is left with D = 4 - 4 F. The infinite class of diagrams with 

F = 0 or 2 is superficially divergent! Due to the infrared singularities, 

then, the crucial steps 2 and 3 in the renormalization program of Sec. III 

do not go through for SLAC fermions, and the theory indeed appears non- 

renonnalizable. 

Karsten and Smit base their objections to the SLAC lattice gauge 

theory on the above points, which they have explicitly verified in the 

example of the one-loop vacuum polarization.'l They found that II 
I.lV 04 

had D = 2 even after the cancellations due to gauge invariance. In the 

continuum limit there are infrared singular terms with unacceptable 

(nonlocal) tensor structure in both the divergent and finite terms, a 

typical structure being 

n,,v 04 N f=y c lk,l - sign k sign k 

kv x 
IJ V 

. 

+ other singular terms. 

(5.5) 

(Note that the Ward identity xk II = 0 is satisfied!) 
~ 1-I lJv 

Furthermore, since the necessary Taylor expansions do not exist, there 

is no natural way to make the separation into divergent terms and finite 
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remainders which defines the counterterms required. Since the Green's 

functions are not differentiable, the conventional normalization condi- 

tions do not make sense. 

It is important to understand clearly the origin of the infrared 

singularities in the vertex functions. They come from the term in the 

action 

-a8 c 
X,YP?J 

?(x)y, $ D,(x-y)+(y) exp iea 5 A,,(z) l 

2=x 

(5.6) 

The exponential factor, in momentum space, involves a geometric sum: 

Y A4 dk exp iea C - e 
J 

ik*z 

z=x (2l-r) 4 

eikya/2 xv(k) 

-A 
A 

s d4k eikex - e ik*y 
= exp iea - 

-I\ w4 1 _ eiklJa 
eikua'2 ;ill (k) 

A 

= exp -e 
/ 

d4k eikex - e 
ik*y 

- 
-A ad4 S,, 04 

x,,(k) 9 (5.7) 

The singular factors l/Sll(k) enter the vertices via the expansion of this 

exponential in powers of e. However, consider the behavior of the inte- 

grand in the infrared region k + 0; 
u 

it is proportional to ilx 
?J 

- yVl. 

Since x and y are summed over all lattice sites in (5.6), the distance 

between them is unbounded. This means that the expansion of the expo- 

nential to any finite order n in e cannot be a uniformly valid approxi- 

mation over the entire range of values of 1x 
P 

- ~~1. If the expansion 

is attempted anyway, its nth term will behave as Ix - yVI 
n-l 

. Since 
1-I 
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the function Du(x-y) in (5.6) falls off only as Ix -1 
1-1 

- yul , the indi- 

vidual terms in the perturbation expansion will be divergent in the in- 

frared. The conclusion is that the infrared singularities in the naive 

Feynman rules are symptomatic of an invalid perturbation expansion which 

does not accurately represent the infrared behavior of the theory. I 

emphasize that the fault lies with the perturbative expansion rather than 

with any inconsistency in the theory. If the expansion in powers of e is 

avoided then the 'exponential enters the sum (5.6) as a rapidly oscillating 

phase when Ix 
u 

- yul is large. Such a phase factor actually improves 

convergence of the sum. Finally, note that perturbation theory can fail 

even when the fermion spectrum is doubled. If Dn(x-y) has a power-law 

falloff faster than Ix - yUI -1 
1-I 

then as pointed out in Sec. II the spec- 

trum is doubled, but singularities will still appear at sufficiently high 

order in perturbation theory. The equivalent momentum-space statement is 

that even if '2ju(p) is continuous, a discontinuity in its nth derivative 

induces a singularity in the (n+l) - photon vertex function. This fol- 

lows from the recursion relation for the vertices in Fig. 4. A nonsingu- 

lar perturbation expansion is obtained only if Dn(x- y) falls faster than 

any power of Ix 
1-I 

- yul. Such a DU(x-y) strongly suppresses the contri- 

butions from the region of large IxN - yPI where the expansion of the 

exponential is invalid. 

The failure of naive perturbation theory discussed above becomes 

evident from the structure of II 
PV 

in Eq. (5.5). Consider a diagram in 

which the one-loop lTPv(k) appears as a subgraph. The integration over 

k encounters a l/kusingularity. Such a singularity is not integrable, in 

contrast to the usual infrared singularities which often are, e.g., 
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J d4k/k2. Since the singularity arises from a vertex function rather 

than a propagator, it also is not regularized by a photon mass, and 

simply leads to a divergent amplitude indicating the breakdown of per- 

turbation theory. 

B. Removal of the Infrared Problem 

Now that the origin of the infrared problems which plague naive 

perturbation theory is clear, how can they be circumvented? The most 

obvious approach is simply to impose a cutoff on Ixu-ypl in the nonlocal 

interaction Lagrangian: 
Y 

c q(x) Y, + D,, (X-Y) 4’ (Y) exp iea z 
z=x 

Au(z) 
X,Y YU 

-c w4 Y 
X9Ysl.l 

u + D,, (X-Y> 4’ (Y) 

+ z T(X) Y,,i Dp(x-y)$(y) Au(z)-1 . 
XYY,s.I I 

1 x,,-Y; 1 < Na 

The cutoff permits a nonsingular expansion in powers of e but destroys 

manifest gauge invariance. Therefore the cutoff must be imposed in the 

fixed gauge in which quantization is performed. This should be a physical 

w-w=, since otherwise the loss of the Ward identities will jeopardize 

unitarity. 

I now show that in fact an ad hoc cutoff is unnecessary since the 

theory generates its own cutoff. Consider for example the bare one-photon 

vertex function, and add to it all diagrams in which additional photons 

are emitted and absorbed at the same vertex (Fig. 5). The sum gives the 

vertex function computed to lowest order in the interaction Lagrangian 
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rather than lowest order in e. The diagrams are most easily summed in 

coordinate space, where they yield 

c 5 
x' ,y' ,p z' = x' 

iea SF(x-~')yuD~(x' -y')SF(y' -y)Anv(z- z') 

Y’ Y’ 
X l- $ e2a2 C 

=x' w 
C 

w1 
=x' 

APP(wl - w2) + . . . 

2 

+ (-1P . (2n)! (2n-1)(2n- 3>...l(ea)2n 2 A (wl-w2)... 

wl"**w2n=X 
1 1-IlJ 

Aup b2n-l - w2n) + - - - 1 , (5.8) 

where the combinatorial factor (2n-1) (2n-3) . ..l is the number of ways 

of pairing the points w 
1 ‘“‘W2n in the photon propagators. The sum in 

brackets exponentiates, giving 

Y’ 

exp _ 1 .2,2 
2 c 

w1,w2=x' 
A,,,,(w1-w2) 

1 

= exp - $ e2~2wl,~~x1~A~ eik*(w1-w2)AuP(k) 

A 
12 d4k e ik*x' ikay' 2 

=exp--e ~ 
2 s -A w4 

Sli;k; AUP . (5.9) 

A similar calculation applies to the multiphoton vertex functions. The 

inclusion of these photon tadpole contributions to the vertex functions 

thus generates effective Feynman vertices which differ from the naive 



-31- 

ones of Fig. 4 only in the replacement 

Dp(x-y) -f g,(x-y) E Dp(x-y) ew- +e2 - 

2 

= D (x-y) exp - 1 e2 2 ~ a 
% $,(x-y) 

!J sin 2 $ka 
' A,+(k) . 

u 

At issue is the large-distance behavior of gU(x>. Since14 

sin 2 +nx 
2 - 21T 6 

n sin $X n-ta per(x) ' 

one has 

'iB,,h> x Du(x) exp - ve2 
J 

* 4 
+ $,,,(k)~(k,,)x~ , 

u -* (2l.f) 

2 
$1-l 04 

(5.10) 

(5.11) 

and g,(x) falls off exponentially fast. It follows that the Fourier 

transform$(p) and all its derivatives are continuous, and that there 

are no infrared singularities in any of the modified vertices. Although 

SW(p) as a function of pu has unit slope at pV =0, there is no reason for 

GP(p) to share this property. This means that ultimately a finite re- 

normalization will be required to express the theory in terms of a charge 

defined by the static limit of the electron-photon vertex rather than the 

parameter e. This is discussed more fully below. Figure 6 shows the 

expected behavior of $n(p). 

In general, the summation of a selected class of diagrams is not a 

gauge-invariant procedure. This is reflected in the explicit appearance 

of the photon propagator in Eq. (5.10). gu(x-y) is thus a gauge-dependent 
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function. It will be shown, however, that the S-matrix has a gauge- 

invariant continuum limit order by order in the modified perturbation 

expansion. 

Summing the diagrams of Fig. 7 effects the replacement Du(x-y) + 

$(x-y) in the fermion propagator, resulting in a doubled spectrum 

according to the analysis in Sect. II. Since we wish to develop a 

perturbation expansion about the free field theory with undoubled fermion 

spectrum, this replacement must be undone by the addition of a counterterm 

c i%d Y,, + [Dub-y) - $(x-y)]$(y) , 
XYY ,lJ 

(5.12) 

again in the fixed, physical, quantization gauge. Of course this amounts 

to an assumption that the interacting theory (5.1) has the same qualitative 

spectrum as the noninteracting e=O theory. The validity of this assump- 

tion is discussed further in Sect. VIII. 

The resurmnation of perturbation theory discussed above is most clearly 

understood in the Hamiltonian formulation of the theory in the physical 

Coulomb gauge.15 The Hamiltonian (now on a three-dimensional lattice) is 

Y 
f a6 x 5(x'> yj iDj (~-~>Q(~> exp ieaz A:($ , 

2-J 33 
X,jr,j z=x 

+ -t 
V l ++ q&i> = -6, ,  &T) = d2(iI> ,  _ v  *-iiT= .  (5.13) 

x90 

The summation of photon tadpole diagrams simply corresponds to normal- 
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ordering the exponential in Eq. (5.13). Including the counterterm 

analogous to (5.12) the Hamiltonian becomes: 

H = a3 C [s E:(z) + $ B2& + m?(G) $(;)I 
-t 
X 

+ a6 c 

[ 

?<:> 
+3 

Yj+ Dj&-;)$(;) 

x,Y,j . 

F 
+ 743 Y j :expiea z -t-t 

A;(;)-1: , 

z=x I 

A 
12 = Dj(z-T) exp-Te 

s 
d3k iZ*s e -e iZaG 

-A (2a) 32 j%> 1 

2 

(5.14) 

H is gauge invariant because the fields appearing in it are, but Ward 

identities which state that Su(k) terms in the photon propagator do not 

contribute to physical quantities do not hold. This may be understood 

as follows. In a more general gauge, related to the Coulomb gauge by a 

time-independent gauge transformation, a structure $($)Dj(g-G) $6) in 

Eq. (5.14) appears as q(z) Dj(z-G) VJ(;) 
9 

expiea CA;(z). Thus "4, is . 
2=: 

coupled to the conserved current 
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ji(t) = -ea4 

xj=zj ‘J 'fi 

Y 
expiea z A;(;) - 1 : 

I 
+ h.c. 

(in Coulomb gauge) 

the nonconserved 

j;(Z) = -ea4 

Z=?i J 

as required by gauge invariance, while couples to 

-+ 
Y 

: exp iea z A;(;) : + h.c. 
3-t z=x 

x . szicy. 
1 

X.=Z.,J 1 
J J 

.;. 

jo(z) = -e$(g)$(z) in either case. 1 In continuum QED +k and T enter 

the action only through the local field 2, so both couple to the same 

current. 

The effective vertices possess all the properties required for a 

proof of renormalizability as in Sec. III. The functions involved are 

Cm and possess the 

counting now works 

required Taylor expansions. Furthermore, naive power 

properly. A diagram with F external fermions and B 

external photons is l/So(kl)SB(k2)... Su(kB) times an integral with super- 

ficial D = 4 - $ F. But the absence of infrared singularities requires 

that the Taylor expansions of the vertex functions in the integrand be- 

gin with the term of order klak2g...k 
BFc' 

reducing D to 4 - $ F - B. 

Similarly the numerator of an n-photon vertex must go as k k luk2u"' nu 
n-l 

when the k's are small, and this must be accompanied by a factor a on 
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dimensional grounds. Hence multiphoton vertices are accompanied by 

factors of a as required in the arguments of Sec. III. However, one 

obstacle remains to the application of Sharatchandra's arguments to the 

SLAC lattice gauge theory: the presence in the fermion propagator of 

the discontinuous function E,(p). This problem is addressed next. 

VI. PROOF OF RENORMALIZABILITY 

So far it has been established that in the modified perturbation 

expansion for the SLAC lattice gauge theory, the vertices are infinitely 

differentiable functions of momenta and naive power counting correctly 

gives the degree of divergence of Feynman integrals. In general, dia- 

grams will actually have their full superficial degrees of divergence 

since the Ward identities which normally reduce D do not hold order by 

order in this expansion. However, Feynman integrands still do not pos- 

sess Taylor expansions because the fermion propagators contain the dis- 

continuous function 5,(p). This difficulty exists in any lattice field 

theory in which there is (a) periodic momentum conservation, and (b) 

fennions with undoubled- spectrum. In this section I explain how to carry 

out a subtractive renormalization program for such theories. The next 

section considers the form of the counterterms required to implement the 

subtractions. 

Consider an arbitrary Feynman diagram. The corresponding amplitude 

takes the form 
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where k denotes the external momenta and I is written using the Feynman 

rules. At this point I(R,k) possesses an expansion in powers of k 

because for (E~]<A, n"u(~2) = Lu which is perfectly continuous. A(k) does 

not have an expansion, though, because the periodic &-functions contain' 

additional dependence on k. 

Choose now a subset (q) of the momenta I!21 to act as independent 

loop momenta. According to the Appendix the trivial integrations over 

{G) - {q) may be done provided I(R,k) is a periodic function; provided, 

in other words, the fermion propagators are written in terms of the 

discontinuous En($) instead of simply I1u. The integrations then result 

in a discontinuous integrand I(q,k). However, since su(&) is piecewise 

continuous, the domain of integration can be divided into subregions with 

I(q,k) continuous in each. 

An efficient way to do this is to return to Eq. (6.1) and to sub- 

stitute for the periodic g-functions 

6ier(p) = F 2 6 (P,, + 2nu*) l 

n z-03 

P 

(6.2) 

Since only.finitely many lines enter each vertex of the graph, and all 

lines are restricted by IL~~<A, only finitely many terms in the sum can 

actually contribute. Doing trivial integrations then yields 

. I.e., a sum of integrals indexed by j. The integrands Ij(q,k) are 
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generally all different, as are the functions Ily(q,k) which give the pth 

component of the momentum in line R in terms of q and k. In writing 

Ij(q,k), D,(a) is to be replaced by Rp as is permitted by the e-functions. 

Each integrand Ij(q,k) thus has a Taylor expansion in the variables k. 

Let j = 0 label the integral with no umklapps - nu = 0 in Eq. (6.2) for 

every periodic &function in Eq. (6.1). The terms j # 0 are diagrams in 

which momentum components in multiples of 2A enter vertices "from no- 

where" in all possible ways. 

Consider one particular integral labelled by j. The integral will 

be made finite in the limit a + 0 by replacing Ij(q,k) by a renormalized 

integrand Rj(q,k) via the following prescription. As in ordinary BPH 

renormalization, lay down forests of nonoverlapping boxes on the diagram, 

each box surrounding a renormalization part - a 2-, 3-, or 4-point 

function. Make the usual subtractions of the first D+l terms of the 

Taylor expansions of the boxed subgraphs, with the following exception. 

If a box contains an umklapp process (if the external momenta of the 

boxed subgraph do not sum to zero, but to a multiple of 2A, which can 

happen only for 3- and 4-point functions) then no subtractions need be 

made for that box. The reason for this exception is the following. 

According to the usual criterion a Feynman integral converges if all 

subintegrations have D< 0, a subintegration being an integral over a 

subset of the q's with all other momenta held fixed as a + 0. The in- 

tegration over the internal momenta of a boxed umklapp process does not 

count as a subintegration because the external momenta cannot be held 

fixed when a + 0. Renormalized Green's functions are not required to be 

finite when their external momenta approach infinity! 
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After the subtractions are made, the jth integral is guaranteed to 

be finite when a + 0, even ignoring the S-function constraints in Eq. 

(6.3). The e-functions impose additional restrictions on the region of 

integration, so including them does not make a formerly finite integral 

diverge. As in Sec. III, if the diagram under consideration includes a 

multiphoton vertex then the explicit factors of a in such a vertex cause 

the renonnalized diagram to vanish as a + 0. For a normal diagram, the 

integrand Io(q,k) of the no-umklapp term in Eq. (6.3) becomes the con- 

tinuum Feynman integrand for the same diagram when a -+ 0 (provided the 

continuum parameter e is identified as the coefficient of y in the zero- 
1-I 

momentum lim it of the lattice one-photon vertex). The e-functions make 

a negligible contribution in the limit a + 0, so the renormalized j = 0 

integral at a = 0 equals the corresponding renormalized continuum inte- 

gral. Finally, consider the j + 0 contributions to a normal diagram. 

The integral of Rj(q,k) is finite. Now consider the effect of the 0- 

functions. There is a vertex of the graph at which some components of the 

three entering momenta sum to 2nA, n # 0. Since no momentum exceeds A 

(B-functions!), at least two momenta are large on the scale A (and in- 

cidentally n = f 1). These large momenta may be traced through the graph; 

eventually a large momentum must flow through a line carrying one of the 

integration momenta q. But if one has an integral from -A to +A, finite 

when A + 00, and adds a B-function requiring the integration variable to 

be of order A, the result vanishes for A + 01. Hence all j $1 0 terms 

vanish for a + 0. 

It has now been shown that in the modified perturbation expansion 

for the SLAC lattice gauge theory the subtracted Feynman integrals yield 
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the usual results of continuum QED order by order when a + 0. It follows 

trivially that the a + 0 limit of the S-matrix is in fact gauge-invariant 

despite the gauge dependence of the lattice expansion due to the summa- 

tion of photon tadpoles. It is clear that the subtractions described 

above can be implemented by counterterms in the action, but the structure 

of these counterterms is not as simple as in the case of Wilson's QED. 

This is discussed next. 

VII. STRUCTURE OF COUNTERTERMS 

A. Examples 

This section presents some examples of the renormalization program 

just discussed for lattice theories with undoubled fermion spectra, with 

the purpose of exhibiting the types of counterterms to be expected. 

Since the Ward identities are not maintained order by order in the modi- 

fied perturbation expansion for lattice QED, there is no formal differ- 

ence between the renormalization program for lattice theories with and 

without local gauge invariance. Therefore, to save indices, the examples 

here are taken from a theory of SLAC fermions interacting with scalar 

mesons via a g$(x)$$x)$(x) coupling. 
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1. Scalar Self-Energy 

The one-loop scalar self-energy (Fig. 8) is given by 

A 
ll = g2Tr 

s 
d4qd4Q SF(q)SF((l) 6;,,(p+e-q) 6zer(q- R-P') 

-A 
A 

= g2Tr 
u- 

d4qd4R SF(q)SF(L)64(p+L-q+2nA)64(q-&-p'f2mA) 
n,m -A 

A 

= g2Tr 
a- 

d & 

n,m 
R SF(p+R+2nA),SF(.R) n B(A - Ipn+Rn+2nll*I) 

-A 1-I 

x 64cp - p' + 2(m + n)Al , (7.1) 

where m and n are four-vectors with integer components. The fact that 

all momentum components are bounded in magnitude by A imposes the re- 

strictions m = - n and n 
u 

= 0, t 1. Extracting the overall momentum 

conserving b-function gives 

A 

d4R SF(p+R+2nA)SF(R) fl e(A- Ipu+Rp+2nu*/) , 
lJ 

(7.2) 

where SF(q) now means (y-q + m) -1 N , Du(q) no longer appearing. 

Consider first the no-umklapp (n = 0) contribution: 

g”! [~~~~~~~] Tr S,(p + a)S,(a) 

lJ 

(7.3) 

g'l-l 

A-P ?J = dk,, + 8(-Pu) Tr SF(p+fi)SF(R) . 
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It is clear that apart from the e-functions the integrals have expansions 

in powers of p 
v 

of which the terms up to @(p2) may be divergent, while 

subsequent terms must give the continuum results when a + 0 with p fixed. 

The discontinuous behavior of the integrand has been isolated in the 0- 

functions which appear because one must know the sign of pn to tell 

whether pn + R 
1-I ' * Or pP + R 1-( 

< -A is possible for 1111,1 < A. The 

required counterterms will have the form 

B(+P 0 >@ (+P$ 0kp2) 8(*p3) A + c Bupp + c ~(p&-p> , (7.4) 
IJ !J,V 

with A,B ,C since 
u I.lv 

divergent constants. Indeed, one can say more: 

II (p) has definite symmetry under p + -p, B(pu) must appear in the even 

and odd combinations e(pu) + f3(-pV) = 1 and 8(pP) - f3(-pu) = sign pU, 

giving counterterms 

( A + c BJpJ + c c~vp~Pv + c QIPJ IP,l)aPm-P) , (7.5) 
u F\V PV 

which may.be further restricted by the lattice cubic symmetries. These 

counterterms will be nonlocal when expressed in position space, but this 

is to be expected since the bare action was nonlocal as well. It would 

be wrong to conclude from this nonlocality that infinitely many counter- 

terms are required (counting separately the nearest-neighbor, next- 

nearest-neighbor, etc. terms) since in momentum space there are clearly 

finitely many divergent constants. 

Next, examine a typical contribution to II(P) containing an 
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umklapp (no = 1, z = 0): 

g2e(-PO) 1 Tr SF(p,+ Lo+2A,s+x)SF(11) . (7.6) 

Evidently counterterms of the form (7.4) will suffice to make this finite 

for a -t 0. After the removal of the terms up to @(p2) in the expansion 

of the above integral, the remaining terms vanish because the umklapp 

restricts the R 0 integration to a small region near -A, as expected from 

the arguments of Sec. VI. All umklapp contributions vanish similarly and 

when a + 0 the continuum result is recovered from the no-umklapp term. 

2. Vertex Function 

The one-loop vertex correction (Fig. 9) reads: 

A 
r = g3 V(q) 

/ 
d4kd4k'd411 SF(k)SF(k')A(R) 6Eer(p+k'-k) 

-A 

x 6 iertk - L - q> 6zer (R-k' -9') v(-q') , (7.7) 

where A(R) = l/S2(E). This becomes 

A 

&I> d4kd4k'd4!2 

x 64(p+k' -k+2nA)64(k-II-q+2n'A)64(R-k' -q' +2n"A)v (-9') 
A 

= g3 &I) 
=s 

d4R SF(I1+q-2n'A)S,(a- q'+2n"A)A(E) (7.8) 
n,n',n" -A 

X n et*- Iku+qp- 

1-I 
2n;AI)e(A- /P,n-q;f211;'Aj)6~Cp-q-q'+2(n+n'+n")Alv(-q') . 
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According to Sec. VI subtractions are only required in the case of 

overall momentum conservation n + n' + n" = 0. Consider the no-umklapp 

term n = n’ = n” = 0: 

I SF(~+q)SF(&-q')A(R)64(p-q-q')v(-q')~ 

(7.9) 

The conditions on the range of integration can be expressed using 

B-functions, but this is not necessary: since the integral is only 

logarithmically divergent, the limits of integration can be taken as 

-A to A with vanishing error as A +- ~0. The integrand requires only a 

subtraction of its value at q = q' = 0, which can evidently be effected 

by a counterterm of the same form as in the cutoff continuum theory. 

For a typical umklapp term, no = 0, nb = -1, n'd = +l, z = n -n -+t - "f = 0 , 

g3 V (4) e (4;) 8 t-9,) 
J 

min(-A-qo,-A+qA) min(A,*+qi,A-qi) 

dRO "J . 
d(li 

-A ' max(-A,-A+q!,-A-qi) 1 1 
x SF(llo+qo+2A,~+~)SF(Lo -q:,+2A,it-@A(L)64(p-q-q')v(-q') , (7.10) 

the situation is even better. Since the integrand has D = 0, the limited 

range of the R. integral causes it to vanish as a + 0 and no counterterm 

is needed. 

3. Two-Loop Scalar Self-Energy 

This is included as an example of the vanishing of umklapp contri- 

butions beyond one-loop order. The only diagram which is not simply an 
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insertion of the one-loop fermion propagator gives (Fig. 10): 

A 
n(4) = g4(27T) -4 Tr 

J 
d4kd4k'd4!Ld4!L'd4q SF(k)SF(k') (7.11) 

-A 

x sF(e’)SF(a)Atq)~~er~P+k’ - k) 64 per(k-!L-q)6;er(~--el-p')~;er(~'+q-k') l 

A 
*(4> (P> = g4 Tr 

=J m,m" ,n 
d4kd4&SF(k)SF(k-p-2mA)SF("-P+2n*)SF(P) 

-A 
(7.12) 

x A(k-L.+2m'n>n e(A-Ik~-pU-2m~AI)e(A-I",-p,+2n,AI)e(A-lku-~~+2m:*I) . 
lJ 

In addition to the overall D = 2 integration there are various subinte- 

grals having D = 0. The overlapping divergences in the no-umklapp term 

are handled exactly as in the continuum theory: the overall subtractions 

plus the inclusion of the vertex counterterms discussed above yield a 

finite result. Consider now the umklapp contribution 

m = n = 0, m' = -1, g' = 0: 0 

1 Tr SF(k)SF(k-p)SF(R-p)SF(R)A(k -~o-2*,~-~) 
0 

x B(k o-Ro- A) n e(A-lki- Ril> . 
i 

(7.13) 

Here the explicitly indicated range of integration is not particularly 

small. However, there is the e-function restriction k. - R. > A. The 

subintegral over k at fixed R is therefore restricted to a small region 

near k = A, which causes it to vanish as A + 00 since it had D = 0. 
0 
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Similarly for the R-subintegral at fixed k. Finally, a subintegral over 

k + R at fixed k - R vanishes as A -t 00 since a fixed k - R will fail to 

satisfy k. - R. > A. Then, after counterterms of the form (7.4) have 

removed the terms up to @'(p 2 ) in the integrand's Taylor expansion the 

result must vanish since k 0 - R. > A requires the integration variables 

to be large. 

B. Summary 

From these examples it appears that in lattice theories with un- 

doubled fermions one must expect momentum-space counterterms which are 

polynomials in the momenta, plus sign p 
1-I 

functions times such polynomials. 

The dependence on sign pu reflects the fact that although the lattice 

Green's functions do not have Taylor expansions about p 
u 

= 0, they do 

possess "one-sided" Taylor expansions valid when p 
u 

>Oorp CO. The 
u 

counterterms thus serve to impose appropriate normalization conditions 

on the left and right limits and derivatives of the Green's functions at 

pu = 0. Only finitely many types of counterterms arise although they are 

nonlocal in position space. Some of the counterterms which are simple 

polynomials and only logarithmically divergent can be generated by re- 

scaling fields and parameters, as in Wilson's QED, but others must be 

added by hand. 

For SLAC lattice QED, Eq. (5.1), the prescription is as follows. 

First rescale fields and parameters in Eq. (5.1), writing it as a renor- 

malized action plus counterterms. Next sum the photon tadpole diagrams 

to produce an infrared finite set of Feynman rules. Third, execute the 

renormalization program of this and the preceding sections. This both 
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determines the multiplicative renormalization constants and requires 

additional counterterms. In particular, photon mass and photon-photon 

scattering counterterms will be needed due to the absence of Ward 

identities. Finally, to make contact with continuum QED a finite 

charge renormalization is needed to express the theory in terms of 

a charge defined by the static limit of the effective one-photon 

vertex: ephysical = ii; to) e l 

C. The Axial Current 

The fate of the axial current and the axial-vector Ward identity (5.4) 

in the present treatment are easy to see. The axial current couples to 

vertices exactly like the photon but with an extra factor y5. In naive 

perturbation theory its matrix elements, like most Green's functions, are 

infrared divergent. The divergences can be removed, along with the Ward 

identities, by dressing the vertices at which the current couples with 

photon tadpoles. In the absence of the Ward identities the WA triangle 

diagram will be linearly divergent. To obtain a finite continuum limit 

obeying Bose symmetry and the vector Ward identity it will be necessary 

to modify the axial current by the addition of counterterms which intro- 

duce the anomaly. There seems to be no way to arrange perturbation 

theory so that one maintains order by order both non-anomalous Ward 

identities and infrared finiteness. 

The important point to abstract from perturbation theory is that 

there is no reason to expect a nonlocal operator such as the conserved 

axial current (5.4) to have a finite continuum limit. In view of the 
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anomaly, there is every reason not to. 

VIII. CONCLUDING REMARKS 

A. Summary 

This paper has considered various formulations of lattice QED with 

fermions, with particular emphasis on the SLAC lattice gauge theory (5.1). 

I have shown that if lattice QED is constructed from the free Dirac action 

by replacing derivatives by difference operators and then coupling to the 

photon in a locally gauge invariant way, an undoubled fermion spectrum 

implies that naive perturbation theory breaks down due to infrared di- 

vergences. Under the assumption that the full gauge theory continues to 

have an undoubled spectrum, a resummation of the perturbation series was 

carried out which removed the infrared problems. A renormalization pro- 

gram, applicable to any lattice fermion theory with undoubled spectrum, 

was carried out such that ordinary continuum QED was recovered order by 

order as a -t 0. In this scheme the lattice axial current which obeys a 

non-anomalous Ward identity had no finite continuum limit order by order. 

In view of the anomaly this must also be true to all orders. 

B. Beyond Perturbation Theory 

The results of this paper are rather formal in that they show what 

can be done with SLAC lattice QED in perturbation theory and what coun- 

terterms are needed to do it. Continuum QED at this time is defined by 

its renormalized perturbation series, but a lattice theory presumably 

has a meaning even beyond the region of validity of perturbation theory. 
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As remarked earlier, perturbation theory cannot predict a qualitative 

spectrum, but must instead be constructed around a zeroth order approxi- 

mation which already has the correct qualitative spectrum. It is im- 

portant to ask whether the perturbation theory constructed in this paper 

accurately reflects the exact solution to the theory (5.1). In principle 

this should be determined by an exact renormalization-group treatment and 

analysis of the fixed points. The renormalization-group transformation 

should generate an' action containing the counterterms required in per- 

turbation theory. What can be said in the absence of such information? 

There seem to be two possible scenarios based on the Ward identity 

C s (k)I'u(p + k,p) = S;‘%P + k) - s,l(P) , (8.1) 
IJ lJ 

which is an exact property of the theory. If the exact fermion propagator 

describes an undoubled spectrum then SF1 has a discontinuity at some point 

PO' Letting p + p. and k +- 0 in Eq. (8.1) shows that I? must have a 
P 

singularity there. This in itself is not a disaster since p. is normally 

of order l/a. A disaster occurs only if this singularity propagates down 

into the low-momentum (continuum) limit of some Green's function. This 

happens in-naive perturbation theory where loops of high-momentum parti- 

cles contribute to the low-momentum behavior of, for example, TIPv(p). 

If it happens in general then the theory is sick. If it does not happen, 

so that singularities are confined to high momenta, then the continuum 

limit may be as described perturbatively in this paper. The high-momentum 

singularities would be generated from the sum to all orders of-the order 

by order nonsingular effective theory of Sec. V.B. The conserved lattice 
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axial current has no continuum limit due probably to singular contribu- 

tions to its matrix elements. 
. 

If no infrared singularities arise at any momentum, then SF' must 

be continuous and the fermion spectrum doubles. This happens nonper- 

turbatively since the spectrum is undoubled at e = 0. This scenario is 

suggested by the summation of the photon tadpole contributions to S F 

(Fig 7). Summing perturbation theory to all orders would not introduce 

any singularities but would merely restore gauge invariance, which was 

lost order by order. The axial current could have a non-anomalous con- 

tinuum limit, the anomaly being cancelled between the doubled fermion 

species. It is even possible that both these scenarios could occur, 

each characterizing a different phase of the lattice theory. The SLAC 

lattice gauge theory (5.1) could thus have an extremely rich and inte- 

resting structure beyond perturbation theory. In my opinion it is ex- 

tremely important, though difficult, to learn which of these cases 

occurs. The possibility that the fermion spectrum multiplicity is de- 

termined dynamically does not seem to have been previously suggested, 

and would add a new dimension to our understanding of the realization of 

chiral symmetry in lattice theories. 
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APPENDIX 

I prove that, given a set of Feynman rules periodic in all momenta, 

periodic &-functions can be used to do trivial momentum integrations 

just as ordinary d-functions are used in continuum theories. 

It suffices to show that if 

A 

1~ dk... 
J 1 dkn F(kl ,-**,k,) 'per[kl-G(k2p***kn)] 9 (A. 1) 

-A 

where F is periodic in kl with period 2A, then 

A 

I = 
s 

dk2 . . . dkn F[G(k2 ,...,kn),k2,...,kn] 
-A 

. (A. 2) 

To do this, write (A.11 as 

co A 

I = 
cs 

dkl... dkn F(kl,..., kn)6[kl-G(k2,...,kn)+2mA]. (A.31 
m= -co -A 

In the mth term change variables from kl to ki = kl+2mA, giving 

I = 2 '2~'Adki~dk2.-.dkn F(ki-2mn,k2,...,kn)G[ki-G(k2,.**.kn)l 

m--co .(2m-1)A -A 

co A 
= 

s S' 
dki dk2 .a. dkn F(ki,k2,...,kn)GCki-G(k2,..., kn)] 

-03 -A 

A 
= 

/ 
dk2... dkn Fb(k2 ,...,kn);k2,...,kn] 

-A 
, (A.41 

by periodicity. 
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If the function F is initially defined only for -A < ki < A then 

the above holds if F is extended periodically. 
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FIGURE CAPTIONS 

1. General behavior of a continuous function E(pj) appearing in the 

fermion dispersion relation, illustrating the necessity of spectrum 

doubling. 

2. The SLAC derivative Ej(p), which avoids spectrum doubling by virtue 

of discontinuities at &T/a. 

3. Some of the Feynman rules for Wilson's lattice QED. There are 

n-photon vertices for all n> 0. 

Su(p) 5 3 sin +pua 0 
. 

4. Naive Feynman rules for SLAC lattice QED. 

5. A class of diagrams whose summation removes the infrared singularity 

from the vertex function and permits a nonsingular perturbation 

expansion. 

6. Qualitative behavior of the function g,(p) appearing in the 

effective Feynman rules. 

7. A class of diagrams whose summation would double the fermion 

spectrum. 

8. The scalar self-energy in the lattice $@$ theory. 

9. Vertex correction in $$$I theory. 

10. A contribution to the two-loop scalar self-energy in $3/$ theory. 
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