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ABSTRACT 

With the objective of making direct contact with the 

usual weak coupling Feynman propagator expansions for 

quantum field theory, we present a formulation of strongly 

coupled renormalizable fields based on Feynman propagator 

expansions. As an example, the theory of the scalar field 

with quartic self-coupling is considered in detail (in 

4-dimensional Minkowsky space). In agreement with an 

original result of Wilson, we find that this renormalized 

strongly quartically self-coupled field theory consists of 

a free particle two-point 1PI Green's function, and nothing 

else ! Comparison is made with the recent work of Bender et al - -' 

and Willey, and possible physical implications in connection 

with SU2 x U1 Higgs theory are noted. 
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1. INTRODUCTION 

The problem of strongly coupled renormalizable fields has become 

of u;most importance because of the apparent reasonable success of the 

QCD theoryIS of "strong" interactions at short distances3'4 in the 

Wilson short distance framework. 4 Indeed, if QCD is to be verified as 

the theory of strong interactions, then its strongly interacting large 

distance sector must be calculated in some detail. 

Toward this latter objective, we will note two apparently complemen- 

tary approaches.5,6,7y8 More precisely, we call attention to the lattice 

theory of Wilson,5 wherein one attempts to probe the large-distance 

behavior of QCD by cutting off the short-distance part of the theory 

already at the Lagrangian level, with a gauge invariant lattice formalism. 

A keys triumph of this approach is the celebrated Wilson area law for the 

negative of the logarithm of the vacuum expectation value of the Wilson 

loop operator-this area law signals the desired confinement behavior 

for QCD. Considerable work toward understanding the predictions of the 

Wilson lattice for the details of hadron dynamics has been done.6 

The complementary approach7s8 attempts to maintain manifest Lorentz 

invariance in all end results in treating the detailed dynamics of 

strongly interacting systems. Hence, it can hope to answer any questions 

which may arise concerning the lack of manifest Lorentz invariance in 

the widely popular Wilson framework. 

More specifically, the complementary approach, as developed in 

Refs. 7 and 8, attempts to isolate a small part of the Lagrangian as the 

respective coupling or couplings become large. While this isolation 

may be accomplished in several ways, the net result has always been an 
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expansion in inverse powers of the appropriately large couplings. 

Furthermore, it has also been true that most of these inverse coupling 

constant expansions have always resulted in expansions in the kinetic 

part of the respective Lagrangian. The possibility of exceptions to 

this last remark may be found in Ref. 7. One thing is quite manifest: 

to the extent that one expands in the kinetic part of the Lagrangian 

one should only differ, in principle, from the Wilson approach to strong 

coupling by the regulator which one uses. Indeed, as one can see from 

the work of Bender et a1.,8 if one uses the kinetic part of the 

Lagrangian as the expansion operator, the use of a Wilson lattice to 

regulate the respective theory, with an appropriate procedure for 

extrapolation to zero lattice spacing, leads to well-known results in 

problems such as the anharmonic oscillator -where there exist independ- 

ent methods of calculation.g We consider the consistency of the work 

of Bender et al. -- and the results in Ref. 9 to be a positive test for 

both the Wilson approach and the complementary approach." 

However, we do wish to emphasize that, in the complementary apporach, 

in particular, there is no reason that the kinetic part of the respective 

Lagrangian has to be used as the expansion operator at strong coupling. 

Indeed, it was emphasized in Ref. 7 that no particular assumption has 

been made about the relative sizes of the kinetic and large coupling 

parts of the Lagrangian at strong coupling. Rather, this relative size 

was argued to have been left to dynamics. 

The manner in which this particular part of the strong coupling 

dynamics manifests itself has remained unclear, unfortunately, primarily 

because the formulation of the complementary approach presented in 
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Ref. 7 is somewhat tedious to use. Indeed, the formulation in Ref. 7 

is very difficult to relate to the respective conventionally normalized 

weak;oupling theory. This difficulty stems primarily from the indirect 

use of the kinetic part of the Lagrangian as the expansion operator. 

To reiterate, such a use is entirely unnecessary in the complementary 

approach. It will be our main purpose to illustrate this last remark 

in some detail in the present communication. 

More precisely, we shall develop the analoga of Feynman's expansions 11 

for weak coupling-Feynman propagator-based expansions at strong 

coupling. The four-momentum structure of the expansion will then, in 

general, be determined by the usual Feynman propagator. Contact with 

weak-coupling theory will therefore be much more immediate. Consequently, 

the application of these Feynman expansions to QCD and other strongly 

interacting systems12 would appear to be facilitated greatly. Such 

systems will be taken-up elsewhere.13 

Our work is organized as follows. In the next section, Sect. II, 

we recapitulate the relevant aspects of the complementary approach to 

strong coupling and analyze the quartically self-coupled scalar field. 

In Sect. III, we treat the renormalization of our Feynman expansion in 

detail. Sect. IV contains a comparison with the work of Bender et al. -- 

and Willey,8 all of whom have considered this renormalized strongly, 

quartically self-coupled scalar field using the lattice regulator-based 

computation scheme of Bender et a1.8 -- Finally, Sect. V contains some 

concluding remarks with regard to implications of our work for the 

Higgs sector of the SU2 x Ul model.14 
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11. LORENTZ INVARIANT APPROACH TO STRONG COUPLING 

Jeferring to Ref. 7, we recall that the starting point for the Lorentz 

invariant formulation of strongly coupled fields is the generating func- 

tional Z(J) for the connected Green's functions of the respective theory: 

for example, using the theory of the quartically self-coupled scalar field 

in 4-Minkowsky dimensions as a prototype, we have the Lagrangian 

so that 

exp {iZ(J)} = Jg+ exp {ifi4x k+ ~$11 
l (2) 

In (l), g is the coupling constant and m is the mass parameter. In (21, 

J is the usual external source. The functional derivatives of Z(J) with 

respect to J, evaluated at J= 0,'are the connected Green's functions, 

as is well-known. We wish to study (l), as it is represented by (2), 

for large g. 

More precisely, for large g, we use' auxiliary fields o and p to 

write 

for an appropriate normalization of the functional integrals. Here, 

go(K) I + auK 8% - m2K2 
> (4) 

is the usual free scalar field Lagrangian for mass m. It is the ex- 

pression (3) that we shall analyze. 

Eefore proceeding further, let us note that in arriving at (3), 

we have used the results (up to unimportant constant factors) 
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exP( i/d4x F(+)/ = fipC@r exp {i Jd4x[F(.)+p(r-$)]f (5) 

ew'f -i/ d4x g#4) = JCSo exp {i Jd4xb2+2a o $21) (6) 

where F(y) is some function of y. The result (5) obtains because the 

integration over @'p produces the delta functional 6(~-$) so that the 

subsequent integration over CBK simply sets K= (p. The result (6) is 

understood by completing the square 

a2 + 2&J q12= (0 + 6 92j2 - g$14 (7) 

and shifting o by -G $2 before integrating over go, as is well known 

from the work of Feynman.15 With these explanatory remarks, we now 

return to the general development. 

As in Ref. 7, we decouple K and $J with the shift 

(8) 

There results, up to an unimportant constant factor, 

iZ(J) = Rn 
s 

g+ !%gp%IK exp i 

+2Go$12 

_ p2, $j-d4x [gob) + PK + JK + a2 

0% 5) - (9) 

The methods of Ref. 7 may now be used to evaluate (9). Indeed, on 

scaling p 3 p/gy, y> 0, and expanding in the operators 

KP ky and P2 
sg2Y+ 4, (10) 

we find, for an appropriate normalization of the functional integrals, 
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iZ(J) = !&II 
J 

94 '?&I !&I g1~. exp {i sd4, [go(~) + pK/g’ + JK -t a2 

+i + JK + Hp + a2 + 26 0 $2 * (11) 
H=O 

This result (11) already illustrates our basic result. We see that, 

for g large, we can develop iZ(J) in a Feynman propagator expansion, 

since 

JgK ~XP {i Jd4x [90C~l + JK]) = exp { -3 /d4x d4y J(X) A;(x-y) J(~)} 

(12) 

as is well-known, where AF is Feynman's propagator:' and the remaining 

functional integrals in (11) can be defined by using, for example, the 

following(for an appropriate normalization of Ci3p): 

Jgp exp {i Jd4xHp} S 3-g J9p exp (iJd4x[Hp +~(aupa"p-m2p2)]} 

d4xd4y H(x) AF (x-y> H(y) 
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and, from Ref. 7, 

I-P m dBj 
l-l / 

* da 

/ 
-2 

Bj +ic 2TT 
j=l -co --oo 

exp {i sd4x(02+ 2G cr $2) + $ aj(Bj - c~(x~))} 

s 
g~a%$ exp(i/d4x (02 + 2iu $2)} 

n 
= -i"i (Ax)+ Jz;; . 

Here, we recall that, in arriving 

uniform covering @ of space-time 

points {xj} so that the left-hand 

(14) 

at (14), we have (in Ref. 7) used a 

by sets of measure Ax with center 

side of (14) is the same as 

(15) 

n 
= 

l-l ( 
-i lf2 (Ax) 1'2 LG 

) , 

in agreement with (14). 
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To be more precise, if we introduce (12), (13) and (14) into (ll), 

we haze 

iz(J’ = Rn f: ~ ir SdllxQ 

m=O R=l 
Igy~~(x ) 

R 
iSJ~x~) 

x 2 $ ; /d4xj 8g2;+g 62 (Ax):p 

n=O j=l i26H2(xj) i * 

1 x exp i -- 

u J 
2 d4xd4y J(x) AFb-y) J(Y) 

1 
-2a J d4x d4y H(x) AF(x--y) H(y) 

H=O l 

The theory represented by (16) has the Feynman rules which follow: 

(a) For each p 
2 vertex a factor of 

2 -Q = i (Ax)' I?% . 
4g2~ + & -.g . 

i 

(b) For each P-K vertex, a factor of 

is = i/g' . 

(c) For each ghost p propagator, a factor of 

2 2 -m +is )I = + AF(k) 

(d) For each K propagator, a factor of 

( 
k2 '; 

-m +ic 
> = iAF(k) . 

(16) 

(17) 

(18) 

(19) 

(20) 

The respective diagrams are shown in Fig, 1. These rules may now be 

used to solve the theory, in the standard manner. 
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To illustrate this solution, we first observe that the ghost p has 

no external legs (since H= 0) for the Green's functions of interest. 

The (physical) connected Green's functions for Z, the Green's functions 

of interest, may be considered in turn, where these Green's functions 

are defined by 

Gn x1' ( 
. . . . x n ) 

c? = iZ 
in&J x1 

( ) 
. . . 6J 

( ) 
x n 

. 
J=O 

(21) 

For n=l, we have 

by inspection. 

G1 ro , (22) 

For n=2, we have to sum the various contributions to the two-point 

connected K Green's function, G2. The series can be considered most 

simply by considering simultaneously the ghost p two-point connected 
. 

Green's function g2. Suppose the complete contribution of the p2 vertex 

to g2is known. Then, representing g,, the sum of the graphs for this 

contribution and the free propagator, by the blob in Fig. 2, we see that 

the complete G2 is given by the diagrammatic expansion in Fig. 3. One 

finds 

G2(1;) = 
i 

k2-m2+ i5'2 g2(k)+is 
. (23) 

We therefore have to determine s2(k). 

The interactions for s2(k), as shown in Fig. 2, are the familiar 

effects of a mass insertion on a propagator. One finds readily 

g2(k) = i . 

a k2-m2 ( > + (Ax)+ fi 

4g 
zy+4 i-g + is 

(24) 
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Hence, we have 

G, W = c, t, 

i 
7 . (25) L. k” _ mL _ I + ie 

ag 

The limit a+0 now gives 

For all odd n greater than or equal to three, we have 

Gn - 0 (27) 

(26) 

by inspection, since Z(J) is invariant under 

J + -J . (28) 

For n even and greater than or equal to two, the value of Gn is 

also trivial. The reason is that,since there are only two-point vertices, 

these vertices can always be viewed as corrections to either a p propaga- 

tor, a K propagator, or a K-P propagator, i.e., corrections to either 

s',, G2 or the complete connected K-P propagator. But, we have already 

included all the corrections to G2 (we are not interested in the complete 

ghost propagator (e2 or the complete ghost-K propagator since {G,} have 

no external ghost lines). Hence, there are no remaining interactions 

to generate G2,, for 2n > 2. Thus, as is well-known, a theory with 

the Feynman rules (a)-(d) above corresponds to simple mass.squared shifts. 

Indeed, the result that only G2 is non-trivial can also be seen by 

simply substituting (14) alone into (11). One finds 
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x exp{i sd4x [go(~) + JK + p;]} 

JK+ p~+p~(h&& I (-32gi) 
% 

= Rn JQ& exp {i Jd4x ko(K) + JK - :zFt,;’ ]} 

= EnJgK exp{iJd4x[+(ankaMk- [m2 +*I K~)+ JK]\ 

(29) 

for an appropriate normalization of the functional integrals. The use 

of (12) then gives 

iZ(j) = - + d4x d4y J(x) G2 (x-y) J(y) 
. 

(30) 

where G2(x-y) is the Fourier transform of (26) 

G2(x-y) = i s d4k .-ik*(x-y) 
~ 
(21~1~ k2-[m2+(-8ig/(sAx))"]+ is ' 

(31) 

This result (29) corroborates our results for {G,}. What we see is 

that, for (l), we can sum all of the terms in this Feynman propagator- 
. 

based inverse coupling expansion directly. We wish to emphasize, how- 

ever, the complete generality of the procedure leading to (ll)-(31). 

Indeed, the manipulations represented in (12), (13) and (14) are 

sufficient to develop the large coupling limit of any renormalizable 

theory in terms of Feynman propagators. For, using the methods in 

Ref. 7, as illustrated in (5)-(g) here, appropriate small parts of 
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renormalizable Lagrangians can be isolated in the large coupling limit. 
A 

Consider a field variable A in such a Lagrangian g in which appropriate 
h 

small parts have been isolated. Then either A has a kinetic term in 2 

of the form 

2 2 aUA auA - mA A , (32) 

or it does not. Here mA is the respective mass parameter0 If it has 

the term (32), then its propagation from vertex to vertex in the expan- 
A A 

sion of the theory represented by g in powers of the small parts of 2 

will be given by the Feynman propagator 

s d4k -ik* x 
A,(x) = e ~ 

(27~)~ k'-rni 
. 

+ is 

On the other hand, if no such term as (32) exists, then using 

1 E lim exp a+O {i Jd4x[t(ailA a'A - rnt A')]) 

h 

as we did in (13), we can introduce such a term into 9: 

auA a"A - rni A2 > , 

(33) 

(34) 

(35) 

where we take a+O, just as Feynman's E in (33) is understood to be ESO. 

The propagator of A will then involve the Feynman propagator 

A;(x) = i AF(x) l (36) 

Thus in both cases the propagation of A in the expansions of 9 in terms 

of its small parts in the large coupling limit will be given by a 

Feynman-type propagator. We have illustrated this result here for the 
* 

case of 9 equal to the Lagrangian 9? in (l), where the respective small 
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part of g is 

(37) dgY - p2 8g a++ o ) . 

To repeat, other such illustrations will appear elsewhere.13 

In reality what we have given so far is only a concrete example 

of the use of unrenonnalized Feynman-propagator based strong coupling 

expansions; we must turn next to the detailed question of renormaliza- 

tion. For, only if we can consistently interpret the results in this 

section in the spirit of the usual renormalization program, can we claim 

a complete discussion of the respective large coupling limit. 

III. RENORMALIZATION 

Having solved for the unrenormalized Green's functions for the 

strong coupling limit of (l), we now turn to the renormalization of our 

unrenormalized solution. We proceed in a familiar manne‘r.16 

More precisely, we write 

-(Zl-1)gR$i+iAm2 Z3+i (38) 

where Zl is the usual vertex renormalization, Z3 is the usual wavefunction 

renormalization, Am2 = G-m2 is the usual mass counter-term, and f is 

the renormalized mass. To renormalize (26), we must choose appropriate 

normalizations by which we can determine Zl, Z3 and Am2. 

To this end, we choose to normalize the 1PI two-point function 

P2(p) = G;'(p) at p2 = < and the 1PI four-point function T4(pl,p2,p3,p4) 
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(which is trivial) at pl = p2, p3 = p4, p: = 4, pi = 4, and pl = Cm,,%, 

P3 = L-m& (For definiteness we take {,pi:i=l, . . . . 4) all to be 

directed into the vertex r4.) 

Turning first to G2 -l (PI we have 

z3 
d 

db2> 
G;'(p) = -i 

This forces 

z3=1 . 

. 

Further, we require that G;' vanishes at 2 p This gives 

0 = 4 - [< - Am2 + (-8iZlgRp/(,Ax)4] 

= Am2 - 2(1-i) (ZlgR)+/(""x)4 ._ 

or 

Am2 = 2(1-i) (ZlgR)+/("Ax)+ . 

(39) 

(40) 

(41) 

(42) 

Now, in arriving at (41) we wish to note that we have substituted (38) 

for (1) in our calculations in Section II and, hence, have represented 

g in terms of gR by the usual relation gR = 

The result (42) then gives 

+ 2(1-i) (ZlgR)+/(rAx)' . 

The renormalized 1PI two-point function is thus 

p2(p) = G;'(p)= -i(p2 - f + ie) . 

(43) 

(44) 
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The 1PI four-point vertex is easily seen to vanish since G4 is 

trivi$l.. Thus there is, at strong coupling, no condition on Zl as it is 

of no consequence, i.e., Zl is arbitrary. Since there are no further 1PI 

vertices, the remaining pn are also trivial because {G,:n> 4) are all 

trivial), this completes the renormalization of the strongly coupled 

quartically self-coupled scalar field theory. The triviality of this 

particular large coupling limit in Minkowsky space (4-dimensions) was 

also found by Wilson.17 

This problem of the renormalization of the quartically self-coupled 

scalar field in the strong coupling limit has also been discussed by 

Bender et a1.,8 and by Willey,8 using the lattice regulator-based compu- -- 

tation scheme of Bender et al., where the lattice spacing is ultimately 

taken to zero. In the next section, we wish to compare our work with 

these lattice regulator-based results. 

IV. COMPARISON WITH THE LATTICE REGULATOR-BASED RESULTS _ 

Bender et al. -- and Willey have all used the quartically self-coupled 

scalar field at strong coupling to investigate the renormalization prop- 

erties of the Bender et al. - lattice regulator-based computation scheme. -- 

We wish to compare their work with ours. In making this comparison we 

shall effectively discuss the respective two sets of results in turn. 

We do this by considering the work of Willey first, for pedagogical 

reasons. 

The basic solution of Willey for the renormalized strong coupling 

limit of the quartically self-coupled field theory is in general agree- 

ment with the results in the preceding section. Namely, the theory, 
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according to our work, in this limit, possesses only one non-trivial 1PI 

vertex, the two-point 1PI vertex. Willey finds, in general, for compari- 
h 

son, that P4 is an arbitrary finite constant as well as that lY2 is a 

simple free inverse propagator in 4-dimensional Minkowsky space, with 

Tn trivial for n> 4. However, our results for the free particle nature 

of this propagator and for the value of p4 do not depend on the dimension 

d of space-time. While Willey's result for P2 is independent of d, his 

results for rn, n> 2, are in fact extremely dependent on the dimension 

of space-time. We therefore wish to discuss these apparent points of 

departure. 

More specifically, in order to understand the results of Willey 

in our context, we must identify the key ingredients in his work insofar 

as it relates to our work. As in any renonnalizable quantum field theory, 

these ingredients are the expansion operators, the cut-off, and the 

normalization conditions. In the example under consideration, the sim- 

plicity of the solution (a two-point 1PI vertex and, perhaps, an arbitrary 

four-point 1PI vertex) makes this identification extremely simple. 

Namely, Willey has also found a finite Z3, and an arbitrary value of 

(Zl - 1). This would indicate the similarity of the normalization condi- 

tions. It further suggests that only in the treatment of expansion 

operators can our two solutions differ physically. We do not entertain 

the idea that the lattice regulator could produce, by itself', a physical- 

ly distinct solution from our Lorentz invariant regulator. For, both 

regulators are allowed to approach their respective limiting values after 

renormalization. 
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Indeed, Willey considers a particular relationship between his 

cut-off, the lattice spacing a, his bare mass uo, and his bare coupling 

80' This relationship is 

vEa2 Q &- 0 I 
,(d/2 - 2) (45) 

where d is the dimension of space-time. This relationship (45), taken 

together with the expansion of Green's functions in powers of the 

kinetic part of (l), then leads Willey to the conclusion that (1) has 

all r2n, nZ3 trivial for d> 3, that only r6 of {r2n:n53) is non-trivial 

for d = 3 (r6 is a constant here), and that T6 is infinite for d< 3. For 

r4, Willey finds a constant for all d> 2 and infinity for d< 2. For T2, 

Willey's result agrees with (44). Thus, to summarize, Willey finds that 

(1) has no canonical renormalizable strong coupling expansion for d < 3. 

To compare with our results, first note that for d-1 4, Willey's 

results and our work coincide for r2 and all rn with n # 4; for r4, the 

two results appear to differ by a constant. In fact, only for dr 3 do 

the two treatments radically differ. This difference may be traced to 

the expansion operators in the two approaches. In our approach, the 

expansion operators are Feynman propagators. In Willey's treatment, the 

expansion operators are, effectively, inverse Feynman propagators [with 

the relation (45) 1. Thus, whereas the terms in our expansions of Green's 

functions do not increase in degree of divergence with decreasing space- 

time dimension, the terms in Willey's expansions become more divergent 

with decreasing dimension. From (26)-(44), we see that, instead of con- 

cluding that (1) does not have a conventional renormalizable large g 

canonical l/G expansion for d <3, Willey could just as easily have con- 

cluded that the representation of the l/G expansion in inverse Feynman 
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propagators, as used by him, is not useful for conventional renormalization 

for d<J. It is in this way that we reconcile our results with Willey's 

work. In other words, we attribute all differencees between Willey's work 

and ours to the difference in space-time expansion operators. 

Consistent with our interpretation of Willey's work are the results 

obtained by Bender et al. 8 in their study of the renormalized effective 

potential Veff for the theory (1). Using their lattice regulator calcu- 

lational techniques, these authors find that, for d< 4, the respective 

zero lattice spacing extrapolants8 for the ren ormalized coupling constant 

and the higher point vertices V6 and V8 (using their notation) all de- 

crease toward zero as the order of the respective perturbative calculation 

increases. 2n Here, V2n is the coefficient of $R Classical in the expansion 
, 

of v eff($R,Classical) in powers of the classical field 9, Classical. 
, 

Thus, we should be tempted to take these decreases to be consistent with 

our result that these renormalized quantities are actually zero. We are 

and we do. 

The reader may rightfully wonder, "Why are the results of Bender 

et al. not inconsistent with Willey's results?" The answer to this -- 

question appears to lie in the method used to take the limits g large, 

a + 0, where a is the lattice spacing in the regulator scheme of Bender 

et al. -- Willey takes the limits in the order a+0 first, then g+a. 

Bender et a1.8, on the other hand, take g+oJ first, then aS0. The two -- 

procedures need not agree-apparently, they don't. 

V. DISCUSSION 

What we have accomplished here is the following. The strong 

coupling limit of the renormalized quartically self-coupled scalar field 
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has been obtained by using Feynman propagator expansions. The resulting 

expanskon has yielded an extremely simple result-the respective 

strongly coupled renormalized theory is a field theory consisting of a 

2 free particle 1PI two-point vertex of mass squared mR and nothing else! 

Here, rni is the renormalized position of the pole in the respective 

connected propagator. We wish now to discuss the physical implications 

of this simple result. 

We consider the possible implications of (44) for the Higgs 

sector of the SU2 X Ul model. As we showed in Ref. 18, when the Higgs 

theory is strongly interacting, one has the effective theory (1) for 

the Higgs sector with 

m and h/4 = g , (46) 

using the standard notation14,18 for the Higgs mass mH and the quartic 

Higgs self-coupling h. In Ref. 18, we considered the possibility that 

the physical Higgs particle was a composite of heavy color fields.12 

Our basic result for the respective scenario was that such a Higgs field 

was unstable, with a calculated width in the strong coupling limit of 

rc = Ji: + 33 A4 
IT > 

% 2 
HC -m 

2gG *2 
I 

% 

r7rHC ' 
(47) 

where 'kc is the respective heavy color scale parameter. The phenomeno- 

logical consequences of (47) were discussed in Ref. 18. (For example, 

a 383 GeV Higgs particle has a width of .663 TeV.) Here, we may enter- 

tain the alternative possibility-namely, that the Higgs field is in 

fact elementary. Indeed, the result (44) shows that this renormalized 

elementary field is stable against its strong self-interactions, the 

strong self-interactions of this elementary field simply produce a 
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free particle. The immediate implication is that all of the decay charac- 

teristics of the elementary Higgs field are determined by its "weak" 

couplings to fermions and vector bosons in the limit that h is large. 

(The respective calculations have been discussed by others.") In this 

way the elementary Higgs field with h large, i.e., with 

according to Ref. 18, will behave substantially differently from the 

heavy color composite Higgs field of comparable mass. This difference 

may ultimately be used to distinguish between the two types of Higgs 

particle. We will elaborate upon this possibility elsewhere.13 

In closing, we should like to emphasize that nature may very well 

have utilized this elementary, renormalized, quartically self-coupled 

scalar field. For this reason, we feel that the .Feynman propagator 

approach to its theory at large coupling may be of more than academic 

interest. Clearly, the techniques used in our analysis of this large 

coupling limit are of general applicability. As such, it is of primary 

importance to apply them to the other strongly coupled renormalizable 

systems. To repeat, such applications will be taken up elsewhere. 
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FIGURE CAPTIONS 

1. Diagrammatic representation of the theory in (16). 

2. The u2 -mass insertion to the p-propagator in (16). 

3. Sum of the P-K interaction contributions to G2 in the theory in (16). 
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