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ABSTRACT 

A brief review is given of selected topics 
involved in the relativistic quark structure of 
nuclei such as the infinite momentum variables, 
scaling variables, counting rules, forward-backward 
variables, thermodynamic-like limit, QCD effects, 
higher quark bags, confinement, and many unanswered 
questions. 

The study of nuclei and of their intersections (as well as the nucleon- 
nucleon interaction) has historically proceeded from the large distance and 
global properties to smaller distances as the energy of accelerators has in- 
creased. In the large distance regime nucleons can be considered point-like 
and there is no particle production. In the intermediate regime, the finite 
nucleon size is important but particle production effects are small. In the 
small distance regime, nucleons are "large" , particle production is important 
and the internal degrees of freedom of the nucleons and mesons (the quarks) 
are fully excited. 

Theoretically, one would like to start from a theory of quarks and their 
interactions, compute the properties of their bound states, i.e., nucleons and 
mesons, and then predict the properties of bound states of these bound states 
(nuclei). This is obviously a tall order and it may be some time before this 
program can be carried out in quantitative terms. In the roughest qualitative 
terms, it does seem to work, or at least tie together quite different phenomena. 

In this regard it may be of some benefit to develop models that are valid 
in the regimes listed above and which continue correctly and bridge the gaps 
between these regimes. Ironically, it may prove to be more difficult to 
develop suitable models if nature is too smooth than if there are sharp delin- 
eations between these regimes. 

I will try to organize this talk into three overlapping topics: kinematics, 
descriptive-parametrizations, and finally dynamics. However, of course, the 
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dynamical model (and we will be particularly interested in QCD here) and its 
associated calculational scheme will suggest convenient parametrizations and 
useful kinematic variables. This will also lead to problems in that any 
acceptable fundamental theory will be relativistically invariant and will lead 
to a retitivistic description of bound states. 

How can one treat this problem so that the connection to the nonrelati- 
vistic problem, where one has developed considerable insight and phenomenology, 
is obvious and can be used? I shall attempt to demonstrate that the use of 
the infinite momentum frame, or rather the infinite momentum variables, provides 
this close connection. In listening to some earlier talks and questions at this 
conference, it is clear that there is considerable misunderstanding about the 
meaning and uses of the infinite momentum frame. Excuse me for spending an 
extraordinary amount of time on this point, but if you take anything from this 
talk, please remember the clear physics of this choice of variables. 

Our notation will be simple: 
momentum, and A its mass. 

A will denote a particle's name, A,, its four- 
Confusion is therefore impossible! In the finite 

momentum frame, the general four-vector A,, is written as: 

Av = ( Ao; AT, AZ) , 

A= 
1-I yp + 4yP L (? + 4) ; AT, yP - -& (A'+ A;)) , 

where P is a parameter 

AA =A2 , 
IJ IJ 

y = (A0 + As 
)I 

2P , 

and d4A = dAo d3A = d2AT dA2 dy/2/y[ . 

(1) 

(2) 

The variable y is the misnamed momentum fraction. The infinite momentum frame 
can be achieved by taking the limit P + m but this is unnecessary since all 
relevant quantities will, in fact, be independent of the parameter P. The rest 
frame is achieved by choosing P so that AZ vanishes and by setting AT = 0. 

There are, at least, three general approaches to the problem of the 
relativistic description of bound states. 1 The first is an explicitly four- 
dimensional approach using Feynman rules which leads to the familiar Bethe- 
Salpeter type of equation. The second is the time ordered approach using old- 
fashioned noncovariant perturbation theory which actually is an integral over 
the fourth component Po of some relative four-momentum in the first approach 
leaving p as the variable. The third is the "infinite momentum frame" approach 
which uses thz parametrization illustrated for A, and an integration over dp2 
which leaves pT and y as the three variables. The last two approaches can be 
made to yield similar final results but I prefer the latter because of its sim- 
plicity (one does not have to worry about all possible time orderings, for exam- 
PW . In addition, and contrary to what one would expect, the (P,,y) variables 
yield a result that is very close to that from the nonrelativistiS Schrodinger 
equation. 

To illustrate this point consider the vertex function for B + C + b, where 
first b and then C is off-shell (this vertices could be used in the computations 
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the processes shown in Fig. 1, for example). We will choose our frame by 
writing B,, in the form of Eq. (1) with y= 1, and BT = 0. For C on shell, 
we choose y = x,CT and then compute the off-shell quantity b from momentum 
conservation. The relevant propagator for the equal mass case, b2 = C2, is 

For the case of C off-shell, choose b, of the form of Eq. (1) with y = l-x, 
b, = -CT, and then 

( C2 
-1 

-cc = 

) [ 

(c; + C2)- B2 -1 

u1-l (1 -x> 1 
These denominators differ only by a factor of x. To show that 
closely related to the familiar Schrodinger energy denominator 
simply write B = 2C+E, x = &(l+k,/C), and one finds 

the first is 
Ho-E= -E+g2/m, 

b2 
- blJblJ = 4c 

k; + kt 1 , 
as expected in the nonrelativistic limit. 

After a short calculation, one finds that it is possible to introduce 
probability functions for finding particle C in state B with momentum fraction 
x and transverse momentum C, by2 

. 

G&~T) = 2(;l)3 i%i l'kcT)12 ' (3) 

where JI is a truncated Bethe-Salpeter amplitude. One needs a detailed dynamical 
model to be able to compute J, for all x and CT but it will be shown that the 
x -+ 1 and the CT + Q) behaviors are a simple function of the short-range nature 
of the force between the constituents. The inclusive distribution of detected 
particle C will in general be of the form2 

-A!?-= 
dCTdx G(x,CT)+ . . . . 

Let us now examine nscalinglt, the search for scaling variables, their uses, 
and a few cautions. There are many scaling variables that have been found to be 
useful. A few of them are discussed in Ref. 3. Here, I would just like to 
briefly discuss one that follows from our previous discussion of the infinite- 
momentum frame variables. For an excellent review of certain applications of 
this approach, I refer you to the articles by Chemtob.') 

If absorption and final state interactions can be neglected (or rather, if 
they do not drastically change the longitudinal momentum distribution-they 
certainly will spread the transverse momentum distribution) then the inclusive 
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distribution (see Fig. 1) will be proportional to Gc/B(x,CT) in B-fragmentation 
region. Clearly x is predicted to ge a scaling variable5y6 where 

co + % 
x =Jo + Bs = XLXmax oJ> 9 

where 

co + % 
xL = 

( '0 + 'z ) 
, 

max 

( '0 + 'z)max x = 
B. + BZ 

. max 

(4) 

(5) 

Now xmaxdepends only on the center-of-mass energy W and the minimum "missing 
mass“, M, of the reaction A+B + C+X, and xL clearly must be between 0 and 1. 
It is easy to see that as W + ~0, xmax + 1. For finite energies (W includes the 
rest masses) one finds the approximate results for the forward and backward 
directions (the exact expressions are not very transparent): 

X max(' N 0') -(W2-M2 w2-A2) , 

X max(' N 180°) = (w2-M2)/(W2- By) . 
(6) 

Hence at moderate energies, for a light beam particle B incident on a heavy 
target a, one finds 

max(OO) = W2 - B2 
X w2 _ A2 ~~~~(180~) >> xmaxWOo) 

Thus kinematics tells us that xL scaling may look very different in the 
forward and backward direction. Note that xL is not the Feynman scaling vari- 
able xF = IczI / Iczlmax~ but approaches it for large C, (>> C). 

Let us now briefly look at an example of a "counting rule". The object 
here is to relate the behavior of G(x,CT) for x -t 1 or for CT -t ; 50 some 
simple property of the nucleon-nucleon force at short distances. ' Note that 
for x -+ 1, all the other particles in the bound state must be stopped (the sum 
of all the x's must be 1). It is intuitively clear that the "softer" the N-N 
force, the faster G must vanish in these limits. For the probability of pulling 
a nucleon or a bound state C out of the state B, one finds 

GC/B N (l - x)g 
(8) 
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where g = 2T(B - C) - 1, and T depends on the nucleon-nucleon force. For exam- 
ple, if nucleons interacted point-like with the exchange of vector gluons, then 
T = 1. If the N-N force were due to exchange of rho's and omega's with monopole 
form factors, then T = 3. Likewise, T = 3 if th e quark degrees of freedom are 
fully exc&ted. In general, however, T must be considered to be a parameter that 
effectively describes the N-N force in a certain regime. Rough fits to the data 
yield T - 3-4. 

If there is very strong momentum-clustering in-the nucleus,8 then one will 
find that (B -C) is replaced by the (B - C), where B is the number of nucleons 
in the average cluster and the G function vanish at x = B/B rather than at 
x = 1 (if one gives the clusters some fermi momentum then this point is averaged 
over). 

When one extracts the parameter g from data by fitting the inclusive momen- 
tum distribution it is very important to use the correct variable x rather than 
XL* The factor of xmax(W) can have a large effect on the value of g, especially 
when comparing the beam and target fragmentation region. 

Note that we are not claiming that x is the "best" scaling variable. 
Indeed, it is not, since clearly there will exist arbitrarily chosen scaling 
functions that fit the data better than any arising from a given theory (which 
necessarily will yield correction and extra nonscaling terms), even the correct 
theory! 

One's first reaction to a formula such as Eq. (7) is that it probably is 
nonsense for nuclei, especially for large atomic number. However, this is not 
necessarily the case. Consider the variable x in the limit B + m, then 
(C, - co + c,> 

x= c+ I( B. + BZ) N C+/BM , 

where M is the nucleon mass, and 

G = (1 - x)~~~*** - (1 - C+/BM)2TB f(CT) 

G - f(CT) exp (- F C+) . 

(9) 

(10) 

This takes the familiar form of a thermodynamic spectrum but with the variable 
C, rather than Co. The dependence on C+ [and the factor f(CT)l produce an 
angular variation which is quite similar to that seen in the data. Furthermore, 
the dependence of C, on the mass produces6 a difference between the effective 
temperature for pions (60 MeV) and nucleons (40 MeV) in the same kinetic energy 
range (0.3-l GeV) which is again not unlike the data for T - 3.5. 

Let us now turn to QCD, its associated model for hadrons and some possible 
ramifications for nuclear physics. It is very easy to get a physical under- 
standing of the effects of QCD and confinement. Perhaps the easiest way is to 
imagine that QCD is an ordinary field theory that was designed by a government 
committee. Everything works as expected but in reverse. 

As an example, one has a picture that the nucleon-nucleon form is due to 
meson (pion, rho, omega, two-pion, etc) exchange. Since these contributions 
fall off exponentially at large distances, the longest range part of the force 
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is due to single pion exchange which is easily evaluated. At shorter distances, 
these more massive exchanges become more and more complicated and an accurate 
computation is more and more difficult. 

In asymptotically free theories such as QCD, things work the same after a 
sign chaue. At short distances (higher momentum transfers) the coupling gets 
weaker and weaker (as l/Rn Q2/A2) and hence perturbation theory is valid. One 
can expand in the number of gluons involved and even sum the leading terms in 
this series. At large distances, the coupling constants increase; they increase 
so fast that the force actually starts to increase as a power of the distance. 
This is the "confining" potential between colored objects that is expected to 
grow x linearly with the separation. The detailed behavior of the theory in 
this strong coupling regime and its transition to the perturbative regime is 
under intense study. It goes without saying that the behavior of the hadronic 
bound states at large distances is controlled by the strong coupling behavior 
of the theory. 

The potential between a quark-antiquark pair, each of which is a color 
triplet, has a simple behavior at large and small distances in a color singlet 
state: 

V(r) N r (r large) , 
(11) 

1 N-p 
r Rn r (r small) . 

This potential is relevant for mesons and for heavy quark bound states such as 
the psi, psi-prime, epsilon, and hopefully more. In the nucleon, a bound 
state of three quarks, two of the quarks form a 3 state (3x.3 = 3+ 6) which then 
combines with the third quark to form an overall singlet. 

Let us examine some familiar hadronic bound states in the QCD picture' 
(P ion, proton, neutron, deuteron, triton) and their basic contents: 

IT> = (q911 + (94 + gluodl + . . . 

IP> = (uud)l + (uud + gluon)l + . . . 

I n> = (udd)l + (udd + gluon)l + . . . 

Id> = (uud)l(udd)l + (uud + gluon)l(udd)l + . . . 

It> = (uud)l(udd)+dd)l + . . . 

where the subscript 1 indicates a color singlet state. 
The behavior of the structure function for these particles follows from 

our previous discussion with T = 1 except for an additional spin effect: 
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G 
q/r 

N (1 - x)l+l 

G 
4/D 

- (1 - x)' 

-, 
Gq/d 

(1 - x)g+1 

G 
q/t 

- (1 - x)15 

where the extra power of (1 - x) arises in those cases in which the initial 
bound state is bosonic (has an even number of quarks in its basic wave function). 

Now as Q2(or $) increases, where Q is the momentum transfer to the struck 
quark, the increase in final state phase space allows more and more gluons to be 
emitted while at the same time the gluon-quark coupling constant is decreasingly 
logarithmically with Q2. The momentum taken up by the emitted gluons means that 
less is available to the quarks so that as Q2 increases the quark distribution 
function increases at low x and decreases at high x. The radiative effects of 
the gluons introduce RnQ2 and RnRnQ2 nonscaling effects in the distribution 
function also. 

In addition to these log Q2 effects, there are also a myriad of "higher 
twist" correction terms which behave as l/Q2 and l/Q4, etc., in addition to the 
RnQ2 terns, These arise from mass corrections, M2/Q2, finite size corrections 
l/R2Q2= <k$>/Q2, and coherence effects in the initial and final states. These 
higher twist terms are not due to some negligible, unphysical, esoteric effects. 
I remind you that all exclusive scattering and all elastic scattering-scattering 
processes are pure higher twist. 

I would like to finish with mention of a few topics that might prove to be 
of some interest: 

(1) There exists evidencelO that there is a nonnegligible charm component 
in the nucleon carrying a reasonable amount of the momentum fraction x. It 
might be expected that the power law fermi motion in light nuclei, if they were 
used in a beam,could be a rather copious source of fast forward charm particles. 

(2) There has been a recent letter" pointing out that photodisintegration 
of the deuteron in the "classical" energy range below 100 MeV is still not well 
understood, either experimentally or theoretically. In this note, an ad hoc 
modification of the deuteron wave function for r < 1.5 fermi is used to get 
agreement. I have not examined this problem in great detail but it is clear 
that a consistent and proper relativistic treatment has not given (one that 
explains also electron elastic and inelastic scattering from the deuteron at 
large Q2) and the data does not seem all that great either! 

(3) The relativistic formulation of the bound state problem allows a 
proper and invariant treatment of kinematic effects without losing the physical 
input from the nonrelativistic limit. These kinematic and threshold effects 
have been well discussed12 and I shall omit any further consideration here. 

(4) Shadowing and rescattering are a subject that still require consider- 
able study in the relativistic case. As far as I know, a general, useful, and 
convenient formalism to discuss these effects has not yet been given. A 
relativistic version of the distorted wave born approximation (DWBA) should be 
very useful. It should take on a quite simple form if one uses a mixed repre- 
sentation for the wave function, i.e., 
fOrIn Of $+(kT,X). 

use $(bT,x) the two-dimensional tranS- 
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(5) The A-dependence and y3 article production are subjects that have 
received considerable attention but they are too complicated to adequately 
review here. I would just remark that the QCD-inspired quark model with color 
separation and confinement play an important qualitative role in these 
approaches. 

(6)"If we want to study the nuclear wave function at extremely small 
distances, this can be done by studying the effects of the weak interactions 
and in particular parity violation. If rho and omega exchange play an important 
role in the nucleon-nucleon force, then since the $ and Z" mix with these 
ordinary vector mesons, there should be a small admixture of opposite parity 
states in the nucleus. The Compton wave length of the W-Z is -3~ 10m3 fermi 
so that if this can be studied in detail (such as in polarization experiments 
with photons) one is examining rather short distances indeed! 

(7) The proper treatment of the deuteron will require a treatment of the 
6-quark problem. A start has been made in a discussion of this problem in the 
bag model.14 The relevant diagrams for the 3-quark (nucleon) and 6-quark states 
are illustrated in Fig. 2. However, note that the 6-quark state is unstable 
against the decay into two separated 3-quark bound systems as illustrated in 
Fig. 3. This separated configuration will dominate the behavior of the wave 
function at large distances and hence will control the large r properties of the 
deuteron. We know that in the deuteron the nucleons are outside the range of 
the force for most of the time. At smaller distances they can interact by 
ordinary meson exchange,which in this model is the interchange of two quarks as 
shown in Fig. 4. At much smaller distances, the two bound states "fuse" into 
the 6-quark configuration and can no longer be cleanly separated into two 
objects called "nucleons". Thus we see that a full discussion of the deuteron 
will require (at the very least) a relativistic treatment of configuration 
mixing. 

(8) Penultimately, let me point out an interesting possibility of new 
types of excited states for the deuteron (or any other nuclei). If the two 
nucleon configurations (they are color singlets) interact by the exchange of a 
gluon (which form a color octet) then one gets a new configuration in the 
deuterong which is composed of two colored octet "nucleons": 

I d> = al(uud)l(udd)l + a8(uud)8(udd)8 + .** l 

Now these two colored objects will be confined; they will interact via a 
linearly rising potential (it probably should rise about twice as fast as the 
qq potential). Therefore they should exist only at intermediate distances, 
within the confining potential. Excited states of the "deuteron" can be formed 
by these colored baryon objects rattling around in the potential. The excita- 
tions should have a larger energy separation than those that are typical of a 
mesonic qq system. It would be very exciting if these new types of excited 
states that arise from the hidden color degrees of freedom are actually 
confirmed experimentally. 

Finally, I would like to close by quoting Cato's advise to all reviewers, 
"I think the first wisdom is to hold the tongue". 
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