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1. Introduction 

zhe weak interaction symmetry breaking scale (-250 GeV) can 

naturally arise as a consequence of a strongly interacting gauge theory 

at a scale -TeV Cll. There then exists the interesting possibility 

that in addition to the scalars, the quarks and leptons are also compos- 

ite objects in the TeV range. A crucial problem in such a scenario is 

an understanding of how the composite fermions can be so light (few MeV-- 

few GeV) in comparision to the binding scale. Recently, 't Hooft has 

described how global chiral symmetries can provide a natural explanation 

for the occurrence of massless composite fermions in a strongly inter- 

acting gauge theory C2I. Moreover he presented a set of consistency 

conditions which must be satisfied by these composite fermions. An 

unbroken global chiral symmetry (guardian symmetry) in essence protects 

the fermions from receiving a mass. Subsequently, using tumbling C31 

and complimentarity C4 1, several solutions to the consistency conditions 

were found. The present paper extends the previous work on massless 

composite fermions and describes a general mechanism by which these 

fermions can obtain a small mass. FJe elaborate on some recent discus- 

sions on the weak generation of fermion masses by Peskin C51 and 

Dimopoulos and Susskind C61. 

The essential feature of the mechanism involves two steps, of which 

the first is a partial spontaneous breakdown of the guardian symmetry. 

In general, a subset of the original fermions are left massless. They 

are still protected by the unbroken subgroup of the guardian symmetry. 

The others obtain mass either through instantons and the condensates 

which spontaneously break the symmetry or via the condensates alone. 
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The second step involves a weak explicit breaking of the guardian 

symmetry. The remaining massless fermions can then receive a mass of 

order aW, the coupling constant of the feeble gauge interaction. 

For the sake of simplicity we discuss a particular strong inter- 

action model with a strong gauge group SU(4)s. The model includes the 

following fermions: a 10 of SU(4)s (xij= xji; i,j = 1, . . . 4) and 8 fields 

transforming as a 4 of SU(4) (Jlia; c1= 1, . . . 8). The fields xij and $i 

are left-handed two-component Weyl spinors. The full symmetry of the 

model is SU(4)s x SU(8) x U(1) where the global SU(8) symmetry acts on 
Q 

the 8 $ states and Q is given by Q($) =6 and Q(x) =-8. All or part of 

the global symmetry SU(8) X U(1) may act as the guardian symmetry 
Q 

protecting some subset of fermions from obtaining mass. 

In section 2 we present a discussion of the model in the so-called 

symmetric picture; i.e., along the original 1ine.s of 't -Hooft [21. We 

solve the anomaly consistency conditions for the two possibilities: (a) 

the full global symmetry remains unbroken, and (b) only a subgroup of 

G global is unbroken. In both cases we discuss the subsequent massless 

composite fermion spectrum. In the case of the broken global symmetry 

we elaborate on several inequivalent breaking patterns and the corres- 

ponding multi-fermion condensates which cause this breaking. The dis- 

cussion is designed to illustrate some representative cases of the many 

possibilities. In addition we describe explicitly the two mechanisms 

for mass generation for the unprotected fermions. 

The symmetric picture appears very complicated as far as dynamical 

symmetry breaking is concerned. It does not seem possible to decide 

which of the many possibilities is dynamically favored. In order to 



-4- 

obtain further insight we discuss the model in section 3 in the "broken 

picture" via tumbling [3]. We demonstrate the complimentarity [2,4l of 

the two pictures. We emphasize however that there is no broken scenario 

corresponding to the unbroken global symmetry case of section 2. Recall 

that the 't Hooft consistency conditions are essentiaily kinematical 

constraints which must be satisfied by the massless spectra as a result 

of an assumed unbroken global symmetry. If the constraints cannot be 

satisfied we conclude that our assumption was incorrect and the symmetry 

is in fact broken. However, if the constraints can be satisfied (as is 

the case for our example) we conclude that the full global symmetry may 

(or may not) remain unbroken. We then require additional input to 

determine which solution is dynamically favored. We note that the 

tumbling rules (if correct) provide some additional dynamical input which - 

in this case is sufficient to rule out the unbroken case. 

In sections 4 and 5 we gauge an SU(4)W subgroup of the SU(8) x U(l)Q 

global symmetry. This new interaction is assumed to be weak on the scale 

As 
of the strong interaction SU(4)s. We denote the weak gauge coupling 

by aw = g;/411. In some cases this weak interaction explicitly breaks the 

remaining guardian symmetry. The formerly massless fennions can and do 

then obtain small masses of order a$, or a:$. We discuss the symmetric 

picture in section 4 and the broken picture in section 5. The mass gen- 

eration mechanism for the light fermions is shown to be more transparent 

in the symmetric picture. We discuss the complimentarity of the two 

pictures regarding the specific question of mass generation. 

In section 6we finally discuss the relevance of our analysis for 

model building. 
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2. Symmetric Picture 

Fhe considered model is based on an SU(4)s X SU(8) X UQ(l) 

symmetry with the massless fermion content 

X ij = xji = (10, 1, Q=-8) 

ga = (4, 8, Q= 6) 

(1) 

All states are left-handed Weyl spinors, i,j= 1, . . . 4 are SU(4)s indices 

and a= 1, . . . 8 is an SU(8) index. SU(4)s is an asymptotically free 

gauge symmetry which is considered to become strong at a scale As. Q is 

the charge that is conserved by the SU(4)s instanton process (fig. 1). 

In the so-called symmetric picture one assumes that SU(4)s confines, 

leaving only SU(4)S-singlet bound states in the physical spectrum. The 

first question we address is the possible existence of massless composite 

fermions. According to 't Hooft these massless composite fermions should 

necessarily give rise to the same anomalies in the chiral currents as the 

fundamental fermions from (1). In the model with the SU(8) x U(l)Q chiral 

symmetry there exist three types of chiral anomalies from the triangle 

graphs shown in fig. 2. The fundamental particles from (1) exhibit the 

anomalies 4, 24 and 1792 from the processes in fig. 2a,b and c, 

respectively. 

't Hooft's nontrivial consistency condition has group theoretical 

solutions in our model of which the simplest is the two index anti- 

symmetric representation of SU(8) with Q=4: (1, 28, 4). 

There is still the question of whether there exist fermionic 

STJ(4)S-singlet bound-states in our model which posess these transforma- 

tion properties. These bound states consist of an odd number of 
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fundamental fermions bound in an SU(4)s singlet state. There exists 

only one type of three particle bound state $iaxij$ jB . One recognizes 

immediately that the states antisymmetric in ct and i3 

5 a@ = $iaxijii8 - Pxijqja 

forms the 28-representation of SU(3) with charge Q= 4, and therefore 

solves 't Zooft's condition. We thus conclude that these 28 states 

are candidates for massless composite fermions, protected by the 

SU(8) x U(1) guardian symmetry. Other possible bound states which are 

not protected by the symmetry will acquire masses on a scale of order As. 

We should, however, keep in mind that the anomaly condition is only 

a necessary kinematical constraint on the massless fermions in the case 

of an unbroken global symmetry. The symmetry could be broken dynamically 

and one would then in general expect less massless fermions. In the 

remainder of this section we will discuss several possibilities of a 

broken global symmetry. We still remain in the symmetric picture, where 

the strong SU(4)s remains unbroken. 

The global symmetry could be broken by scalar SU(4)S-singlet conden- 

sates that have nontrivial SU(8) x U(1) transformation properties. There 

do not exist any two-fermion condensates which fulfill these criteria. 

The following listed in order of increasing number of fermions are some 

of the simplest candidates: 

(34 

(3b) 



(3c) 

’ - eaBy6 = G"X 
i3Y 

Xi3j3Qi4'Xi,j4 E 

. . . . 
31J2J3J4 

> (3d) 

The four-fermion condensates (a) and (b) can break the chiral symmetry. 

The formerly massless fermions, however, are still protected by this 

smaller guardian symmetry. In case (a) that is obvious since the conden- 

sate 4; has charge Q= 0 and therefore leaves UQ(l) unbroken. Case (5) 

is more complicated since Q($ aBy )= 24., but in all the possible breaking 

patterns there remains enough symmetry to still protect the formerly 

massless particles. 

The condensates (c) and (d) in general break the symmetry. As a 

result some of the formerly massless fermions are no longer protected 

and can receive a mass. We will discuss these cases in more detail. 
. 

-aBy The condensate 8 is symmetric under the interchange (aB)+-+(ya). 

It can provide several inequivalent possibilities for a breakdown of the 

global symmetry out of wlnich we will discuss two. The first is 

where 

and 

n= 

01 
-1 0 

01 
-1 0 

01 
-1 0 

01 
-1 0 1 

(4) 
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is the symplectic metric. The vacuum expectation values (v.e.v.> in (4) 

break SU(8) to SP(8). Q U (1) is also broken and there is no other remain- 

ing U(l)-symmetry. The fermions 5 aB decompose into a 1+27 representation 

of SP(8). None of the 28 states is protected by this symmetry and all of 

them receive a mass through the 5 condensate as displayed in fig. 3. 

A second possibility for the v.e.v. is 

;abcd - ab cd 
=vn n (5) 

where a,b,c,d= 1 , . . . 6. Here SU(8) breaks down to SU(2) X SP(6) where 

the SU(2) acts on the components a= 7 and 8 and 

01 
-1 0 

01 

n= kw -1 0 
01 I-1 o/ 

U 
Q 

(1) is broken but the charge 

Z=Q-2 

remains unbroken. We are therefore left with the unbroken symmetry 

SU(2) x SP(6) x Uz(l) under which the states 5 0.6 decompose in the 

following way 
5 

ab = (1, 1+14, z= 0) 

= (2, 6, Z= 8) 

(6) 

(7) 

$8 = (1, 1, z= 16) 
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Masses for 5 a7 a3 , 5 and E; 78 are forbidden by the symmetry and only the 

15 states 5 ab are unprotected. They indeed receive a mass through the 

process in fig. 3. 

Other breakdown patterns with the z condensate include SU(4) x SP(4) 

and SU(6) x SU(2) and can be discussed along the same lines. 

We finally want to discuss the completely antisymmetric 8 MY6 

condensate. There are again several possible breakdown patterns 

depending on the vacuum expectation values. We first consider 

e1234 # 0 (8) 

N(8) breaks to SU(4) x SU(4). 

Z=Q+Z 

UQ(l) is broken since Q(0 1234) = -8 but 

'1 
1 

1 

0 \ 

0 

1 
-1 

-1 
-1 

-1 I 

(9) 

is conserved. The decomposition of EJ 'S with respect to SU(4) x SU(4) x 

U,(l) reads (r,s = 1,2,3,4; x,y =: 5,6,7,8) 

F, 
rs 

= (6, 1, 8) 

5 
xr 

= (4, 4, 4) (10) 

5 XY = (1, 6, 0) 

xr 
5 " and < are still pro tected by the SU(4) x SU(4) x U(l)z symmetry, 

whereas a Majorana mass term is allowed for Sxy. The eight particle 

condensate can however not directly give a mass to 5 XY as was the case 

in the E example. We need in addition the instanton process (fig. 1). 
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Note that in this case if we ignored the instanton there would be an 

additgnal conserved quantum number that would forbid a mass for Sxy. 

In the previous s case there would also have been an additional conserved 

quantum number, but its value for 5 ab 
was zero. The process that gives 

mass to 5 XY is shown in fig. 4. Observe that due to the SU(8) antisymmetry 

of the instanton process this graph does not give mass to 5 rs xr and5 . 

Another possibility is 

078ab o1 nab 
(11) 

where a,b = 1, . . . 6. The symmetry is broken to SU(2) x SP(6) x Uz(l) 

where 

Z=Q-2 

r 

1 0 
1 

1 
1 

1 
1 

-3 
0 -3 

and the decomposition of 5 aB is 

5 
ab 

= (1, 1+14, 0) 

= (2, 6, 8) 

I . (12) 

(13) 

578 = (1, 1, 16) 

Again the instanton process is necessary for the mass generation. 5 ab 

gets mass through the process in fig. 4, whereas 5 a7 a8 , 5 and 5 78 remain 

massless. 

We would like to note here that in all of these cases of a broken 

chiral symmetry, 't Hooft's consistency conditions are fulfilled for the 



-ll- 

unbroken subgroup. To give an example, we consider the anomaly of three 

Uz(?) currents in the last case. A (ca7 + Ca8 -t- c;78) = 163 + (12x 33) = 

10240.- The fundamental particles decompose into 

X ij = (1, 1, -8) x 10 

= (2, 1, 12) x 4 

4J 
ia 

= (1, 6, 4) x 4 

(14) 

A = (-8)3 l 10 + 8 l (12)3 + 24. (4)3 = 10240 is the anomaly of the funda- 

mental particles. 

We hope that we have convinced the reader that a discussion of the 

possibilities of a breakdown of the chiral symmetries opens a Pandoras 

box. The possibilities include: 

(a> an unbroken symmetry with 28 massless states (no condensate), 

(b) a broken symmetry with 28 massless states (4 particle condensates), 

(cl a broken symmetry with no massless states (e.g., SP(8) case), and 

(d) broken symmetry where some of the states receive a mass and others 

remain massless. 

The mass generation is possible sometimes directly through the conden- 

sate (fig. 3) or indirectly through the instanton process (fig. 4). 

With our poor knowledge of confining strong interactions it is 

impossible to decide at this stage which particular breakdown is most 

likely to be chosen by the dynamics of the system. In the next section 

we make a modest attempt to narrow the possibilities. 
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3. The Broken Picture 

This picture shows the same model from a different point of view. 

It is here no longer assumed that the strong interaction SU(4)s remains 

unbroken. At first sight it seems that the two pictures have nothing in 

common; however, it has been shown that the spectrum of light fennions 

can exhibit surprising similarities. This is a consequence of the 

phenomenon called complimentarity [2,4]. In this section we will discuss 

the model along the lines given in ref. 3 and investigate how far the 

phenomenon of complimentarity can be extended. Complimentarity could 

then be used to obtain some constraints on the possibilities in the 

symmetric picture. The basic assumption in this picture is the formation 

of condensates in the most attractive channel (MAC), which in our model 

would be 

4; = PXij (15) 

This condensate has nontrivial transformation properties with respect to 

SU(8) as well as SU(4)s, and therefore in general will break both 

symmetries. We consider two inequivalent patterns of condensation. 

The first one is 

o j = 1,2,3,4 (16) 

and the second one is the "tumbling" solution, where in the first step 

only one component develop s a vacuum expectation value, e.g., 

8 0 $4 0 #O . (17) 
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We will in the remainder of this section discuss these possibilities in 

detail. But before we do that let us point out that with the assumption 

of condensates in the MAC the case of an unbroken SU(8) is no longer 

possible. 

Let us now discuss the condensate (16). SU(8) breaks to 

SU(4)U x SU(4), where SU(4)U is the diagonal subgroup of SU(4)s and the 

SU(4) subgroup of SU(8) that acts on the first four components. There 

is no remaining strong group. U 
Q 

(1) is broken but 

Z=Q+2 

1 0 ’ 
1 

1 
1 

-1 
-1 

-1 
\ 0 -1 I 

(18) 

is conserved. The decomposition of the fundamental particles with respect 

to SU(4)U x SU(4) x Uz(l) is as follows: (r,s = 1,2,3,4 are SU(4)U indices 

and x,y = 5,6,7,8 are SU(4) indices). 

X rs = (10, 1, -8) 

4J 
rs 

= (10, 1, 8) + (6, 1, 8) (19) 

tJ 
rx 

= (4, 4, 4) 

(i&l, -8) and (lO,l, 8) are massive through the condensation process 

and $ Crsl .rx 
,vI remain massless. There is a one-to-one correspondence 

between these massless states and the massless bound states in (10). 

This correspondence is guaranteed by complimentarity, which in this case 

is realized at the level of a broken global symmetry. Note that the 
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massive composite fermions 5 XY in (10) do not exist in the broken picture 

(19) l 
This just points out the fact that complimentarity does not 

necessarily require one-to-one correspondence between massive states. 

The second possibility of condensation is the tumbling pattern. 

The v.e.v. <$t>o breaks SU(4)s x SU(8) x UQ(l) to 

su(3)s x SU(7) X UX(l) X UY(l) where 

X = 7E4 + 3E8 
(20) 

Y= 3Q + 2E4 

E4 is of su(4)s 

. 

E8 = of SU(8) . 

Eight states become massive through the condensate and the remaining 

massless particles in SU(3) x SU(7) x Ux(l) X UY(l) notation are 

(i=1,2,3,; a= 1,2,3,4,5,6,7) 

4J 
in = (3, 7, 10, 20) 

4, 4a = (1, 7, -18, 12) 

X = ij (Z, 1, -14, -28) 

(21) 

We are however still left with a strong SUM interaction. The 

MAC in SU(3) is $7 = xijQJa (i= 1,2,3; a=1,2,3,4,5,6,7). 



-15- 

We then assume 

which causes the breakdown to SU(2)s x SU(6) x UA(l) x U,( 1) x u C 

A = 3E3 + E7 

B = 3X - 2E7; 

C =Y-2X 

‘3=[‘-2Js; E7= [1111--;)8 

(1) 

(22) 

and the remaining uncondensed fermions are 

$ 
ia 

= (1, 6, 4, 28, 0) 

II, 3a = (1, 6, -5, 28, 0) 

'4 
4a = (1, 6, 1, -56, 48) 

4J 47 = (1, 1, -6, -42, 48) i, j = 1,2 
. 

X = ij (3, 1, -6, -42, 0) a,b, = 1,2,3,4,5,6 

SU(2) s condensation finally occurs and leads to the condensates 

(23) 

(24) 

which do not break SU(2)s but break the chiral symmetry. We are left 

with the symmetry SU(2)s x SP(6) x U D (1) x U Z (1) where all the uncon- 

densed massless fermions are SU(2)s singlets 
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and 

dJ3a = (1, 6, 1, 8) 

$J 4a = (1, 6, -1, 8) 

JI 47 = (1, 1, 0, 16) 

D =+(p - A) = (O O Ll),,(,, + (O O O O 0 o lDl) 

S 
Su(8) 

&+SD=Q-4 I1 
l l-3 

-3 
w(8) 

(25) 

We thus remain with 2 massless SP(6) sextets and one massless singlet 

similar to the massless particles in (7) or (13). There, however, we 

had an additional global SU(2) symmetry. Note that if <$i>o = <o;>o' 

there would then be a one-to-one correspondence between (7) and (25). 

D is then the third generator of the SU(2) symmetry and the states J, 
3a 

and $4a form an SU(2) doublet. 
8 7 If <c$~>~ # <I$,>,, as is the case 

discussed here, then the corresponding symmetric picture must include 

the condensate (3a) 

ll 

4); = ( 1 111 
l l-7 

in addition to go"" (3~) or OeByg (3d). 
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Finally we can in this case identify the massive composites 5 
ab 

in (7) or (13) with the SU(2)s singlet states 

5 
ab = Giaxij$jb - $ibxijJij" ; i,j=1,2 (26) 

We remark that there are at least two scales involved in this breaking 

pattern. They correspond to 

9JU3) 

I *s 
Su(6) (27) 

Sp (6) 

where the first step occurs at the SU(4) scale-and the second occurs S . 

at a scale AA where the group SU(2)s becomes strong. The states 5 ab 

have mass of order Ai. Note that complimentarity doesn't require this 

ratio of scales to persist in the symmetric picture. It is nevertheless 

suggestive. It corresponds in the symmetric picture to having one 

scale as the binding scale of the massless or light composites and a 

second lower scale associated with the multi-fermion condensate. 

4. Light Fermion Masses (Symmetric Picture) 

So far we have kept SU(8) x U(1) strictly as a global symmetry. 

The only gauge symmetry SU(4)s in the model became strong at the scale 

%* In the following we will regard part of the global symmetry as a 

weak gauge symmetry (weak in the sense that ow = gi/4n is small at the 

scale A,). This is motivated by the fact that in the real world there 



-18- 

exist gauge symmetries with these properties. Specifically we will 

gauge?n SU(4)w subgroup of SU(8) in the way that the 8-dimensional 

representation of SU(8) decomposes into a quartet (4) and antiquartet 

(3) with respect to SU(h)W. With this decomposition we are left with 

the anomaly free fermion spectrum csu(4)s x su(4)wl 

X ij = (in, 1) 

( 

(4, 4) 

‘4 
ia = 

(4, -Q 

(28) 

Gauging this SU(4)w subgroup breaks the SU(8) chiral symmetry explicitly, 

and could lead to a generation of light fermion masses, as we will show 

in the remainder of this section. 

We will first investigate this model in the symmetric picture where 

this mechanism is most transparent. According to the discussion in the 

preceeding two sections, we will confine ourselves to the cases where 

the global symmetries are spontaneously broken either to SU(4) x SU(4) 

or SU(2) x SP(6), corresponding to the 6 clfw “GY6 and 0 condensates 

occuring in the symmetric picture. 

Let us first consider the SU(4) x SU(4) case. SU(8) is spontaneous- 

ly broken through the e-condensate. The question of whether or not this 

breakdown affects the gauge symmetry as well has been termed the subgroup 

alignment problem C71. The favored alignment corresponds to the case of 

a maximally unbroken gauge symmetry [71, which in our case would mean a 

conserved SU(4)w acting on the 4 and z of (28). The 22 massless fermions 

5 
rs and CXr given in (10) will still remain massless. 
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The remainder of this section will be devoted to the SU(2) x SP(6) 

case. This breakdown can occur with the 8 as well as the g condensate 

[compare (5) and (11)l. The fermions 5 ab in (7) and (13) receive 

masses from the graphs of figs. 3 and 4, respectively. We now switch on 

the SU(4)w interaction. It is obvious that the spontaneous breakdown 

of SU(8) to SU(2) x SP(6) will induce a breakdown of the SU(4)w gauge 

symmetry. Following ref. 7 we remain with the symmetry 

where SU(3)w x UF(1) is a gauge symmetry and UI(l) is an additional 

global symmetry: the only remaining exact global symmetry. Explicitly, 

E is the SU(4)w generator 

and I is 

E= 

I= 

(29) 

where we have used SU(8) notation. The generator Z of (25) is 

explicitly broken by gauging SU(4)w. The quartet of SU(4)w is given 

by $la (a= 1,3,5,7) and the antiquartet by $ia (a= 2,4,6,8). Under 

the symmetry SU(3)w x UE(1) x UI(l) the fundamental states of (1) 
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transform as follows 

‘4 
i7 

= (1, -3, 1) ; '4 
i8 

= (1, 

where the direction of SU(3) in SU(8) has been 

sate of (5). Note that the SU(2) x SP(6) x U(l 

(30) 

3, -1) 

determined by the conden- 

) guardian symmetry is 

explicitly broken by the su(4)w gauge interaction* 

Let us now write down explicitly the fermion spectrum (7) in an 

SU(3)w x UE(l) x UI(l) notation. 

5 
ab = (1, 0, 0) + (8, 0, 0) + (3, 2, 2) + (2, -2; -2) 

5 
a7 = (3, -2, 2) + (5, -4, 0) 

(31) 

5 
a8 = (3, 4, 0) + (3, 2, -2) 

5 
78 = (1, 0, 0) . 

The states 5 ab were already massive through the processes in fig. 3 

and 4. 5 ab thus consists of a massive Dirac triplet, and massive 

Majorana singlet and octet. The inspection of the remaining thirteen 

states shows that they are no longer protected by the remaining 

SU(3) x U(1) x U(1) symmetry. They could in principle form two massive 

Dirac triplets and a Majorana singlet. Indeed they do receive mass 

due to a feed-down of the 5 ab mass via the massive SU(4)w/SU(3)w gauge 

bosons as displayed in figs. 5 and 6. Observe that the triplets obtain 
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2 
a mass of ordereWwhereas the singlet receives a mass of order ~1~. 

This is transparent from (31) since 5 78 requires two gauge bosons to 

change its indices from 78 to ab. 

Do we expect these light triplets to be degenerate? It is clear 

from figs. 5 and 6 that the triplet with E= 4, I= 0 as well as the 

singlet receive their mass through the singlet and octet of 5 ab , whereas 

the massive triplet of 5 
ab 

feeds its mass down to the triplet with charge 

E = -2 and I = 2. 

We note that in the SP(6) symmetric limit the massive fermion bound 

states 5 ab have mass ml= 3m14 for the process in fig. 3 and ml= 2m14 

for fig. 4. We expect that the weak gauge interaction will not signifi- 

cantly change this result. Thus m8 % m3 and ml Y 3m8 for fig. 3 and 

ml = 2m8 for fig. 4. Hence we do not expect these light triplets to be 

degenerate. . 

Finally there are additional mass generation processes for the 

light fermions. These are given in fig. 7. They have the following 

simple imterpretation. Light pseudo-Goldstone bosons are produced as 

a result of the spontaneous breaking of the global symmetry SU(8) X U(1). 

These bosons appear in the channel 8 'mG -aBy 
or8 . They have 

off-diagonal matrix elements between the massless and massive composite 

fermions. A weak exchange can then take the pseudo into the condensate. 

Such new graphs will always appear in any effective low energy Lagrangian 

which includes the composite fermions and the pseudo-Goldstone bosons. 

5. Light Fermions (Broken Picture) 

The case of the global SU(8) breaking down to SU(4) X SU(4) is 

straightforward in the broken picture. However, in complete analogy 
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with the previous discussion in the symmetric picture (section 4) none of 

the mesless fermions obtain a mass by gauging SU(4)w. It is thus an 

uninteresting case. We therefore shall only present a discussion of the 

broken picture for the SP(6) case of section 4. In section 3 we discussed 

the broken picture before gauging SU(4)w. The massless fermion states 

were given in (25) in terms of their global SP(6) x U(l)D x U(l)z quantum 

numbers. After gauging SU(4)w we saw in section 4 in the symmetric picture 

that the remaining conserved symmetry is 

The same is essentially true here. The remaining conserved symmetry in 

the broken picture is 

suws x [ su(3)w x U(l)E x U(l)? 1 
where 

E= ( ) O o-3 
3 su(4)s 

+ 

l-l 
l-l 

l-l-3 
3 ) f=(8) 

T = i” O 4su~4~s + (” 1-1 l-1 lml) su(8) 
Note that if we ignore the SU(4)s contribution to E and y they are 

exactly equivalent to E and I defined in (29). The remaining massless 

fermion states (25) transform as singlets under SU(2)s and under 

SU(3)wx U(~)E x U(l)? as follows 
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4J 
3ci 

= (3, -2, 2) 

4a 
I 

a = 1,3,5 

‘4 = (3, 4, 0) 

4J 
3a 

= (3, -4, 0) 

4a 
a = 2,4,6 

Q = (3, 2, -2) 

(33) 

JI 
47 

= (1, 0, 0) 

Note the one-to-one correspondence in the spectrum of massless states 

of (33) and (31) in the two complimentary pictures. Clearly the states 

(3,-2, 2) and (3,2, -2) as well as (3,4, 0) and (3,-4, 0) can obtain 

Dirac masses without breaking the unbroken symmetries. The state 

(l,O, 0) can obtain a Majorana mass. We expect from our knowledge 

of the symmetric picture that the Dirac masses will be of order a W and 

the Majorana mass of order a;. This was easily-seen in.the symmetric 

picture by index counting [see the discussion following (31)l. There 

was, however, another way of making this observation which is equally 

true in both pictures. Recall from (25) that the charge Z was the 

guardian symmetry. This symmetry is explicitly broken by SU(4)w. In 

fact the broken gauge generators in SU(4)w/SU(3)w can change the value 

of Z by +16. This could easily be seen by considering for example the 

WzWt gauge mass term. We finally note that,in order to give the trip- 

lets mass,Z must change by +16 [see (25)] and is thus consistent with 

one W exchange. However the singlet state has Z= 16 and can only get 

mass to order a 2 
W' 

The simplest graphs are given in fig. 8. They are very complicated. 

For the triplets they involve five condensates, two massive strong 

gauge boson exchanges and a weak gauge boson exchange. In addition, 
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since STJ(2)s is unbroken, these graphs must be dressed by strong SU(2)s 

exchanges. Although the situation appears quite complicated, we note 

that there exists a simple one-to-one correspondence between the graphs 

in the broken and symmetric pictures. In fig. 9 we have redrawn the 

graphs of fig. 8. They clearly correspond to those of fig. 5. In fact 

given any graph in the symmetric picture, one can find the corresponding 

graph in the broken picture simply by extracting from the multi-fermion 

condensates and massless composites the two particle condensates. For 

example, in fig. 10 we give the corresponding graph to fig. 6a. 

6. Reconstruction 

The preceding analysis can be summarized most succinctly by the 

schematic diagram of fig. 11. We have a full global symmetry group G 

and we weakly gauge a subgroup HC G. G, in general, contains a 

maximal subgroup Gt for which there exists a solution to 't Hooft's 

consistency conditions and a set of massless fermions. In fact in our 

case, G, = G. The dynamics may not favor an unbroken Gt. In that case 

Gt further breaks to GD, the final guardian symmetry. The composite 

massless fermions of G, consequently decompose into representations of 

GD' some of which obtain mass; the others remaining massless. The 

gauge symmetry will in the process break down to the final unbroken 

subgroup H' lying in the intersection of GD and H. This breaking can 

in principle involve several scales. H' will include all the known 

conserved gauge symmetries, i,e., Q,, SU(3) 
COLOR' etc* 

For example we have discussed the case where G = Gt = SU(8) @ U(l)Q 

and H = SU(4). For the breaking pattern 

G' -+ GD z SP(6) b SU(2) 8 U(l)z 
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we found 

H' = SU(3) B U(l), 

which we may try to interpret as SU(3) color and U(1) electromagnetism, 

where Q, = 

irreducible 

They are as 

where 5, D, Q, N are massive composite quarks, quaits and leptons and 

a, d, k u, v are massless until SU(4) extended color is turned on. 

E/6 [see (29) and (31)l. The fermions of (31) form four 

representations under the extended color interaction SU(4). 

follows: (see fig. 12) 

6: 

6: 

( 5 13 , El59 E35) D 

( 2' , C3', E5') d 

( 5 24 , 526, C46) D 

( 5 28 , c48, P8) 3 
(34) 

15@1: J- J? ($2+E34+C56) N 

( 5 12 , c14, ?,. ..) Q 

( 518 , 538, ,58) u 

( 5 27 , c4’, 9’) u 

5 
78 

V 

Then 5, u, a, d obtain mass of order uc(AS)hS and v obtains mass of 

2 order ec(AS)AS. Clearly this is not a realistic model. We have no 

electrons and moreover we cannot imbed SU(2)w-s into G in such a way as 

to have only left-handed interactions. In a realistic model we must be 

able to take all the low-energy fermions and think of them as massless 
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composites which get mass via extended weak or color forces through 

massive composites. The major problem of reconstruction is to satisfy - 

the constraint that all these composite states can be a realization of 

't Hooft's consistency conditions. This naturally guarantees that the 

binding scale A, can in principle be arbitrarily greater than the quark 

and lepton mass scales. Of course for extended weak or color forces 

the mass ratios are fixed in practice by the value of c1 
2 or ac at A,. 

This is in contrast to scenarios based on extended Technicolor and 

tumbling C81 where the ratios of scales cannot in principle be made 

arbitrarily large. 

We have not discussed the many pseudo-Nambu-Goldstone bosons which 

abound in such a scheme. They will in general contribute to the low- 

energy phenomenology. We feel however that such a discussion will best 
._ 

wait until we have a more realistic model. 

Finally, how heavy do we expect the massive composites D, 5, Q and 

N to be? Their mass will typically break the electroweak group 

smL Q U(lLf We thus expect that the constituent fermion mass is of 

order -300 GeV corresponding to a mass of order -1 TeV for these 

composite states. 
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Figure Captions 

Fig. r? The SU(4)s- instanton process that breaks global U(8) but 

conserves SU(8). It annihilates eight 9's and six x's. 

Fig. 2. The triangle graphs that give rise to the chiral anomalies 

involving a) three SU(8) currents; b) two SU(8) and one U 
Q (1) 

current; and c) three U 
Q 

(1) currents. 

Fig. 3. The g-condensate gives mass to some of the composite 

fermions directly. 

Fig. 4. The O-condensate combines with the instanton process to 

provide a mass for the composite fermions. 

Fig. 5. Masses for the light composite fermions. The notation is 

that of equation (31). The W's are massive weak gauge bosons. 

Fig. 6. Masses for the light fermions through the e-condensate and 

the instanton process. The notation is that of (31) and 

fig. 5. 

Fig. 7. Additional graphs for the masses of the light fermions. The 

graphs on the right-hand side show the corresponding graphs 

in an effective low-energy theory of fermions and pseudo- 

Goldstone bosons. 

Fig. 8. The masses of the light triplets in the broken picture. 

W(S) denote weak(strong) massive gauge bosons. The condensates 

are defined in (17), (22) and (24). The notation for the 

light fermions refers to (33). 
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Fig. 9. The distortion of the graphs of fig. 8 that shows the 

- correspondence to the symmetric picture (compare fig. 5). 

The three condensates Cp ab w $I ab correspond to the z-condensate, 

and $ 3a 9; ($4a $1 correspond to the composite fermions 

5 7a (ssa) [compare (33) and (31)l. 

Fig. 10. The graph in the broken picture that corresponds to fig. 6a. 

8 7 $4 4, w (gcd replaces 987cd. 

Fig. 11. A schematic drawing of the general patterns of symmetry 

breaking. G 2 G, ii GD where G is the full global symmetry, 

Gt is the maximal subgroup for which 't Hooft's consistency 

conditions are satisfied, and GD is the final guardian 

symmetry. G 2 H 2 H' where H is the weak gauge group and H' 

is the final unbroken weak gauge symmetry. Clearly 

GD f-l H 2 H'. 

Fig. 12. Decomposition of 5 a8 with respect to the unbroken gauge group 

H' = SU(3)= x u(l)E M in the notation of equation (34). . . 
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