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ABSTRACT 

We reexamine a modified lattice gauge theory, considered earlier by 

Mack and Petkoval and Yaffe2, in which the 't Hooft order parameters 

behave in unexpected ways. We find that the situation becomes clear 

when one notes that the modified theory contains two pairs of dual order 

parameters. We discuss the order parameters, their commutation rela- 

tions, their weak and strong coupling behavior, and the corresponding 

topological fluxes. 
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1. INTRODUCTION -h 

Recently, Mack and Petkoval and Yaffe2 have considered a modified 

version of Wilson's lattice gauge theory.3 Their work casts doubt on 

the usefulness of 't Hooft's loop operator4 and topological fluxes' as 

order parameters. 

Specifically, 

(a) They show that the 't Hooft operator obeys an area law at weak 

coupling in the modified (Mack-Petkova, MP) theory, compared to the ex- 

pected perimeter law in the Wilson theory, even though the MP theory 

should resemble the Wilson theory arbitrarily closely at small enough 

coupling. 

(b) The Wilson loop should still satisfy an area law at weak 

coupling in the MP theory, thus violating the expected complementarity 

(one area law and one perimeter law) between the Wilson and 't Hooft 

operators. 

(c) In Ref. 2 it is shown that the area law behavior of the 't 

Hooft loop in the MI' theory need not imply the "heaviness" of 't Hooft's 

topological magnetic flux, violating the expected equivalence between 

these two order parameters. 

This paper results from an attempt to understand these.unusual 

features of the MP theory, and to clarify the nature of dual order para- 

meters. We show that these features of the MP theory arise because it 

has two conserved magnetic fluxes, two kinds of 't Hooft operator, two 

conserved electric fluxes, and two kinds of Wilson operator, where the 
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Wilson theory has only one of each. At weak coupling, the 't Hooft 

sperafpr of the Wilson theory should be identified with a different 

operator in the MP theory from that considered in Refs. 1 and 2. Further, 

taking into account all of the order parameters, we find complementarity 

between pairs of 't Hooft and Wilson operators, and equivalence between 

looplike order parameters and the corresponding topological fluxes. 

In Sec. II we discuss the order parameters in the Wilson formula- 

tion of lattice gauge theory, and discuss the significance of the 't 

Hooft commutation relation. In Sec. III we describe the new order para- 

meters for the MP theory and find their commutation relations. We then 

discuss the ways that different order parameters probe the physics at 

weak and strong coupling, and point out that the physics of the ME' theory 

at strong coupling is surprisingly complicated. Finally, the corres- 

ponding topological fluxes are considered. In Sec. IV we discuss the 

implications for order parameters in other lattice and continuum gauge 

theories. 

II. ORDER PARAMETERS IN THE WILSON THEORY 

We consider a pure SU(n) lattice gauge theory defined on a d- 

dimensional cubic lattice. In this section we need not be concerned with 

boundary conditions, and may take the lattice to be infinite. We first 

review the terminology and formulation of lattice gauge theories. For 

more details, see Refs. 2, 3, or 6. 

The lattice contains sites s, bonds b, plaquettes p, cubes c, etc., 

also designated as O-cells, l-cells, 2-cells, etc. Cells are defined 
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with an orientation. There is a dual lattice, whose sites each cor- 

respond to a d-cell of the original lattice. Every set, Sr, of r-cells 

in the original lattice has a dual set, *(Sr) of (d-r)-cells on the dual 

lattice, and vice versa. The boundary, aSr, of the set Sr is a set of 

(r-1)-cells, defined in the natural way. The coboundary, VSr, is a set 

of (r+l)-cells given by *a*(Sr). 

The dynamical variables are elements of SU(n), designated UCbl, one 

for each bond. For any path C of bonds bl,b2,...,bn define 

UCCI = U[bll...UCbnl. The action is the standard3 

S(U) = c - -$- Re tr U[apl . 
P g 

The Wilson lattice gauge theory defines 

z= dUCb1 exp(-S(U)) 

(1) 

(2) 

with dU the normalized Haar measure on SU(n). 

This theory has a pair of dual order parameters. The first is the 

Wilson loop, associated with a closed path C 

A?Cl = xr(UCC]) , (3) 

where r designates a representation of SU(n), and xr is the character in 

that representation. The second is the 't Hooft operator4, BrcCQ,Sl, 

associated with an element T of Z(n), a co-closed set of cubes, Q, and a 

set of plaquettes, S, such that VS = Q. The replacement 

tr uCap1 + tr(dCapl) for P c S (4) 
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in (1) is equivalent to inserting B'[Q,S] into the functional integral.6 

The operators B.'CQ,SI and B'cCQ,S'] differ only by the change of variables 

UCbl -t -cUCbl for b C T (5) 

where T is any set of bonds such that S'-S = VT. S is therefore a Dirac 

surface: B'CQ,Sl is a local operator associated with the surface Qe7 

The operator product B'[Q,S]Ar[Cl is not invariant under (5), but 

change by a factor w(r,T) (the value of T in representation r) for every 

link in TnC. The number of such links is equal to WCC;S'-Sl, the number 

of times the curve C links the closed surface S'-S. We have6 

B'CQ,S'lArCCl = B'[Q,SIAr[Clo(r,r) WCC;S’-sl . (6) 

One may give (6) a Schradinger interpretation when Q, S,.and C lie 

perpendicular to a chosen time axis.ly6 When Q and C change time order- 

ings (and therefore operator orderings), S crosses C, leading to a phase 

factor. The result is the 't Hooft commutation relation4 

B'CQ,SIAr[Cl = Ar[CIB'[Q,SIw(r,r) i[C;Ql 
(7) 

In (7), A and B are to be considered as operators in the Hilbert space 

sense; therefore the order matters. The bar on W indicates that C and Q 

are to be interpreted as lying in the d-l space dimensions only. 

The existence of local operators B, on Q, and A, on C, satisfying the 

nonlocal commutator (6) or (7), is a nontrivial feature of gauge theories. 

Equations (6) or (7) may be interpreted as a conservation law. They 

state that one operator introduces a disturbance into the system which 
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may be detected by a motion of the dual operator.8 The magnitude of 

this d&sturbance, essentially T for BT or the n-ality of r for Ar [thus 

taking values in Z(n)] is independent of whether Q and C pass very close 

together or remain separated by a distance large compared to the charac- 

teristic scales of the theory. The roles of source and detector are 

quite interchangeable; there is really only one "flux", which appears as 

electric or magnetic depending on which operator is regarded as the 

source. 

The vacuum expectation values of ArCCl and BrcCQ,Sl for large curves 

C and surfaces Q are determined by the behavior of these fluxes. These 

expectation values are expected to be associated with the possible 

phases of the system as follows4: 

In an ordered (Higgs) phase, 

!Ln<ArCC1> a -PerCCl 

(84 
Ln<B"CQ,Sl> = -AreaC"QI . 

In a massless (perturbative) phase, 

Rn<ArCC1> 0: -PerCCl 

(8b) 
En<BrCQ,Sl> 0~ -PerC*Ql . 

In a disordered (confining) phase, 

!Ln<ArCCI> 0~ -ArearC] 

Rn<B'[Q,SI> Q -PerC*Ql . (84 
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For a closed surface Sr, PerCSrl is the number of r-cells in Sr, and 

AreaCSrl is the number of (r+l)-cells in the smallest surface Sr+l 

such that VS r+l = S r' We are assuming that 'c # 1 and that r is a 

representation of non-zero "n-ality". 

Assuming a mass gap, in the above phases one operator satisfies a 

perimeter law and one an area law; this is "complementarity". 't Hooft 

has argued that (with the mass gap) simultaneous perimeter law behavior 

is impossible. We shall see this in Sec. IV. Simultaneous area laws 

were also unexpected. We shall see below why they occur in the Mack- 

Petkova model. 

III. ORDER PARAMETERS IN THE MACK-PEIKOVA THEORY 

In order to define the ME' theory we need a.function. n(U) from SU(n> 

into its center Z(n). It is defined by 

- i < arg tr ( Un -l(u))<: . (9) 

This fixes n(U) as 

theory is obtained 

U-integrations, 

the element of Z(n) which is "nearest" to U. The MP 

from the Wilson theory by adding a constraint on the 

l-l dKap3) = 1 
pfac 

(10) 

for all cubes c. This preserves gauge invariance and, in the weak 

coupling limit, any configuration which would be excluded by (10) is 

already heavily penalized in the action, so the theories are expected 

to be equivalent in this 1imit.l 
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In the MF' theory we still have ArCCl defined by (3) and B'CQ,Sl 

defined by (4), and Eqs. (6) and (7) still hold. There are also new 

order parameters. Equation (10) may be interpreted as conservation of a 

flux. The flux, n(U[apl), is defined on plaquettes and takes values in 

Z(n). The constraint (10) states that the total flux leaving any cube, 

and therefore any closed 3-surface, is zero. A new Wilson operator may 

be defined in terms of the flux through a surface, 

p designates a representation of Z(n), C is a closed curve, and D is 

any 2-surface such that aD=C . Owing to (lo), AiCC,DI depends only on 

c : Dais a Dirac surface. When the MP theory is written as a Z(n) 

theory with fluctuating couplings constants, AiCC,Dl is the Wilson loop 

for that theory; hence the subscript Z. The other Wilson loop (3), 

associated with SU(n> gauge invariance, will henceforth be designated 

with the subscript S. 

We may also form a source for the new flux by replacing the 

constraint (10) with the constraint 

n duCap1) = u , c c Q 
pcac 

(12) 

where u is an element of Z(n) and Q is a set of cubes. Q -must be co- 

closed or else the constraints cannot all be satisfied at once. We 

designate this source ga CQ I. Like BT[Q, S], it is a source of magnetic 

flux, associated with an element of Z(n) and a co-closed set of cubes. 

Ea CQI was not considered in the earlier work on this theory; it is 
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needed to complete the set of order parameters. 

% 
'[Cl commutes with Ea CQI (for C and Q disjoint) because both 

are local in terms of the U's. ALCC,DI does not: 

i?' CQIAECC,D1 1 = g" CQIA~CC,DIW (p,~) 
W[Q;D'-Dl . (13) 

The commutator of AiCC,Dl with B'[Q,Sl is tricky because both operators 

have Dirac surfaces. We should consider only products such that 

DnS = $, else the phase is somewhat arbitrary due to ordering ambi- 

guity. This implies that we should consider only deformations of D and 

S such that 

WCC; St-S1 = WCQ;D'-II1 . (144 

Another way to see (14a) is to consider all the surfaces.to be per- 

pendicular to the time axis; under a reversal of time-ordering 

W[C;S'-Sl = W[Q;D'-Dl = i&Z; Ql . (14b) 

Under such deformations there is no change of phase when D crosses Q, 

as (10) still holds everywhere. When S crosses C , however, the 

operator (11) is not invariant under the change of variables (5). It 

follows that 

B'[:Q,S'lA;CC,D'l = B=[Q,SlAP,[C,Dlw(p,r) 
WCC; S'-Sl . (15) 

The operator BrCQ,Sl thus creates both "SU(n)" and "Z(n)" magnetic flux. -. 

We can define an operator Bi[Q,Sl which creates only SU(n) flux, if we 

twist the action by T CEq. (4)l and the constraint by T 
-1 

[Eq. (12) 
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-1 -1 
withu=T 1. BiCQ,Sl can be considered as the product B'ICQ,SIE'c [Ql. 

Designating gTCQI as BiCQl, we have9 

BiCQl<[Cl = A~lIClB~CQIw (r,T) 
GabtjCC;Ql 

(16) 

where a and b take values "S" or "Z", r refers to either a representation 

of SU(n) or Z(n), depending on b, and we have dropped explicit reference 

to the Dirac surfaces. We see that the MP model contains two pairs of 

dual order parameters. Note that both the "SU(n)" and "Z(n)" fluxes 

take their values in Z(n). 

The constraint (10) forces the action in the presence of B'cCQ,Sl, 

Eq. (4), to be large on a set of size at least AreaC"Q1. At sufficiently 

weak coupling one can then prove an area law for this operator.1'2 The 

same proof applies to BiCQ]. The expectation value of the operator 

Bi[Q,Sl, with both action and constraint twisted, evades this. In fact, 

any configuration which gives a significant contribution to the 't Hooft 

operator in the weak-coupling Wilson theory, also contributes to BiCQ,Sl 

in the MP theory. We conclude that Bi, not the operator Br, is the 

operator in the MP model which corresponds to the 't Hooft operator in 

the Wilson theory. 

In all, we expect the following at weak coupling: 

iln<AiCCl> a -ArearC] 

!Ln<BzCQ,Sl> 0~ -PerC*Ql 

Rn<A~CC',DI> 0~ -Per[C'l 

!Ln<B~[Q']> = -AreaC*Q'l . 

(174 

(17b) 

(17c) 

(174 
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The expectation value of a product of different operators from (17a-d) 

will atisfy an area law if any factor does. Equations (17a,b) follow 

from the expected behavior of the corresponding operators in the Wilson 

theory. Equation (17d) is proven as in Refs. 1 and 2, and (17~) follows 

from the same expansion1p2 used for (17d), plus a Peierls argument." 

Equations (17) reflect the fact that at weak coupling, Z(n) electric 

flux is shielded and Z(n) magnetic flux is confined, and vice versa for 

the SU(n) fluxes. We conclude that there is complementarity separately 

between the "SU(n)" order parameters, and the "Z(n)" order parameters, 

and that there is an operator, BL s, which probes the same physics as the 

't Hooft operator in the Wilson theory. 

It is interesting to note that if we take a model which interpolates 

between the Wilson and MP theories, wherein (10) is replaced in the 

i-l 
. 

functional integral by a function of peat n(UCap1) which is highly peaked 

at the value 1, there is only one pair of order parameters. As soon as 

(10) is less than exact, AiCC,Dl is no longer independent of D; D is then 

a real, not a Dirac, surface, and the operator satisfies an area law due 

to purely local effects. Further, it now becomes possible to shield 

B;[Ql; it is easy to prove that BiCQl will now always satisfy a perimeter 

law, and the proof is purely local, involving only configurations within 

one or two lattice spacings of Q. Neither operator, then, probes the 

vacuum structure. This is an illustration of the point that these Z(n>- 

valued order parameters defined on surfaces always come (and go) in pairs. 

The commutation.relation (16) does not uniquely identify BZ with 

AZ and BS with AS. Equation (16) is unchanged, for example, if we 

replace Bi with BiBi and AL with AiAi, with n-ality(r) = - n-ality(p). 
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A more general statement of the expected complementarity is the follow- 

ing, which assumes a mass gap: A magnetic (electric) operator will 

satisfy an area law if and only if it has a nontrivial commutator with 

some electric (magnetic) operator that satisfies a perimeter law. To 

apply the "only if" half of this we need to assume that we have identi- 

fied all of the conserved fluxes; to apply the "if" half we do not. 

More will be said about this in Sec. IV. 

At weak coupling, BS happens to probe the same physics as As, and 

BZ as A z, but at strong coupling there is a different alignment. The 

infinite coupling Wilson theory is trivial: it factorizes into separate 

U-integrations. In the IQ theory, these integrations are still con- 

strained and coupled by (10). Thus, for example, the Osterwalder-Seiler 

cluster expansion'l does not follow, since integrals over disjoint sets . 

of bonds do not factor. As a result, there is no immediate proof of 

analyticity at large g2, or even of a mass gap. The constraint (10) 

has one simple property: if it is satisfied by a configuration UCbl it 

is satisfied by rCblUCb1 for an arbitrary Z(n) valued function rCb1. 

Equation (10) is thus a constraint only on the cosets 

kbl = UCblZ(n) . (18) 

Using this property one may prove a perimeter law for BiBi r B', and an 

area law for any electric operator with which it does not commute (one 

separates the TCbl integration and uses Griffiths inequalities to relate 

this to a Z(n) gauge theoryl). 

The operators BicQl and AgCCIAiCC,DI with n-ality(r) = - n-ality(p) 

probe different physics. Bi, given by (12), inserts a twist into 
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the coset variables 6Cbl. To the extent that the constraint (10) permits 

this twist to spread out, <BL> will be large and <A>!> will be small. 

It appears that any of the combinations (8a-c) might arise. Note that 

any of these combinations, taken with the expectation values found for 

the operators that probe the Z(n) physics, satisfies the generalized 

complementarity. We will not pursue this further, as the MP model at 

strong coupling may be as difficult as the weak coupling gauge theory in 

which our interest really lies. 

The topological fluxes5 which correspond to the various order 

parameters may be developed in a similar way; we shall summarize the 

result. In an MP theory in periodic spacetime, we may form a sourceless 

SU(n> magnetic flux u in direction (jk) by taking BiCQ,Sl with S ortho- 

gonal to the j and k directions, and expanding S until the opposite 

edges meet across spacetime. We then have Q = VS = 0. We may project 

out a sourceless SU(n) electric flux p i by inserting the projection 

operator 

PC;> = n $ c w(P&G~(cQ 
i u i 

(19) 

into the functional integral, where i runs over spatial directions, p i is a 

representation of Z(n), the sum runs over Z(n), and Gi(ui) is a gauge 

transformation aperiodic by ui in direction i. P(;f) commutes with all 

Z(n) Wilson loops, as the latter are products of local gauge invariant 

quantities; it therefore projects only according to SU(n) flux. 

We may also form a sourceless Z(n) electric flux, by inserting 

AiCC,Dl into the functional integral, with D spanning spacetime in the 
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(Oi) direction and C = aD = 0. Finally, we may project for sourceless 

Z(n) magnetic flux u in direction (jk) by inserting the constraint 

6 

( 
n dubI) , Q 

i 

(20) 
P~Djk 

into the functional integral, where D 
jk 

is a closed set of plaquettes 

spanning spacetime in the (jk) direction. Recalling (ll), we see that 

Z(n) electric and magnetic flux, like the SU(n) fluxes, differ only by 

a 90' Euclidean rotation plus a Fourier transform with respect to Z(n). 

The full expression for the flux free energy is 

exp - F(P Si'"Sjk'pZi'uZjk) 

= “( +- c c 
m n 'SOm 'ZOm 

W(PSm’aSOmh(PZm’uZOm) wJs~v’~z~“) 
) . 

(21) 

where 

Z(u SW 
,aZuv) =s F dU[bl n S( n n(U[aPl), 1) 

C pcac 

aCap ,u z&J 
-1 

exp n bs~~vt~s~‘v 

ICPI 

1-1' a' : (22) 

Here the D 
?JV 

are arbitrary closed sets of plaquettes spanning spacetime 

in the (uv) direction and the S 
P’V’ 

are arbitrary co-closed sets of 

plaquettes spanning spacetime orthogonal to the (u'v') direction. 
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S 
?J'V 

,Cpl is the characteristic function 

i 

1ifpC S 
p’v’ 

S ,','~Pl = -1 if -p C SVIvI 

0 otherwise. 

To illustrate the definitions, note that 

c s~,vI~Pl = ~~llI~vvI - ~~v’$)jl’ l 

POD ?JV 

(23) 

(24) 

The appearance of (a spv) 
-1 in the second delta function of (22) requires 

some explanation. In the space-time delta functions, it appears because 

the change of variables which carries the twist from G 
i [in (19) 1 into 

the action also changes ALiLC,Doil by a phase. In the space-space delta ._ 

functions it appears because when we expand B:CQ,Sl to form the source- 

less flux in the (jk) direction, Q passes through D 
jk 

once and the con- 

straint (20) then flips because the constraint (12) is twisted on Q. 

The covariance of the twisted functional integral (22) under 90' 

Euclidean rotations implies, as when there is only one pair of fluxes,5 

a duality equation for the flux free energy (21). 

When any of the uZjk is not the identity, the constraints force the 

action to be large on at least a co-closed set of plaquettes spanning 

space orthogonal to the (jk) direction. At sufficiently weak coupling, 

one can then prove by using the expansion of Ref. 2 that 

F(P Si"SjkyPZi"Zjk) - F(l,l,l,l) -f 0~ for 'Zjk ' ' (25) 
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when the dimensions of the lattice are, all taken to infinity together 

(the particular case treated in Ref. 2 is seen to be aSjk = aZjk # 1). 

Z(n) magnetic flux is therefore "heavy". It follows by Fourier trans- 

formation that the flux free energy is independent of pzi in the infinite 

volume limit: Z(n) electric flux is "light". Finally, F(p.,o 1 jk' l,l> 

is seen to be equivalent, at weak coupling, to F(p i"jk ) in the Wilson 

theory, in the sense that any configuration contributing to the latter 

which is not heavily penalized in the action is permitted by the con- 

straints to contribute to the former as well. These conclusions are 

entirely parallel to those for the order parameters, Eq. (17). A similar 

comparison can be made at strong coupling. 

IV. CONCLUSIONS 

We should note that we agree entirely with the physical conclusions 

of Refs. 1 and 2, that the important physics lies in the smooth spreading 

of SU(n) magnetic flux, not in the more often and more easily studied 

Z(n) variables. In fact, one could replace (10) with the stronger 

constraint 

duCap3) = 1, all p (26) 

thus eliminating not just Z(n) monopoles but Z(n) flux as well, and 

expect the same weak coupling limit. (One can check that the theory 

defined by (26) has only one nontrivial 't Hooft operator, with both 

action and constraint twisted.) 

Our goal here has been a deeper understanding of dual order para- 
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meters in gauge theories. The earlier work concluded that different 

orderaarameters in the MP model probe magnetic flux spreading in dif- 

ferent ways. We see that this is possible because there are two magnetic 

fluxes, and different order parameters probe different combinations of 

the two. In particular, there is still a 't Hooft operator, BiCQ,Sl, 

which probes the physics of interest. 

The lesson of the MI' model is that the analysis of the order para- 

meters becomes more complicated when there are new conserved quantities. 

This is just a special case of the general statement that, in any system, 

if one neglects any conserved quantity, one will underestimate the 

complexity of the phase structure. Fortunately, several statements may 

be made about general gauge theories without assuming that there are no 

unknown conserved quantities. 

First, the topological fluxes defined by 't Hooft are exactly con- 

served. Therefore, any operator which creates a "heavy" 't Hooft flux 

will satisfy an area law, regardless of what other fluxes it creates. 

The converse need not be true: an operator may create only light 

't Hooft fluxes, but a heavy unknown flux. Thus, to prove confinement 

it would be sufficient, but not necessary, to prove heaviness of 

't Hooft's electric flux. 

Second, the duality equation of 't Hooft is exact. It follows from 

the first point that if the 't Hooft operator satisfies a perimeter law, 

't Hooft's magnetic flux is light (assuming, of course, a mass gap, so that 

fluxes must be light or heavy). From the duality equation it follows that 

electric flux is heavy, and that the Wilson loop satisfies an area law. 
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Thus, simultaneous perimeter law is ruled out, whereas to rule out 

simultaneous area law, we would first have to assume the absence of 

any unknown conserved flux. 

ACKNOWLEDGMENT 

I would like to thank L. Yaffe for discussions. This work is 

supported by the Department of Energy under contract number 

DE-AC03-76SFOO515. 



-19- 

References and Footnotes 

1. G. Mack and V. B. Petkova, Ann. Phys. (N.Y.) 123, 442 (1979). 

2. L. Yaffe, Phys. Rev. a, 1574 (1980). 

3. K. Wilson, Phys. Rev. DlO, 2445 (1975). 

4. G. 't Hooft, Nucl. Phys. B138, 1 (1978). 

5. G. 't Hooft, Nucl. Phys. B153, 141 (1979). 

6. A. Ukawa, P. Windey, and A. Guth, Phys. Rev. m, 1013 (1980). 

7. Q is of dimension d-3: a point,in three dimensions and a loop 

in four. 

8. This motion is described in Ref. 4. 

9. BiCQl does not have a simple SchrGdinger interpretation, as it is 

not defined at a single time but is mixed up with the transfer 

matrix. Equation (16) should be interpreted not in the SchrGdinger 

sense, but in the sense of the net phase picked up in the 't Hooft 

motion. * This is not disturbing: we may smear out any order 

parameter over a small distance in spacetime, destroying the 

Schrodinger interpretation, and it will still probe the vacuum in 

the same way. 

10. R. Griffiths, in Phase Transitions and Critical Phenomena, ed. by 

C. Domb and M. Green (Academic, New York, 1972), Vol. I. 

11. K. Osterwalder and E. Seiler, Ann. Phys. (N.Y.) 110, 440 (1978). 


