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ABSTRACT . 

Two straightforward and well-known evaluations of Q, 

the spatial integral of the electric charge density, are shown 

to yield differing results. It is argued that the ambiguity 

arises because the definition of Q, if it is to yield an 

operator, must be supplemented with domain considerations. 

The correct domain considerations for physical applications 

are considered. 
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1. Introduction 

Qzntum electrodynamics (QED) contains a familiar yet unresolved 

paradox. AS usual, let 5' and Z3 denote respectively the electric current 

and the photon field renormalization, and define Q(x') f I dz Jo(x). 

Let L, the lepton number, denote the number of electrons minus the number 

of positrons. It is well-established Cl1 that L = Z;lQ despite arguments 

based on the canonical commutation relations (CCR's) which seem to imply 

L = Q. The reasons for the failure of the CCR arguments are generally 

held to be understood. We now argue that in fact they are not. 

To distinguish between the various difficulties involved, we begin 

by considering QED with the interaction spatially cut off. In this case, 

the CCR arguments are correct; L does equal Q. One might then ask how 

the factor Z -1 
3 arises when the spatial cutoff is removed. The answer to ._ 

this question is given (with an easily corrected error) by J. Bernstein 

C21 among others. However, a difficulty remains: some of the CCR argu- 

ments appear to be every bit as valid in the absence of a spatial cutoff 

(where they yield the wrong answer) as in the presence of a spatial cutoff 

(where they yield the correct answer). Bernstein deals with this also. 

Specifically, he considers a particular CCR argument which crucially 

assumes the equation d/dt Q(t) = 0. He then correctly maintains that in 

fact d/dt Q(t) # 0 so that the argument fails. This might seem to settle 

the matter, but two difficulties remain. First, d/dt Q = 0 should hold 

(and does!) by classical correspondence if for no other reason. How then 

can Bernstein be correct in maintaining that d/dt Q # O? Second, the CCR 

argument considered by Bernstein can be trivially modified to avoid any 
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assumption regarding d/dt Q. The result is a straightforward and 

compelking derivation of the incorrect result L = Q. 

These two difficulties comprise the unresolved paradox to be dealt 

with in this paper. The resolution is rather technical. We shall see 

that the integral Q = 1 dg Jo exists only in a very weak sense and is 

somewhat ambiguous. Indeed, in the presence of an ultraviolet (LTV) 

cutoff, any of the equations d/dt Q = 0, d/dt Q # 0, L = Z;lQ or L = Q 

may be viewed as true by appropriately resolving the ambiguity. Never- 

theless, the equations d/dt Q # 0 and L = Q will be shown to be in some 

sense unnatural, with the latter being impossible without the UV cutoff. 

This will resolve the paradox while leaving us with the desired results 

d/dt Q = 0 and L = Z;lQ. 

Henceforward we shall focus our attention on the difficulty 

associated with the apparent doublevaluedness of Q, leaving the difficulty 

with d/dt Q to be dealt with in passing. The remainder of the paper 

proceeds as follows. In section 2 we supply the details of the paradox 

we wish to resolve, presenting arguments which yield both Q = Z3L and 

Q = L. In section 3 we obtain useful insights by examining the meaning 

of Q in free field theory. In section 4 these insights are applied to 

QED and the paradox is resolved. Conclusions are presented in section 5. 

2. The paradox 

Before presenting the paradox we establish notation and deal with 

a technicality. 

Our notation is as follows. We consider QED in the Coulomb gauge 

[3] using dimensional regularization (d # 4) as a UV cutoff. All renor- 
-15 

malized quantities carry the subscrept ren. JI,,, = Z2 $. Au -% v 
ren =Z3A. 
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e ren = Z:e. J' = $y'l$. aUFPV = eJV. The lepton number 

Lz/zbt 
1 out(k) bout(k) - d;,,(k) douto] Y 

where bout and clout respectively create final state electrons and 

positrons. & = d$2j,r)-d+1 (2k0+ where k" = (c2+m2)'. Helicity 

indices and sums are suppressed. 

At this point we have no motivation for being particularly technical. 

Nevertheless it will save some time if we now carefully consider the 

meaning of Q. Q(t) was defined as ,f dg J'(t,g) = / ddx 6(x0-t) J'(x). 

However, like all local quantum fields, Jo is expected to be an operator- 

valued distribution on space-time; that is, I ddx f(x) Jo(x) is a well- 

defined operator provided that f(x) is smooth and rapidly decreasing. 

But 6(x-‘-t) is neither smooth in x0 nor rapidly decreasing in g so that, 

a priori, Q(t) is ill-defined. ._ 

This difficulty can be remedied in a number of ways. The following 

is the most suitable for our purposes. First, we note that the UV cutoff 

d # 4 eliminates the divergences associated with the lack of smoothness 

0 in x , so that Jo need be viewed as a distribution only in the spatial 

variables. Thus 1 dz f(g) J'(t,g) is an operator if f(g) is smooth and 

rapidly decreasing. We now define A-(z) to be the Fourier transform of 

A,(C) = (n/n) (d-1) /2 e-ny h,(z) is smooth and rapidly decreasing and, 

as n -+ m, 6,(c) approaches the Dirac A-function and x,(g) -+ -1. It there- 

fore makes sense and is natural to give meaning to Q by defining 

Q(x’) E f.. QJx") = ?;- 1 d;: A,(=) Jo(x) . 

We now proceed with the derivations of Q = Z3L and Q = L. Q = Z3L is 

motivated by experiment and classical correspondence: the total electric 
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charge of a system is clearly erenL. The electric charge density is 

iv2 
wit 

by Gauss' law. But 

9.2 =z -g+ + 
ren 3 V 9 E = Z;' e Jo = Z;' eren Jo . 

Thus, we expect erenL = I dz Zil eren Jo or Q=Z3L. 

To prove these results we resort to perturbation theory. Let 

a out>, 16 in> denote arbitrary multiparticle momentum eigenstates 

in the out and in scattering representations (e.g., if a refers to m 

electrons with momenta k 1' . . . , km and n positrons with momenta 

%' . . . . 'n' then 

a out> = b 
zut(kl). . J&(k,) dctu,(R,). l -d&&J 10) .> 

Let Q,(a) and Oh(B) be arbitrary smooth and rapidly decreasing functions 

of the momentum variable c1 and B and set la out>.= ./ da$a(u) Ict out> and 

lb in> = j df3$b(8) 1~ in>. In other words, let la out> and lb in> be 

arbitrary states with smooth wave-functions respectively in the out and 

in representations C41. Then a perturbative proof is given in the 

appendix that 

I-I- C$ outI[z;lQn-L] lb i$ = 0 9 (1) 

which would seem to imply Q = Z3L. 

Next we present the CCR augument [5] which yields Q = L. In what 

follows, all fields are to be evaluated at time t = 0. The -equal time 

CCR's imply 

[Jo(~) ,ji<;,l = T<;> S(ii- 5, 
[Jo& ,$<;;>I = -& &- ;I 

[J"(;),AU(;)I = [J"(~),~'(~)1 = 0 . 
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Multiplying by h,(g), integrating over z, and letting n + 00 yields 

rQ,$l = $, CQ,+l = -$, - 

CQ,PI = [Q,i'l = 0 . 

Perturbation theory may be used to show that these equations remain true 

if Q is replaced with L. Thus Q-L commutes with all the fundamental 

fields and hence with any product of fundamental fields. We shall use 

the letter @ to denote an arbitrary product of fundamental fields 

evaluated at time t = 0. Let 19~ and &F2 be two such products. Then, 

as just shown, [Q(O)-L, @,I = 0. Sandwiching this result between 

<o\ @l and IO> and using L/O> = 0 yields 

(01 @,[Q(O)-Ll @2jO> = <01 @l C2 Q(O)lO> . 

The right hand side vanishes, but the proof of this is nontrivial and is 

not presented here. (Why the proof is nontrivial will be-clear from the 

counterexample in section 3.) Thus, recalling the definition of Q, 

we have 
lim CO) @,CQ,(O> -LI@~]O> = 0 , (2) n-jco 

which would seem to imply Q(0) = L. 

Our paradox may now be expressed as follows: equation (1) implies 

that A@ Q, = Z3L (in some sense), while eq. (2) implies that 

ILg R(O) = L (in some sense). How can this be? The answer lies in 

the meaning of "in some sense", Indeed, the convergence of'Q, is rather 

peculiar even in free field theory to which, for the purposes of 

illustration, we now turn. 
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3. lim Q, in free field theory n-jca 

I! free field theory the above paradox disappears since Z3 = 1. 

Nevertheless, most of the ideas needed to resolve the paradox in QED 

can rigorously be displayed in the simpler context of free field theory. 

We therefore keep our earlier notations (with obvious modifications) 

but turn off the interaction. The in and out representations become 

the same, which we call the standard representation. To be completely 

rigorous, we let the dimension of space-time equal four. Consequently, 

we must smear R(t) in time; that is, we define 

Q(f) - A2 Q,(f) - Al I d4x f(x') An(;) Jo(x) , 

where f is smooth and rapidly decreasing. Furthermore, we shall require 

that Ltdt f(t) = ‘1. 

As every graduate student knows, thelimit Q(f) exists and equals L. 

In particular, we have the free field analog of eq. (l), 

As <alCQ,(f) -LIlb> = 0 , (3) 

where la> and lb> are states with smooth wave-functions in the standard 

representation. Such states do not comprise the entire Hilbert space, 

but they do comprise a dense vector subspace; i.e., a domain. Thus, 

eq. (3) states that the sequence Q,(f) converges weakly to L on a dense 

domain; i.e., that Az R(f) = L hold s when sandwiched between states 

from a dense vector subspace. Can we strengthen this; that is, can we 

show that Qn(f) converges to L weakly on the entire Hilbert space (or, 

rather, on the intersection of the domains on which the various Q,(f)'s 
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are self-adjoint)? The answer is no. Here is a counterexample which 

will be important to us in section 4. 

Gt IkR> = bt(k)dt(!2)/O>. Let g(c,t) be smooth and rapidly 

decreasing and define Ix> to be the two-particle state whose wave- 

function is given by 

<xlkR> = g&x) V(T) yOu(Q 

(iT+I12 ' 
(4) 

where our Dirac spinors have the normalization su = -?& = 2m. Note 

that lx> does not have a smooth wave-function but nevertheless that 

<XIX> < m. If f^ denotes the Fourier transform of f, then 

<xl CQ,(f) - LllO> 

-- = 1 dk dR <xlkR> WjQ,(f)~O> 

-- = j dk do g(d,;) v(t) y” d> ;(--k’-.&‘) .d &+;) . 
-n 

The suppressed helicity sums yield the factor 

Tr[y'(y*k+m) y'(y*!L-m)l = 2;'2 - 2(;&2(ko>-2 + @(lq3) , 

where 'it = -g<d. It follows that , as n + 00, the integral reduces to 

I dr: 

(2r)6(2ko)2 
g&-g) ;(-2k") 2 [-$A$] ' 

which doesn't vanish if g is appropriately chosen. Therefore 

lim <x\CQ,(f)-LI 10) # 0. n* 

This counterexample demonstrates that the convergence of the 

sequence Q,(f) is indeed neither strong nor weak, but instead something 

weaker than either; i.e., weak convergence on a dense domain. 
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Conceivably, then, there could exist another domain on which R(f) 

converged to something other than L. While this may or may not be so, 
h 

we claim that something quite similar is in fact the case in QED with a 

uv cutoff. This will resolve our paradox: Q = Z3L will hold weakly on 

one domain while Q(0) = L will hold weakly on another domain. 

4. lim n-w R in QED 

We now reconsider eqs. (1) and (2). Equation (1) states that 

Q = Z3L holds weakly on the dense domain comprised of states with smooth 

wave-functions in either the out or in representations. The following 

two claims, if true, resolve the paradox. 

1. Unless L @IO> = 0, the state @)o> does not have a smooth 

wave-function in either the out or in representation. Furthermore, 

the singularities in the wave-function of 8/O> resemblethe singularity 

in the wave-function of Ix> discussed in section 3. 

2. Because of the singularities in the wave-function of B IO>, it 

is wrong to conclude from eq. (1) that Q = Z3L holds between <O\ 6Y1 and 

tP210>. In fact the singularities conspire to produce the result 

<01 @$Q(O)- Ll e2 lo> = 0 . 

If the above claims are true, then Q = Z3L will hold weakly on the 

domain of states with smooth wave-functions while Q(0) = L will hold on 

the domain consisting of finite linear combinations of states of the 

form @IO>. These statements are not at all incompatible, and the 

paradox will be resolved. (This will also take care of the d/dt Q 

difficulty; it will be easy to show that d/dt Q(t) = 0 holds on the 

former domain and that d/dt Q(t) # 0 holds on the latter.) 
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Although the above claims (which we believe and attempt below to 

verify) resolve the paradox, an important question remains. If Q has 
51 

different values on different domains, which is the correct domain for 

real physics? Several considerations yield the same answer. 

First, the fundamental fields are unobservable, while scattering 

experiments are actually performed; so it is experimentally more natural 

to consider a basis of scattering states rather than states of the form 

@IO>* And given a scattering representation, it is hard to see any 

reason to expect singularities in the observed wave-functions. Thus, it 

is natural to expect states found in nature to have smooth wave-functions 

in a scattering representation [6]. 

The same conclusion comes from classical correspondence which yields 

as previously noted, L = Z;lQ and d/dt Q(t) = 0. These equations hold 

weakly between states with smooth wave-functions.and do not hold between 

states of the form @IO>. 

Also, the domain spanned by the @IO> is unnatural in that the 

fundamental fields in @ are evaluated at time t = 0, which distinguishes 

one time from all the others. Had we evaluated the fields at some other 

time t we would have obtained a different domain on which L = Q(t) 

would weakly hold, but on which Q(0) would be a mess. 

Finally, it is expected that interacting fields in four dimensions 

cannot be evaluated at sharp times. We were able to consider the state 

O/O> only because we were using a UV cutoff. As the cutoff is released, 

states of the form d/O> probably diverge. 

Thus we expect states which occur in nature to be smoothly 

expressible in terms of scattering representations C61. 
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We now attempt to verify our claims. For each claim, we shall 

proceed by examining a special case. This will involve no loss of 

generality in the first claim, since the necessary generalizations will 

be obvious. This will not be so for the second claim; nevertheless, our 

example should make the second claim seem very plausible. 

The special case of our first claim which we consider is B = Jl'(O,z). 

The wave-functions of @IO> (or, rather, its complex conjugate) in the 

in-representation is then <O~IJJ(O,~$~@ in>. This wave-function will 

of course have singularities associated with soft photon emission, but 

these have no significance in the present context. As we expand in 

powers of e, the first singularity not associated with soft photon 

emission to be encountered is in the Feynman diagram shown in fig. 5, 

which equals 

-e2v(i) yi.l u(k) DPv(k+R) S(p+k+R) yv u(p) e 
i (;+c+l, 4 . 

Since we are working in the Coulomb gauge, the photon propagator DUv(k+R) 

has several terms proportional to l/(z+x)2. Most of these are eliminated 

by current conservation; but one survives, and for c+t near zero the 

diagram equals 

-ie2 v(R) Y’ u(k) 
.+ + 

(ic+ Q2 
S(p0+2ko,c) y" u(p) elpox 

plus nonsingular terms. Note that the singular factor G(!L) y" u(k)/(i%)2 

occurs in both eqs. (4) and (5), which is the resemblance referred to in 

the first claim. 

The special case of our second claim which we consider is 

q = +(O,z) and e2 = $(O,‘;), where we expand to leading nontrivial 

order in e. We wish to verify eq. (2) which may be written 
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lim <o/~(o,~~Q,(O)~(O,;~ IO> = <ol~(o,;;)~(o,;) lo> . n-fco 

In order to consider this equation in perturbation theory, we insert a 

complete set of scattering states between each pair of adjacent operators, 

yielding 

A$ I dadB <oj$~(O,~)l~ in> <B in]Qr(O>]a out> <a 

= 1 da <Oj$~(O,g)l a out> <a outlJ1(0,;) 

Itcco,;) lo> out 

10) 

This equation, expressed in an obvious way in terms of cut diagrams, 

is shown in fig. 6. 

We now expand in powers of e to the leading nontrivial order (which 

will be @(e2)). To @(e">, fig. 6 reduces to fig. 7. It is simple 

to check that both sides equal A E j G (y*p+m) e ip'*(GG) . 

To @'(e2>, several diagrams contribute to fig. 6. Since we were 

interested in Z 3 considerations, we shall consider only those diagrams 

with a closed fermion loop. It is left to the reader to show that the 

remaining diagrams cancel among themselves. Furthermore, since the 

fermion loop is proportional to k2gov -kOkv and since any physical photon 

polarization E satisfies (k2g0v - kokv)eV = 0, any graph vanishes if a 

photon line connected to the fermion loop is cut. Thus, fig. 6 to @(eL) 

reduces to fig. 8. 

The first graph of fig. 8 is easily computed to be lI(O>*A. II(O) is 

defined in fig. 9 and equals 

4 e2 -- 
3 (41T)d'2 

,d-4 r 2 - A! 
( ) 2 l 

The second and third graphs of fig. 8 naively seem to vanish, since the 

middle third of each vanishes as n + m. However, the top third of the 

second graph and the bottom third of the third graph contain singularities 
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which invalidate the naive result, and in fact the second and third 

graphs exactly cancel the first. 
-si 
To see this, we consider the second graph in more detail, as shown 

in fig. 10. The singular part of the top third (which is all that 

survives the n -f m limit) is given by eq. (5). The middle and bottom 

thirds respectively equal 

(2TQd-l 2p” a(;-- ;;) u(k) y" v(a) (27Qd-' 6$+%) 

.+ + 
and u(q) e-i"'. If we combine the three factors, do the trivial G 

integral, note that the helicity sum cu(p) G(p) = y*p+m, and note that 

S(p"+2k0,5) Y'(yep+rn) = i 
2k0 

(y*P+d 

we obtain 

(24d-1 6 (g+;> 

' 2k0 n 

The suppressed helicity sums and the n -t m limit proceed exactly as in 

the counterexample of section 3, yielding 

Ae2 j dg 2- 2z2 

(~IT)~--' (2k0)3 (d-l) (k")2 ' 3 

The dc integration involves standard d-l dimensional integrals, and the 

final result is -%AlI(O). 

The third graph of fig. 8 equals the second. Thus, the three 

contributions to fig. 8 sum to zero as they must, but only.because the 

wave-functions of <Ojj~(O,z) and ~(O,~)/O> possess the appropriate 

singularities. This establishes the second claim for the special case 

considered. 
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5. Conclusions 

Orir results may be sketchily summarized as follows. Both eqs. (1) 

and (2) are correct (although eq. (2) is grossly misleading) and the 

apparent contradiction between the two is resolved by the fact that a 

sequence of operators can converge to different results on different 

domains. (Although these conclusions may seem reasonable at this point, 

they were obtained by means of rather technical considerations. Since 

technical considerations are at best time consuming, it is perhaps worth 

noting that the paradox arises only when we consider the operator $(x), 

which is nonlocal, noncovariant, and unobservable. Such considerations 

lead to the misleading eq. (2). On the other hand, a consideration of 

true observables such as F uv Jv 
ren' ren' and scattering states leads to 

eq. (l), which is not misleading.) ._ 
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Appendix 

M now derive eq. (1). We proceed by evaluating 

kg <a outlQn(t)lb in> and showing that it equals <a outlZ3L/b in>. 

By the usual LSZ reduction procedure, it can be shown that 

<a outlJu(x)/B in> = eiqox T$ , 

where q is the difference between the incoming and outgoing momenta and 

%3 is given with the usual Feynman rules in fig. 1. What we wish to 

compute may be expressed as 

lim 1 da dB $:(a) $,(8)(2~)"-~ eiqot Tz8 n-ws $$) l (6) 

We assume that the limit exists and depends continuously on $a and 4,; 

that is, that ?;L To aB 6n(<) exists in the sense of distributions in the 

variables a and 8. By current conservation q T !J =o. 
u a6 

Thus, 

0 = Al qu Tig6n(G) = q. && T$ d,(;)- It follows that $-e T$6n(z) 

contains a factor of S(qO>. If a and 6 are single-particle states, the 

factor of S(q") is contained in 6(c). This case is left to the reader. 

Otherwise a factor of 6(q") resides in To a@ G=O' 
It therefore 

suffices in computing To aI3 z=O I 
to discard diagrams which are nonsingular 

as q + 0 and to extract the S(q") pieces from the singular diagrams. 

The singular diagrams may be found by means of the Landau rules [7l and 

are typically of the form shown in fig. 2a. (The usual infrared singu- 

larities, which have nothing to do with the Jo insertion, do not yield 

S(q") contributions,) Near q = 0, these diagrams may collectively be 

replaced by diagrams of the form shown in fig. 2b, where we have used 

-1 z1 z2 = 1. 
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As a particular case, consider the two contributions shown in 

fig. 3& Evaluating the propagator near the Jo insertion and using G = 0 

yields that fig. 3 = fig. 4. (The momentum q shown in fig. 4 should flow 

into the vertex to which the indicated external line is attached.) The 

sum of the two terms proportional to the principle value of l/q0 is 

nonsingular at q" = 0 and may be discarded. The S(q") terms contribute 

the term Z3<a outlb in> to (6). Had we considered a positron line rather 

than an electron line, the contribution to (6) would have been 

-Z3<a outlb in>. Lines with an electron at one end and a positron at the 

other contribute zero. Thus, the sum over all contributions to (6) is 

simply Z3<a out[Llb in>, the desired result. 



-17- 

Footnotes 

1. D?Lurie, Particles and Fields (1968), eq. 8(37) for example. 

2. J. Bernstein, Elementary Particles and their Currents (1968), 

pp. 42-45. The error is that the observed electric charge is 

obtained from Gauss' law with an unrenormalized electric field, 

so that the right hand side of eq. 
+ 

(4.13) lacks a factor of Z3 . 

Consequently, "fi " should be replaced with "Z311 everywhere on 

p. 45. 

3. Any physical gauge could be used, but we do not here consider 

operator realizations of gauge fields in unphysical gauges. 

4. We regulate the infrared divergences associated with QED scattering 

theory by requiring d> 4. (It is unfortunate that the states la out) 

and lb in> as defined here diverge as d -f 4. Presumably when a 

rigorous QED scattering theory is developed, it will be possible 

to generalize our results to include the case d = 4.) 

5. Similar arguments may be found in the references cited in footnotes 

1 and 2, as well as in S. Fubini and G. Furlan, Phys. 1, 229 (1965). 

6. Here "scattering representation" refers to the as yet undiscovered 

scattering representation associated with a rigorous QED scattering 

theory. 

7. L. D. Landau, Nucl. Phys. 13, 181 (1959). 

J. D. Bjorken, doctoral dissertation, Stanford University (1959). 
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Figure Captions 

1. 

2. (a) Typical singular contribution to Tz81; = o. 

(b) Same 8s (a) evaluated near q" = 0. 

3. Two contributions to To a@ < = 0' 

4. Fig. 3 re-expressed. 

5. A contribution to <O\+(O,z)lkEp in> 

6. Graphical expression of a special case of eq. 2. 

7. Fig. 6 to O(e'). ._ 

8. Fig. 6 to O(e2). 

9. Definition of II(O). 

10. Second term of fig. 8. 
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