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ABSTRACT 

We infer the existence of a phase transition in pure non-Abelian 

gauge theories at zero temperature for 0 near IT. Our analysis assumes 

that instantons are responsible for the onset of the deviation from 

perturbative behavior in the theory. We show that this leads to a 
._ 

weak coupling zero of the E-function for 8 near IT, implying the loss 

of confinement. 
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From topological arguments 't Hooft and Mandelstam* have enumerated 

the possible phases of the SU(2)/Z2 Yang-Mills gauge theory: (1) a 

confining phase; (2) a superconducting phase (dual to the confining 

phase); (3) a compact QED phase, and (4) a Coulomb phase. The lattice 

version of this theory strongly indicates that the theory confines and 

has no phase transition for any value of its gauge coupling.3 The 

lattice gauge theory, though, corresponds to the 0 = 0 version of the 

continuum theory. The Yang-Mills theory is actually a class of theories 

characterized by a gauge angle 0,4,5 with period HIT, which acts like an 

additional coupling in the Lagrangian, 

0 trF pv e -f 

161~~ 
=-trE 03 

W 8a2 
(1) 

As a function of 0, the theory can exhibit different kinds of behavior; 

for example, for 0 # 0 or r, there is CP violation. We will give 

evidence to indicate that there is phase structure in the Yang-Mills 

theory for 8 greater than a critical value. Our analysis indicates that 

for f3 near T the asymptotically free phase has a small infrared fixed 

point. It is possible that this fixed point separates this phase, which 

is a weak coupling Coulombic phase, from a superconducting phase. 

Our analysis is based on the assumption that instanton effects6p7 

are responsible for the onset of the deviation from perturbative 

behavior at weak coupling.8 We will compute the effects of instantons 

on coupling renormalization for arbitrary 8. Because of infrared 

problems associated with instanton calculations we consider the theory 

at high temperature. We will use temperature as a scale with respect to 
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which the effective coupling is determined. From the change of this ef- 

fectiv; coupling with scale, the B-function as a function of the effec- 

tive coupling will be determined. 

The behavior of the 0 = 0 finite temperature theory is known from 

the lattice theory.g*10 At high temperature the theory is in a (Coulomb) 

plasma phase, and as the temperature is reduced reaches a phase boundary 

at a point that depends on g. On the other side of this boundary the 

theory is in the confining phase. 

In the continuum 

effective coupling is 

Q2 -f 0, for T2 >> A2, 

theory at finite temperature the momentum-dependent 

also temperature dependent, g2(Q2/A2,T2/A2). As 

this coupling does not continue to increase, but 
3 

becomes independent of QL, 

(2) 

Physically, this is because quantum fluctuations with energy that is 

small compared to the temperature are washed out by the thermal fluc- 

tuations, even if the low energy fluctuations have large coupling. This 

implies that in the sum over all energies in Feynman graphs, the low 

energy contributions are dominated by thermal fluctuations rather than 

quantum fluctuations with large coupling. We therefore assume that at 

high temperature the semiclassical, $, approximation, is valid. The 

temperature-dependent effective coupling can then be computed from 

perturbative and instanton fluctuations. 

Let us first consider the Euclidean theory and then include the 
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modifications due to the periodic boundary conditions. The instanton is 

a non??rivial minimum of the classical action with v = I, which is 

approximately the field of a 4-D magnetic dipole,7 

a 
All(x) = 2p2sa a$- D 

t 

l-iv 

Although M 
I.lV 

is antiself-dual, F is self-dual. For an anti-instanton 
PV 

with v = -1, the duality properties are reversed. The instanton inter- 

action energy with a field is proportional to M F 
uv w' 

so instantons 

interact with anti-instantons through a dipole-dipole interaction, but 

do not interact with other instantons to the same order. The grand 

partition function for this dipole plasma can be expressed as a field 

theory with Lagrangian,ll 

9 
1 2 

eff =-trF - 
a2 

lJV s P (4) 

x sdQ[eie exp {(-$)2 tr MPvFuv ) + eVie exp ((9,' tr ~~~~n~)] , 

where X(p) is the instanton density. This quantum field theory is to be 

integrated over all gauge fields other than instantons. 

For finite temperature 9 
eff 

-+ JY 
eff' This effective field theory 

is modified by periodic boundary conditions, and by an explicit tempe- 

rature dependence in X. The dipolar interaction between widely sepa- 

rated instantons and anti-instantons is preserved at finite tempera- 

ture.l* At high temperature,l* 

X(P,T) = X(P) exp - i(n~T)~ . 
> 

(5) 
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The free energy of the gauge theory at high temperature is that of 

a gluo"n plasma in the background field of correlated topological fluc- 

tuations. The net effect of this background field is to modify the 

dielectric properties of the gluon plasma. The leading contribution 

comes from expanding the exponentials in 2 eff in Eq. (4) in powers of 

F 
W' 

The @(?i) high temperature effective Hamiltonian density 

appropriate for weak slowly varying fields is, 

3 E 03 tr Z2 + tr Ff2 
eff N 

2i2 (0 2g2(T)p(T) 
+$ tr Ai - 6 T4 

where 
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and where 

41T 2 
n(T) = -y / 

dp 8~~ 
-i- - X(p,T) . 

g2 

(6) 

(7) 

(8) 

(We have neglected a sine tr 2 l g term which is irrelevant for the 

perturbative analysis to be considered.) The instanton effects have 

renormalized the gauge field coupling strength; the temperature- 

dependent effective coupling becomes 

1 
Rn 2 hose n(T) 

_N l+c0se n(T) 
11 

12?T2 * 12?12 
Rn f 

. (9) 

This second form is of course valid for n CC 1, although a more 

sophisticated analysis7 shows it is in fact a better approximation for 
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larger n (but still 5 1). This formula implies that dimensionless 

temperzture-dependent functions have the temperature dependence, 

f(P2 (;), 8) N f(g:ff(f) y 0) , 

valid for O(?i). n(T) has the approximate temperature dependence, 

(a>" (In !r -, 

(10) 

(11) 

and this kind of temperature dependence can only be generated in 

perturbation theory from terms of higher order in $I. 

We now consider the behavior of the effective coupling, Eq. (g), 

for 8 = 0. For T >> A, n is negligible, and as T is decreased the 

effective coupling increases logarithmically; when the instanton 

effects rapidly turn on as T is further decreased, they further in- 

crease the coupling. 

In contrast to this behavior, consider 8 = TT. Now when the 

instanton contribution turns on it slows the rate of increase of the 

effective coupling;16 as the temperature is lowered slightly further the 

rate of increase is slowed further until the coupling no longer in- 

creases. This occurs when 

a 
T aT geff - B(Seff) = 0 l (12) 

This fixed point occurs for n * @(l/lo), small enough so that the 

dilute gas formula is valid. This is because the perturbative contri- 

butionto the effective coupling changes very slowly with temperature, 
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while the instanton contribution changes very rapidly; the instanton 

contr%ution therefore requires a much smaller magnitude in order to 

compensate the perturbative contribution in the rate of change. Also 

the coupling g at the fixed point is 8(l), so g2/8n2 is small. 

This analysis is also valid for a wedge around 0 = IT, but as the 

magnitude of case gets smaller, the dilute gas gives less of a contri- 

bution. Higher order instanton correlations give corrections to all 

powers in case, and our simple analysis breaks down. 

While we have determined B(geff ) by varying the temperature, this 

same @function should govern the change in effective coupling with 

respect to all other single external scales, such as field strength or 

Q2- Since (at least in perturbation theory) the zeros of the B-function 

are known to be independent of the prescription used to determine the 

effective coupling, we conclude that in the T = 0 theory the effective 

coupling as a function of Q 2 has an infrared fixed point for 8 near IT. 

(See Figs. 1 and 2.) If instantons are responsible for the onset of 

non-perturbative behavior in the 0 = 0 theory, then for 0 near II in the 

asymptotically free phase there is no confinement. (In the high tempe- 

rature theory the zero of the B-function was reached while still in the 

plasma phase.) 

Our simple analysis cannot be extended past the zero of the B- 

function, but it is reasonable to suppose there is no singularity that 

prevents extrapolation past this zero. If there is another phase to the 

right of this fixed point, we offer two heuristic arguments why this 

could be the superconducting phase.13 First, the long distance behavior 

of that phase is governed by a small I.R. fixed point, while confinement 
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is associated with I.R. slavery. Secondly, at T = 0, the lowest order 

0 dependent term in the effective Lagrangian is proportional, at 0 = 0, 

to tr (s2 - z2) and at 8 = IT, to tr (Z2 - z2>. Electric and magnetic 

fields have been interchanged. On one hand, the weak coupling phase is 

governed by both perturbative and instanton effects, the perturbative 

effects being independent of 8. On the other side of the fixed point, 

though, these perturbative effects are not relevant. We therefore ex- 

pect this phase to be one with electric and magnetic fields interchanged. 

Since the possibilities, implied by 't Hooft's and Mandelstam's 

analysis,14'15 for this phase are either the confined or spontaneous 

gauge symmetry breaking phase, it is most likely that it is the super- 

conducting phase that confines magnetic charge, rather than the one that 

confines electric charge. 
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Note added: 

After completing this paper we learned of the work of 't Hooft 

reported in the 21st Scottish Universities Summer School in Physics, 

August 1980, where he argues on topological grounds that confinement 

may occur for only a finite interval of 8 excluding IT. 't Hooft has 

also communicated to us that his previous analysis of the possible phases 

of Yang-Mills theory was valid only for 0 = 0. For 8 + 0, a confined 

phase would have a combination of electric and magnetic charge confined 

and an orthogonal combination screened. 
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13. Roger Dashen had remarked to one of us (N.S.) some time ago that 
& 

he had reason to believe the Yang-Mills theory at 8 = IT could be 

spontaneously broken. 

14. The 't Hooft and Mandelstam analysis of possible phases assumes 

that the only independent order parameters are the Wilson loop and 

its dual. If other independent order parameters exist, then a more 

complicated phase structure can exist. The phase to the right of 

the fixed point could then be different from either the confining 

or spontaneous gauge symmetry breaking phase. 

15. See, however, note added. 

16. The observation that for 0 > IT/~ instanton effects cause the coupling 

to decrease for increasing distance scale has been made by Callan, 

Dashen, and Gross in Ref. 8. 
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h Figure Captions 

Fig. 1. g2 versus Q2 at T = 0 for 8 = 0 and n. 

Fig. 2. B(g) for 0 = 0 and V, and possible phases. 
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Fig. 1 
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Fig. 2 


