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ABSTRACT 

Attempts at multipole expansion for hadronic transitions in heavy 

onium states leads us to analyze the process using operator product 

expansion. We find two regimes where the process can be controlled 

using operator product expansion. For these processes, it is shown that . 

a Callan Symanzik equation exists. Problems pertaining to consistent 

higher order c1 calculations are pointed out. 
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1. Introduction 

In atomic transitions, the first few terms of the multipole expan- 

sion are a good approximation to the decay rates, branching ratios and 

level widths. With the discovery of charmonium and upsilonium spectra 

and further expectations of heavier quarkonia, it has become of great 

interest if similar predictions can be made for these systems. Gottfried' 

first pointed out that in coulomb gauge such an expansion might be pos- 

sible. In that paper, the various problems in making such an expansion 

and utilizing it for numerical predictions were pointed out. But all 

questions pertaining to renormalization were not dealt with. Later 

efforts were made to do the same with greater sophistication in a gauge 

invariant fashion.2 The multipole expansion was related to the operator 

product expansion in a heuristic fashion and some estimates were made for 

various processes by Peskin and Bhanot3 and Peskin.4 _ 

With the recent development of very powerful techniques of renor- 

malization group, and Callan-Symanzik equations and their application to 

pion form factor,5 large angle scattering and other exclusive and inclu- 

sive processes,697 it has now become possible to make some precise 

statements and give a detailed prescription for a systematic calculation 

of various amplitudes. It has recently been applied to inclusive decay 

of quarkonia also.6 In this paper we extend the analysis of Duncan and 

Mueller to discuss exclusive and semi-exclusive processes. 

We intend to develop the formalism for the transition rates from 

an excited level of an onium state to a lower state. The formalism 

presented should provide a nice testing ground for QCD when toponium 

is discovered. The formalism is also applicable to all gauge groups 
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and hence to hypercolor sector and its various extensions and its cou- 

pling to the low energy world. The calculation of the branching ratios 

in such cases would become independent of incalculable bound state 

dynamics and hence should be of interest. 

We would like to show that the transition rates for a quarkonia 

state with heavy quark mass M can be factorized into two parts. The 

coefficient function in the operator product expansion in two process 

depends on the large four momentum exchanged in the bound state which is 

(Be,B,) where the binding energy Be - a2M and B - aM. The matrix m 

element of the operators have a relevant scale p which is of the order of 

quark masses or rest masses of the pion. 

We distinguish two cases where the amplitudes can be factorized. 

(1) Transitions @I + 4' + x with rni - rni, y Be($'). It is a tran- 

sition from near the continuum to states near the ground state. This 

happens to be the case when the momentum K of the radiated particles is 

of the order of binding energy and can be treated as a hard part; and 

the soft scale p appears only in the form factors of the final particles. 

(ii) Transitions (p + c$' + x with m2 - m2 4 Be($'). 
9 4' 

It is a tran- 

sition between two nearby states. Here the total four momentum radiated 

K < Be and hence is the soft scale p. 

We drop all terms suppressed by powers of p/Be, but demonstrate 

factorization to all orders in a and all logs. But, the scheme of cal- 

culation only indicates leading order in alogBe, that is leading logs. 

In this paper we do not present any detailed calculations but con- 

tent ourselves with just presenting the formalism. We begin with the 

inclusive decay of (p + 4' + anything where 9 is our excited state which 
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can decay to 0' a lower lying state with the emission of two gluons which 

finally hadronize. This section essentially sets the notation and clari- 
-c, 

fies the nature of calculations that have to be made in order to obtain 

numbers for various processes. Part of the calculation has already been 

done by Yan2 and Peskin.3 In the next section we deal with + + 4' + 27~‘s 

where the energy carried by the R'S E K is the order of the binding 

energy Be of the 4' system, i.e., K z Be. This process has all the com- 

plications of factorization and the Callan-Symanzik equation. These 

tools show their utility here, clearly. To generalize it to semi- 

inclusive processes is straightforward. The calculation of the hard part 

in these processes is identical to the inclusive process. This region 

K M Be is not the traditional multipole expansion region but presumably 

a generalization of it. Here it is simply the lowest twist expansion on 

the light cone. 
._ 

Next we deal with the traditional multipole expansion regime, that 

is k < Be and discuss the process 4 + 4' + 27r's. Now the V'S are 

essentially at rest and we obtain an expansion which is the local 

operator product expansion and operators with the lowest dimension 

appear. But, if a process cannot proceed by the lowest dimension 

operators as it might be prohibited by conservation laws then the expan- 

sion has to be made to higher dimensions; this can be done, but has not 

been done here. Some problems are pointed out. 

The power counting arguments that we have made use of are very 

similar to Gottfried's original arguments. Peskin' had tried to make 

an operator product expansion by showing a factorization to the lowest 

order in the hard and soft parts. But, in doing so he had made use of 
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many heuristic arguments and assumptions. We have done so without the 

use of all such assumptions, by an analysis of Feynman diagrams. Also, 
h 

we have analyzed the applicability of the Callan-Symanzik equation which 

was not investigated by Peskin. So, in this paper we have essentially 

put the idea of Gottfried on a firm basis, but differ with the previous 

work in details. 

2. I$ -+ $' + Anything 

In atomic systems, the excited states decay into a lower lying 

level by emission of a photon. For this process a multipole expansion 

is very good. If the decay is forbidden then it takes place by a higher 

multipole which can be thought of as a two photon decay and is the 

dominant decay. In QCD one gluon emission is forbidden as it leaves the 

system in an octet state. Hence the decay takes. place by the emission 

of two gluons. These gluons later hadronize into soft hadrons. In the 

asymptotic regime decay by higher number of gluon intermediate state 

are suppressed as they have an extra power of running coupling constant. 

This is true as a factorization between the soft and hard parts occurs 

which is shown explicitly in the next section. The calculation of the 

level width then is just the calculation of $I + 0' + 2 gluons. 

Therefore, for the process consider the amplitude shown in Fig. 1. 
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W(P,P',K,K',R,R') = 
s 

d4xld4x2d4x3d4x4d4x5d4x6d4x7 

exp i(P'+K1)xl + i(K-P)x2 - i(K' -P1)x3 - i(P+L)x4 

+ i(P1+R')x5 + i(!L -P)x6 - i(R' -P')x7 1 
X ("lr{ll,(x4)+(x5) 6(x6)lir(x7) } T (i(O)$(x,)~(x,)~(x,))lO) 

1 w 
4P2 + Mi /4P2 - Mi + iej2 ' 14P12 - M:, + ie12 

4P12 + M;, 

X(P+K,K-P)X(P+R,R-P)?'(P'+K',K'-P') 

X'(P'+R',R' -P') 
c 

(2?r)464(PH-P+P')ICA?VHj2 (1) 
H 

The notation in the above closely follows that of Duncan and Mueller.5 

In Eq. (1) x1, X, 1' and 7 are the Bethe-Salpeter wave functions and AH is 

the decay amplitude of the heavy quarkonia excited state $I to decay to a ._ 

lower lying state @' and real hadrons with momentum P H' Figure 2 represents 

the part of the calculation which corresponds to the coefficient function 

in the OPE which would be dependent on the hard momentum flow in the 

system which is of the order of aM. 

Hence 

s 
d4ql w= - 
w4 

G(P,P1,K,K',ql) A (P-P'+ql) A (-P+P1+ql)G*(P,P',R,R1,ql) (2) 

where A(p) is the cut propagator and 
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G(P,P',k,k',ql) = A(P'+k')A(k' -P') 
C( P',k'lOljl 

PSP'-q1 
2 ,q3) 

i,j - 
xK 

P+P'-q1 

2 ,q2,01i/P,k)d4q2diqj (3) 
(2a)4 (21T>4 

+~(Pi,k'IO2i(P,P',k,k'>ql)lP,k) A(P+k)A(k-P) t 
i J 

The operators 02i and 0 
Li 

are defined in Figs. 3(a) and 3(b) respectively 

and are amputated. The wavy lines correspond to transverse as well as 

coulomb gluons, only coulomb gluons are represented by dashed lines. The 

kernel K is defined to be 

K(P,k,k') = (OIT $(P+k')$(P+k)T(k-P)F(k'-P)IO) 

In the lowest order the kernel K goes over to k shown in Fig. 4. The 

kernel K is so defined that it is just the Green function for scattering 

of two massive fermions which are off-shell in an octet state. In the 

(4) 

non-relativistic limit it would go over to the usual repulsive coulomb 

force. Besides the kernel ^K is essentially a non-singular kernel as it 

has no bound states. The best way to calculate it is as a scattering ampli- 

tude in a repulsive central coulomb field. The summation over infinite 

ladders is necessary as the perturbation series is in a parameter aM/B m 

where B is the momentum flow and is of the order of cxM. m 

The total decay amplitude is easily seen to obey the usual renormal- 

ization group equation 

[ 
v 2a+B(g)$ w=o 

b2 1 
In this equation fi depends on the parameters m/u, u/M and also in principle 

on Be/u. Here m is the mass of the light quarks. 

(5) 
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The Be dependence is completely related to M and a and Be is of order 

O(a2M). The dependence on m/u is smooth in the limit m + 0 and as 1-1 is 

goingTo be chosen of the size a2M, M/u is very small and hence the 

limit can be taken. The renormalization for the heavy quark propagator 

is done on the mass shell (Appendix B). 

Once the limit m/p + 0 is taken, W is just a function of p/M and 

a(M). 
2 a So, in Eq. (5) the derivative u2a = -M - 

b2 aM2 
. This equation 

then allows us to relate the decay rates of two different mass onia 

between two levels of the same quantum numbers. 

The transitions that cannot proceed by two gluon intermediate states 

can proceed by 3 gluon intermediate states. This can happen due to con- 

servation laws. Such processes can then take place by 3 gluon inter- 

mediate states. All the considerations stated above would still be valid 

except that Oli 's will now be interserted thrice; or 0 2i.Aand Olj once. 

But this complicates the intermediate kernel K as it is now not purely 

an octet repulsive kernel and takes on other representations. 

Now we would like to make a short remark on the calculation of 

higher order corrections to processes. The higher order corrections 

come firstly from more gluon intermediate states which can be calculated 

as above. But, besides to this order there are also corrections to 

wavefunctions and to the kernel K. For wave function these can be 

calculated as done by Duncan8 by inserting certain kernels L sandwiched 

between undressed ladders. Kernel L are either 3 particle irreducible 

kernels or are kernels that have transverse gluons but are two particle 

irreducible. The kernel K has also to be calculated to higher order 

and it can again be done as insertions of kernels L in kernel k. 
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But all this makes the calculation extremely hard and presumably not 

very useful. 

Higher order corrections to the ladder may be very important to 

phenomenology of lighter bound states like the J/q and its spectra. It 

may even be very important for the bottom spectrum. The higher order 

corrections are down only by powers of a. In this regime a is of the 

order of 0.1 to 0.2. Also, the number of diagrams that contribute are 

large and this may make the O(a) correction comparable to the leading 

contribution. 

3. 4 -+ 9' + 2 for k=: Be 

Consider the amplitude W(P l+P2,K2,~l, 1, 29 2 k p k)showninFig. 5 

with all external fermion legs amputated. The amplitude obeys the usual 

renormalization group equation similar to Eq. (5) where -the differential 

operator contains - (4Y 3 4y ) also. 
!J YJ 

On going to the bound state poles 

for $' and @ the amplitude takes the form shown in Fig. 6. 

Wl,P2,~l&l,p2~k2) = & (Y Y 1 5 + Bpl (Y5Y-)p 
2a2 

s d4xld4x2 d4x3d4x4e i(~l+kl)xl ei (p2 + $)x2 

(6) 
. .-i(kl-~l)~l ,i(k2 -~2)~2 

( 1 P2 T J’a 1(x1) ‘JJa2 (X2) $81 (Yl) $62 (Y2) 1’1) tr 

and now obeys the equation 

( 2 a a 
u- 

b2 
-+$ae - 4Y$ 

) 
w = 0 (7) 
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We have gone to the frame where $' and 4 are essentially at rest and 

PI- - kl- - 3+ - k2+ m Be and the other components are small. Again, it 

is eazy to see that the arguments presented in Duncan and Mueller for 

factorization of 7~ wave functions can be applied here. The soft gluons 

near mass shell, collinear to the fast pions will give zero contribution 

when inserted in all possible ways into the C$ + (p' block by Ward identi- 

ties. Here all the large momentum are of the order of Be and the softer 

region is essentially characterized by the n mass. p is chosen such 

that MT -C p < Be renormalization at u 2 and following the arguments of Duncan 

and Mueller we get 

(8) 

* Wnln2 (Be)& tr (y5y-Vn2 (P29k2) 

2+ 

Where the Vn(p,k) satisfy the same equation as in Ref. 5. Following 

the same steps and taking the limit m/n + 0 we finally obtain 

c Ynlni Wnin> (Be) 

"i 
(9) 

+ c Yn2n$ Wnlni (Be) 

In the above we have shown the dependence to be on Be rather than M as 

Be is the relevant scale for the momentum flow, though it is, of course, 

determined by M and a(M). 

In order to go any further we need to calculate the hard part shown 

in Fig. 7. This is in fact the same calculation that one needs to do 
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for the inclusive decay. So, the branching ratio would be a number 

which would not involve the details of this part and is given by the 

same ?ormula as in Ref. 5 with t now being t 

t 25 Rn 

which is 

It is also easy to see that the factorization would take place for 

all such processes. For instance it would go for a 4 + $I' + r + anything 

with the obvious cut vertices appearing as the soft part. 

The cross section for the decay $ + #' + r + anything is as shown 

in Fig. 8. The cross section factors into a time-like cut-vertex for a 

gluon to TI times a hard part. Therefore 

s 
d4ql w= - 
w4 

G(P,P’ ,k,k’ ,qllp ‘A @ -P’ + q,) G* (P,P’ ,R,R’ ,qljv rp,(ql) (10) 

The integral over q can be easily made into convolution using factoriza- 

tion and the evolution carried out using the usual arguments about 

Callen-Symanzik equation. 

4. C$ -+ (p' + 2~r for k/Be Q 1 

Again consider the amplitude shown in Fig. 7, but now we restrict 

ourselves to soft pions that will be observed when a transition takes 

place between two nearby levels well below the threshold for the 

continuum. 

The discussion of factorization given below is in a theory with 

scalar gluons. In the vector gluon theory, the collinear gluons have 

to be added in as done usually. And, they would make the operators 

gauge invariant as usual. So, consider the decomposition as in Fig. 9 

of the amplitude W as in Eq. (6). In Fig. 9, the decomposition is 
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such that large momentum flow is in the graph -c and A is the soft momentum 

part where finally it hadronizes to 2 pions. In this case, such a separa- 

tion is possible as seen through the following argument, and all contribu- 

tions that have more than two particle bridges between r and X are down 

by powers of Be as the phase space integration gained by adding an extra 

gluon cannot sufficiently compensate for the large denominator in the r'. 

This follows due to the usual power counting arguments and hence the 

bridges are two particle fermion or gluon bridges. Also, all the propa- 

gators in r even the one near the gluon emissions range all the way up 

to Be the only scale the r part of the graph knows about, which is set 

by the "off shellness" of the heavy quarks and gluons in the I$' and $ 

bound states, which is the same for the kernel K. 

The topology is what allows us a factorization of the soft and hard 

parts. This factorization is really the operator product expansion 

where the Be sets the large scale and the momentum of the pions the soft 

momentum scale. In this approximation the assumption is that the bind- 

ing energy and the momentum flow in the bound state are much larger than 

four momentum of the emitted system. This regime is the conventional 

OPE regime. The conventional OPE requires that in the limit all com- 

ponents of q, must approach infinity together, that is as the same power. 

Here the Be -. a2M and the binding momentum as aM but in the limit that 

both go to infinity the difference is only a power of a and not M which 

varies only logarithmically. So, the operators that occur are the usual 

lowest dimension operators that are gauge invariant. The lowest dimen- 

sion operators are N4FUVFUY, N4$@$ and N3$$. 
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Therefore 

W(5’P2’ pl,kl,p2,k2) = c (n(pl,kl) a(p2,k2)INOiI O)($'(P'),ipI-pl +(P)) (11) 
i 

= x(fina1 hadrons 1 NOil 0) Wi@",P) (12) 

i 

In vector gluon theories i 
PI-P 

is to be understood as the various 

possible decompositions that is quarks or gluons evaluated at the momentum 

(13) 

(P'-P,O), Wi(P',P> is the singular function. 

Now applying Callen-Symanzik equations we get 

DWi = y..W. 
J= J 

where y.. are the various anomalous dimension matrix. 
J-J 

So when one calculates the Wi to the lowest order the only term that 

is non-zero comes from the i corresponding to the gluon operator. The 

fermion operators only occur through mixing. So, that the mixing of 

N3; $ to N 4 pvF!lv F only comes as m N 3 $$I by simple power counting and 

observing that the m comes from the light quark mass in the numerator, 

so when the limit m/u + 0 is taken, this operator would not mix at all 

with the rest of the operators. Peskin has in fact calculated the coef- 

ficient function4 where he has made a certain approximation for the 

kernel K. W., 1 the two gluon coefficient function, is just the 

G(P,P',k,k',O) as defined in Eq. (3) sandwiched between the wavefunc- 

tions of '$I and $'. 
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DISCUSSION 

f;l this paper we have shown that the hadronic transitions of heavy 

onium states are in fact calculable using the ideas of the renormalization 

group. The results are analogous to the multipole expansion in the regime 

k/Be < 1, but it is not the multipole expansion, as it makes the expansion 

for the gluons to be emitted independently whereas in OPE the two gluons 

are emitted from a small space time region. In the other regime k/Be z 1, 

we are able to separate the hard and soft regions. The expansions are 

different in the two regimes. 

We have refrained from doing explicit calculations as it is not 

clear if the leading order calculation is going to be phenomenologically 

relevant. For the J/I) and upsilonium the value of a is more like 

0.1-0.2. And the coefficient of the higher order termshere is expected 

to be large as the number of diagrams is large. In all potential models 

the spectrum of J/J, extends to the linear part of the potential. Clearly, 

our formalism demands the spectrum to be inside the coulomb part and 

further requires the difference in the binding energy to be sufficiently 

large as compared to the rest mass of light baryons. This condition is 

certainly not satisfied by charmonium spectrum. But we have clearly 

shown that for heavy enough onia the level widths can in fact be pre- 

dicted and in some sense brought the program started by Gottfried to a 

completion. 
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APPENDIX A 

ebnsider the amplitude ,'Sshown in Fig. 10. It is renormalized in 

the BPHZ scheme by the following forest formula 

$R = c 
(-t-q Fu (14) 

!JeA 
!J 

In Eq. (14) the SR is the integrand of the Feynman diagram and *.,11 is 
1-1 

the set of all forests p. We are following Zimmermann's8 notation. 

Again, as in Zimmermann we want to find the asymptotic behavior of the 

SR as the mass of the heavy quark M + ~0 keeping other variables fixed. 

The Be - 2 c1 M and hence Be is the large variable in which we are inter- 

ested, k is the total momentum of the outgoing particles IT'S and is 

equal to P-P', and here is assumed to be small so as to satisfy k/Be < 1. 

Now, in this regime we can make the usual over subtractions to find the 

dominant behavior in powers of k/Be. We are interested in finding the 

leading behavior so we oversubtract once. For this we need the defini- 

tion of A-forests of Zimmermann. These are defined as (i) r is the set 

of all graphs that connect the remainder of the graph h by two gluon 

lines as in Fig. 10(a); (ii) r is the set of graphs that connect the 

remains of the graph by two fermions (of course, they will only be the 

light fermions in the theory of mass m < M) as in Fig. 10(b). 

The oversubtraction operator when acting on these graphs r evaluates 

them at the point k 2 =- u2 < M2 Be2 , * Therefore 

L? w 
= SR - c c c I7 (+)(-t;) y$u2 (-tJwR (15) 

T upAT lJ2s~(r)Yl 

In the above we have followed Zimmermann closely and our notation is the 

same as his. 
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The precise meaning of oversubtractions closely follows the usual 

oversu-itractions in gauge theories. This involves first making a tensor 

analysis and then retaining gauge invariant tensor and evaluating the 

coefficients of the structure at the point u . In the case of two gluon, 

the dominant structure is just F F 
lJv uv 

which gives the operator N F 4 llvF?.lv 

and for the fermion this gives the operator N4$@J, and N3$+. The last 

operator does not finally enter as the coefficient function always has a 

mass m term by power counting and hence vanishes as m + 0. This leads 
q 4 

to the Eq. (11). 

APPENDIX B 

In the text we have been using the words mass-shell and off-mass 

shell ness of heavy quarks. In some sense this is a crucial definition 

as all scales are set by heavy quark mass M. But, this quantity is not 

well defined as the quarks do not exist as asymptotic states. The 

definition of quark mass we need is such that it does not give large 

logarithms by log (M/!-I) when the heavy quark propagator and insertions 

of gluon vertex on it are considered. The definition best suited to our 

purposes is therefore the Georgi and Politzerg definition of quark mass. 

Here, they define mass M of the quark to be the value M 

s-l ($1 p2= -vo2 
=$-M (16) 

We choose a value of uo2 of the order of M2 itself. And this is 

what we choose to call the mass of the heavy quark. Also notice the 

equal definition and choice is not very important as long as the 
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log(M/p) terms are avoided which this definition does. Also we do not 

need to define the light quark mass with any precision as we take m + 0. 
4 
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FIGURE CAPTIONS 

1. $p+ $J + anything 

2. Diagrams contributing to W 

3. Operators 01,02 

4. Kernel K 

5. W(P K P K p k p k) 1' 1' 2' 2' 1' 1' 2' 2 

6. W(Pl,P2,pl,k2,p2,k2) for k g Be 

8. $J + Cp' + IT + anything 

9. W of Figure 6 in the regime k g Be 

10. Various possibilities showing gluon and fermion bridges between 

h and 'c. 
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