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ABSTRACT 

On the basis of the topological l/Nc expansion, various types of 

the distribution function for the soft and the hard processes are 

obtained, which contain the freedoms pertaining to the underlying 

string structure of hadronic reactions. It is stressed that the dis- 

tribution functions for the soft process refer to the energy fractions 

of jets and are distinct from those for the hard process in their 

physical meanings. In order to test the present model the average 

multiplicities are studied by using the distribution functions. For 

multi-string processes the freedom of partitioning the energy among 

jets causes the effective energy for each extended string to be largely 

reduced compared with the total energy. In deep inelastic lepton- 

hadron scattering, owing to the peculiar double-string structure of 

the singlet component the average multiplicity is predicted to increase 

with decreasing Q2 at fixed W higher than -20 GeV. 
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1. Introduction 

It has been proven that the quantum chromodynamics (QCD) is & 

successful in understanding hadron structure at short distances. 1 The 

parton model has gained some theoretical underpinnings on the pertur- 

bative QCD and has achieved the phenomenological interpretation of hard 

reactions. However the difficulty occurs when the parton model is 

examined in the soft processes with the results obtained in the hard 

processes. The trouble, which encounters in explaining the particle 

distributions,2 suggests the significant effect of the color confinement 

to the distribution functions and to the decay functions. Although 

there are several attempts in which these functions for the soft 

processes are supposed to be different from those in the hard 

processes, 2-6 we have not yet attained a convincing answer about how 

to take account of the non-perturbative effect to these functions. In 

this paper, with the emphasis on the underlying string structure per- 

taining to the color confinement mechanism we find various types of 

the distribution function. The calculations of the mean multiplicity 

which rely on these distribution functions exhibit that the freedoms 

of partitioning the energy among jets play important roles in under- 

standing the characteristic features of hadronic reactions. 

Hadrons are considered to be string-like objects in which the color 

flux is confined.7 Therefore, in order to clarify the color confine- 

ment effect in the jet productions, it is of importance to notice the 

underlying string structure of reactions. On the basis of the topo- 

logical l/NC expansion,8 we assume that the jet production develops 

via two steps. The extended strings are produced in the first step 
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and their independent breakups follow. By virtue of a quark 

counting rule we derive several types of the distribution function, 

which depend not only upon the number of strings but also upon whether 

the process is soft or hard. In the soft process accompanying multiple 

extended strings, the distribution functions represent the probability 

of sharing the energy among several jets. On the other hand, in the 

hard process the distribution functions mean the probability of finding 

a constituent with a certain energy fraction and are distinct from 

those for the soft process in their physical meanings. Especially, in 

deep inelastic lepton-hadron scattering the distribution functions do 

not refer to the energy fractions of jets. The independent breakups 

of the multiple strings result in the overlapping of hadron plateaus 

in the rapidity space. Therefore, the features of final states such as 

the mean multiplicity, the particle distribution and the correlation, 

are closely related to the underlying string structure of the process 

and also to the energy fractions carried by the jets. The distribution 

functions for jets imply that one of the jets is more likely to carry 

the large energy fraction, namely, the energy fractions of jets are 

predominantly far from the equal partition. Then, the freedom of 

sharing the energy among jets causes the effective energy of each 

string to be largely reduced compared with the total energy. 

This article is organized as follows. In Section II we assume 

the two-step development of hadronic reactions. Several types of the 

string structure are illustrated. To compute various types of the 

distribution function, we make a family of the assumption about the 

scattering amplitude. For the amplitude of the first step, we introduce 
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the quark counting rule which incorporates both the Reggeon effect in 

the soft region and the dimensional counting rule in the hard region. 

As for the breakups of strings, it is taken that the totally inclusive 

sum for each string becomes a constant probability irrespectively of 

the production mechanism. After studying the meson-meson collision 

with double strings, we obtain the meson distribution functions for the 

soft process in Section III. We proceed in Section IV to deal with the 

soft meson-baryon and baryon-antibaryon processes which possess double 

and triple strings, respectively. The baryon distribution functions 

are found for double strings and for triple ones. Considering the deep 

inelastic lepton-hadron scattering, we calculate the distribution 

functions for the hard process in Section V, which contain both the 

valence component and the sea one. The peculiar string structure for 

the sea component is emphasized. In the sea component there appears a 

freedom of distributing the energy among jets, which is independent of 

the energy fraction carried by the sea quark (antiquark). In Section VI, 

to test the present model we compute the mean multiplicity by using the 

distribution functions obtained here. We find that the large reduction 

of the effective energy for each string considerably affects the 

behaviors of the mean multiplicities. In deep inelastic lepton-hadron 

scattering, the average multiplicity is predicted to increase with 

decreasing Q2 at higher ~6 than the presently available regcon. It is 

also a consequence of the large reduction of the effective energy that 

the onset of the increase appears at such high &. The comparison of 

the calculations with the data is made in Section VI. Section VII is 

devoted to summary and discussions. 
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11. The Two-Step Development of Reactions 

Standing on the topological l/NC expansion inspired by QCD,8 we - 

take the view-point that jet productions take place through two steps. 

In the first step extended strings are produced along with the rearrange- 

ment of quarks, antiquarks and color fluxes. The hard subprocess of 

hard reactions is also involved in the step. The second step is the 

independent breakups of each extended string, which is linked to the 

suppression of the higher order terms in the topological l/NC expansion. 

The breakups mean the fragmentation into clusters via the creation of 
- 

q-q pairs with the limited transverse momentum. Similar models have 

been proposed by several authors.g-ll 

Here we depict several types of the string structure. Figure 1 

illustrates soft hadron-hadron collisions. In BB scattering no 

processes with a single string exist. Triple strings develop in Bz 

annihilation. In the figure we consider only the case that each string 

has a linear structure without any loops. In deep inelastic lepton- 

hadron reactions there are two types as seen in Fig. 2. Thus it is 

cogent to classify the hadronic reactions according to their string 

structures. Due to the color confinement any extended strings should 
-- 

be eighter of q-s, q-qq, q-qq and qq-94 in the minimum structure. 

In multi-string processes there appears the freedoms of dis- 

tributing the energy among jets which control the behavior of hadron 

plateaus coming from extended strings. The freedoms are described in 

terms of the jet(j)-distribution function, which is distinct from the 

so-called distribution function hereafter referred to as the constitu- 

ent(c)-distribution function. In the j-distribution function the sum 
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of the energy fraction of the jet amounts to unity owing to the energy 

conservation. On the other hand, in the c-distribution function the 
h 

sum of the energy fraction carried by the valence is less than unity 

granted that a hadron consists purely of the valence quarks (antiquarks), 

because some missing energy resides in the binding. Therefore, for the 

soft process we ought to make use of the j-distribution function but not 

of the c-distribution function. For example, one-particle distributions 

for the soft process are given by convoluting the j-distribution function 

with the fragmentation function. The c-distribution function is 

explored in the hard process in which a constituent is violently struck. 

Indeed, in deep inelastic lepton-hadron scattering the structure func- 

tion exhibits the c-distribution function in itself. The sea component 

possesses the freedom of sharing the energy among jets but the valence 

component does not. The freedom in the sea component is-distinguished 

from the c-distribution function. Here we present a family of the 

assumption about the amplitudes for jet productions. Then we will find 

the j- and c-distribution functions in the subsequent sections. 

On the above viewpoint we assume (A) the factorization of the 

scattering amplitude T into two pieces 

T=%*'r (2.1) 

for soft processes, where 3 and 'c are the amplitudes for the first step 

and for the second one, respectively. Spins of constituents are ignored 

here. For hard processes 2? is replaced by Se'?, where ? for the hard 

subprocess is subject to the perturbative QCD. The separation of the 

perturbative part from the non-perturbative one is recognized in view of 

the fact that mass singularities can be factorized in the perturbative 
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calculation of QCD.12 For the second step it is assumed that (B) the 

totally inclusive sum over breakups of each extended string gives rise 

to a constant probability irrespectively of the production mechanism. 

Our starting concern is to find how 9 and r depend on the under- 

lying string structure of the process considered. Under the assumptions 

(A) and (B), we settle the amplitudes L? and r. Concretely, we apply 

the multiperipheral model13 to MM scattering with a single extended 

string as shown in Fig. 3. The strong ordering approximation of a 

multiperipheral chain leads to the amplitude 

T = gN+’ . 
N 
n exp[a2 l (yi - Y~+~> 1 , (2.2) 

i=l 

where g is an effective coupling and a2 stands for the mesonic Reggeon. 

The rapidities of clusters with the momenta ki =. (wi,ki)..(i = 1,2,...N+l) 

are defined by 2yi = Rn{(Wi+kiz)/(tii- kiz)). Throughout this paper we 

take the c.m. system with the z-axis along the beam direction and take 

the ordering yl 2 y2 1 l ** 2 Y~+~. The total cross section 

as 

s written 

T12 (2.3) 

with s being the c.m. energy squared and s = exp(y,-yb). Inserting 

Eq. (2.2) into Eq. (2.3) and integrating over the phase space with 

pT-cutoff, we obtain 

0 = exp[{2(a, -1) + "92>* (y,- Y,,)] (2.4) 
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for the single-string process with E2 = g2(pi)/(16n2). The topological 

unitatization8Y14 implies i2 = 1-a2. We are now in a position to fac- 

torize the amplitude (2.2) as follows; 

S= exp -1) l (yl- Y~+~) f exp 1 [ -$ (5 - l> ' (y, - Y,) 1 , (2.5) 

N+l N T = g l IT exp (c12 + l) ' (Yi- Yi+l) ' 
i=l 1 (2.6) 

Here 'c satisfies the assumption (B). In fact, substituting (u2+1)/2 

for u2 in Eq. (2.4), we have an energy-independent cross section. From 

our viewpoint the multiperipheral model is irrelevant to other than 

single-string processes. Owing to the assumption (B), the production 

of multiple strings results in the overlapping of hadron plateaus. 

Whereas, when applied the multiperipheral model to double-string 

processes, no such overlapping occurs. 

For the amplitude $ we next introduce a quark counting rule.15 

Namely, it is assumed that (C) ,?7 is the product of the factor attached 

to each quark (antiquark) which takes part in the production of the 

extended strings apart from the hard subprocess. In the process as 

shown in Fig. 3, for example, a spectator quark, a spectator antiquark 

and a pair-annihilated quark contribute to the production of the 

extended string. The s-dependence of L? in Eq. (2.5) is brought about 

by the pair-annihilated quark, since only the quark undergoes high 

momentum change along the rearrangement. Then, in the soft region we 

have the counting rule such that the quark rearranging from the cluster i 

to the cluster j, gives rise to the factor expC-yn(t) l Iyi-yjII. The 

factor diminishes in magnitude as the rapidity difference increases. 
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v,(t), which represents the Reggeon effect to the quark, is assumed to 

be given by 
h 

a,(t) = l-n l y,(t) . (2.7) 

a,(t) means the trajectory of n-body system of q's and/or 7's. Y,(o) 

becomes independent of n if l- a,(o) obeys the additive rule with 

respect to the quark number, which is derived from the calculations 

based on the topological unitarization.16 However, in this paper we 

assume the additive rule not for l-an(o) but for the asymptotic value 

l-c%&+ For the quark free from the Reggeon effect we take 

'n = l(", = l-n), which is supposed to be an asymptotic value of 

Y,(t) (a,(t)> at large 1 t I. In the subsequent sections, this asymptotic 

behavior of y,(t) will turn out to be consistent with the dimensional 

counting rule.17 In connection with the unitarization for each extended 

string, the cross channel with respect to y,(t) is given in the process 

where a single q-4 pair is substituted for the breakup in each string. 

Correspondingly to the expression of 3, 't is rewritten as 

T .., s* n exp[-Yn(t) ’ IYi- Yj II 3 
i,j 

(2.8) 

where the product runs over all quarks in the breakups. where the product runs over all quarks in the breakups. In the case of In the case of 

multi-string processes, T multi-string processes, T a a defined by defined by 

Ial {Ctl 
T T - s - s (2.9) (2.9) 

a a a a l IT exp[-Y,(t) l IYi- Yj II l -IL exp[-Y,(t) l IYi- Yj II 

i,j i,j 

satisfies the assumption (B). Here su is the c.m. energy squared of the 

extended string labelled as c1 and the product goes over the quarks 

within the breakup of the string ~1. Then, we have the relation 
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T -= 
S 

l-I>. 
a ci 

(2.10) 

h 

The present model does not contain logarithmic corrections to Regge 

behavior and to scaling behavior. 

III. Meson Distribution Functions in Soft Processes 

Let us begin with the soft MM scattering with two extended strings, 

in which we have four spectators participating in the production of the 

strings. In this case there are freedoms of sharing the energy among 

jets, which are absent in the single-string process. Each string 

disintegrates into two jets moving to the opposite direction, which are 

labelled in order in Fig. 4. Due to the limited transverse momenta of 

final hadrons, four jets remain approximately in a collinear configura- 

tion. The amplitude is given by 
._ 

i=1,3 
exp[-y2(tl) l (YamYil)l l n 

j=2,4 
exp[-y2(t;) l (yjl-yb)l , (3’1) 

?I 51 ==s.-.- (3.2) . 
sI sII 

Here we use the notations 

5.(3) = (Pa-P;(l))2 2 $(4) = (P, - P;(2)) 
2 

' 

(3.3) 

sI = (Pl+P2)2 t sII = (p3+p412 3’ 

where pi stands for the i-th jet momentum C p.. and pi is equal to pi in 

O(G) but pi2 = m2(= p2 = P& 

j lJ 

a 

Introducing the scaling variables xi = 2Ei/&(i = 1,2,3,4), we 

have 
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mCT 
exp(ba(b) -Yill) ' - mr.x. 11 

with mCT being the transverse mass of mesonic clusters. ri means the 

ratio pilz/piz. The rapidity difference Iya(b) -yill increases with 

decreasing x.. 1 We now make the approximation that all clusters produced 

from a string stand in a line with the averaged rapidity spacing n. 

Then the ratio ri becomes ri 2 l-e-n 3 r. The arguments tr of y2 coming 

from the mesonic Reggeons are expressed as 

(3.5) 

and so forth. Therefore, g d epends only upon the scaling variables xi. 

It is now convenient to transcribe Eq. (2.3) into the form proper 

to the four-jet production a + b + [1]+[2]+[3]+[4]. According to the 

scaling feature of 9 the integrals can be carried out over the breakups 

of two extended strings with the fixed jet momenta. Thus 

%M (2) = consto srE,,+) l S4(pa+pb-Tpi)j.$7\2 . (3.6) 

In consideration with pT -cutoff in the phase space, the integrals over 

jet momenta can be put into 

l 6(x1+x3-1)6(x2+x4-1) 
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at large G. The integrals in Eq. (3.7) accommodate the freedom of 

partitioning the energy G/2 among two jets moving to the same direction. 
h 

Defining the function 

si2) (x1) = 
/ 

1 dx 
3 -6(xl+x3-1) l n exp[-2y2(t;) l (Y, - yil)l , (3.8) 

0 
x1x3 i=1,3 

we find 

d2,(2) 
MM 

dxldx2 = consto S i2' (x1> si2) (x2> . (3.9) 

The function SM (2)(x) shows scaling behavior. This feature is 

related to the well-known result that double-string processes give rise 

to the Pomeron part of the total cross section. We are now able to 

derive the form 

si2) (x1) = 
-a2 Ct;> 

Cl- x1> 
-“2(t;) 

consto x 1 . 

This behaves as 

-a2 (0) 

x1 Cl- x1> atx ~0 9 1 

SL2) (xl> a ixl(l-xl)I 
-a,(-m2/2) 

1 
atx u-- , 

12 

x1(1 - x1> 
-cr2m 

atx -l', 
1 

(3.10) 

(3.11) 

because ti(t;) 2 0 while It;j(Itil) is large in the vicinity of 

x1 = 0 (x1 = 1). If we approximate Eq. (3.10) in the form of a single 

term, we get 
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srsr2) (x1) g 
-a2 (0) -a2(0) 

const l x 1 w-x1) - (3.12) 

-h 

As seen from Eq. (3.8), Sh2)(x) d emonstrates the probability of distrib- 

uting the energy among two jets with the fractions x and l-x. Then, 

aside from its normalization SM (2) (x) is identified with the j-distribution 

function for mesons in the soft process. 

It is possible to see flavor dependence of SM (2) (x) . The exponent 

a,(O) of x in Eq. (3.12) arises from the spectator quark of the jet which 

carries the fraction x. Taking up(O) = 0.5, aK,(O) = 0.25 and 

a,,(O) = -1, we have 

p u,T+(x) 2 consto x -0.5(1-x)-0.5 , 

const l x -O.25(1-x)-O.5 , 

S$(x) z const l x(1-x)-o'5 

(3.13) 

(3.14) 

(3.15) 

for ?'r, K and D, respectively. The average fractions are (x),,~ = 0.50, 

w s/K = 0.60 and (x)~,~ = 0.80. However, one of the two jets is 

inclined to carry the most part of the fraction. In fact, the averaged 

value of min(x,l-x) is (xmin)r = 0.18. This means that the energy frac- 

tions of jets are predominantly far from the equal partition. There- 

fore, the effective energy of each string is considerably reduced 

compared with the total energy. The large reduction of the effective 

energies is of critical importance in understanding the behaviors of 

the mean multiplicities, as will be presented in Section VI. Further- 

more, a heavy-quark jet is more likely to carry the large fraction. 

This feature qualitatively resembles the fragmentation function18 and 
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implies that the rapidity extent of the overlapping of two hadron 

plateaus varies depending on the flavor of the initial hadrons. 
- 

IV. Baryon Distribution Functions in Soft Processes 

In the soft MB scattering with double strings, a qq-jet appears 

instead of the -jet [4] in Fig. 4. The amplitude g is given by the 

substitution y,(ti) + 2y3(ti) in Eq. (3.1). y3 is due to the baryonic 

Reggeon. The same manipulation demonstrated in the previous section 

leads to the j-distribution function 

1 dx 
SAFL(x2) = J & 6(X2+x4-l)exp 

0 
k-2-@t;) l $1 - Yb) 

l exp[-4y3(ti) l (y41-yb)] ) 

= consto x, 
-C12(t;> 

Cl- x9> 
G4a3(tp/3 

L L 

for baryons in double-string processes, where 

2 xs 
'; = -M (1-x2) , '; = -(1-x2) 

. 

(4.1) 

(4.2) 

with M being the baryon mass. sBf;w 1 a so exhibits scaling behavior. 

Considering the properties at the kinematical limits, we obtain 

-a,(O> 
X (1-x)3 atx-0 , 

s;;;c > x a 1 x(1-x) 
(l-4a3(0))/3 

atxN1 , 

(4.3) 

which is of the approximate form 
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-012 (0) 
const l x Cl- x> 

(l-4a3(0))/3 
. (4.4) 

h 
Since cu3(0) i l/4, S A;;( ) x is singular at x = 0 but not at x = 1. By 

using a3(0) = 0.2 I -0.2, the average fraction of u-quark jets from the 

proton becomes 

(4 u/P 
= 0.24 .., 0.31 . (4.5) 

It should be noted that the average fraction of the q-jet is smaller 

than l/3. Similarly one can find 

(4 slA,C 
= 0.32 - 0.41 , 

(4 c/$~c 
= 0.56 - 0.64 , 

(4.6) 

(4.7) 

taking a,,(O) = l/4 and aB,(O) = -1. 

Next let us take up the triple-string process, which appears in B% 

annihilation. The process results in the production of six jets 

a+b + [1]+[2]+...+[6] as illustrated in Fig. 5. The amplitude is 

written as 

odd even 
g= n exP[-Y3(t;) l (y,-yil)l l n exp[-Y3(ti) l (yjl-yb)l , (4-g) 

i j 

which comes from six spectators. Equation (3.4) remains valid also in 

this case. The arguments t; are 

ti - (Pa-P;-F;)2 ~ -(l-X3- x5){m2(k+ $-) - MZ) , 

t’ 3 ’ (Pa-P;-pi)2 ’ -(l-X5- xl)(m2($+ k) - M2) 

and so on. Thus Z is a scaling function again. 
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One can obtain the expression of o:z) similarly to Eq. (3.6). 

Employing the transformation 

~s~~lj~~'i4(Pa+Pb-~Pi)~co~~t'~~l~~}' 

(4.10) 
l 6(x1+x3+x5 -1)6(X2+X4+X6-1) , 

one finds 

d40(3) 
BB 

dxldx2dx3dx4 = conste S A3' (x 1~~3) so (3) (x ~'~4) 

with the function 

$3) (x1,x3> = 
s 

l dx5 odd 
6(x1+x3+x5-1)* II exp 

0 x1x3x5 i 

(4.11) 

[-2y3 (tl> ’ (Ya - yil) 1 , 

= const l 

-(1+2a3(ti))/3 -(1+2a3(t;))/3 
x 

x3 
. 

1 

l (1-x1-x3) 

-(1+2a3(t;))/3 
. (4.12) 

(3) (x (3) 

sB 1,x3) also shows scaling behavior and oBg is a constant. 

Two variables xl and x3 represent the partition of the energy among 

three q-jets. (3) Therefore, SB 
(xl3 3 

x ) is identified with the 

j-distribution function for baryons in triple-string processes and is 

approximated as 

Si3)(xl,x3) z consto {x1x3(1- xl-X3)I-(1+2a3(0))'3 . (4.13) 
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By taking a3(0) = 0.2 W -0.2, the exponents become -(1+2a3(0))/3 = 

-0.2 ,- 0.5 for the proton. The integral of SB (3) (x 1,x3) with respect 

to x3 leads to 

l-x1 
d3)(xl) E j- Si3)(xl,x3)dx3 , B 

0 

2 consto x 
-(1+2~3(0))/3 (l-4a3(0))/3 

1 Cl- Xl) . (4.14) 

Although we have (x)~,~ = l/3 owing to the symmetric treatment of three 

strings, the energy fractions of three jets are predominantly far from 

the equal partition. 

V. Distribution Functions in Hard Processes 

As an example of hard processes, we refer to deeply- inelastic e-p 

scattering. There are two types of string structure (the single-string 

process and the double-string one).l' Summing over final states of each 

string and using the notations Mv = pq, Q2 = -q2 and s = (p+q)2, one 

finds the structure function" 

VW 
2 

= const. 
(1: x) (e, / 4) l 64(P+q-FPi) IsI (5’1) 

for the jet production "y" + p + [1]+[2]+...+[n] at fixed x = Q2/(2Mv). 

For the single-string process as shown in Fig. 6, two jets [l] and 

[2] are produced collinearly along the z-axis. Since the energy frac- 

tions of the jets are settled as x4 = 2E4/& = 1 (i = 1,2), Eq. (5.1) is 

reduced to 

vw2 
= const* (11 x) (5.2) 
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The amplitude 3 comprises three factors, i.e., exp[-(y q2 - yll) 1 ' mqr/mCT' 

exP[-sy21-yp)j g {Mr(l-x)/m,T}2 and exp[-y(t)(yql-yp)] g (Mx/mq) 
Y(t) . 

The rapidities y 
ql ' yq2 and yp belong to the momenta ql(=xp), q2(=ql+q) 

and p, respectively. The difference y21 -yp becomes large with 

increasing x. The Reggeon has an influence only on the quark rearranged 

in the crossed channels. The argument t is given by t = (p - pi)2 = 

-M2x2/(1-x), where p; is equal to p2 in O(G) but p;2 = M2. The struc- 

ture function VW2 is expressed in terms of the c-distribution function 

F:)(x) 2 
-a2w 

const. x (l- x>3 (5.3) 

for the valence part of baryons. The exponent of (1-x) amounts to 

2n - 
S 

1 with ns being the number of the spectator quarks. Equation (5.3) 

is attained by replacing the exponent a3 of (l-x) in Eq. (4.1) by its 
._ 

asymptotic value. It should be noticed that the c-distribution func- 

tion does not correspond to the freedom of sharing the energy among 

jets. In fact, in the valence component there are no such freedoms. 

But the freedom emerges in the sea component. 

We now proceed to consider the double-string processes relevant to 

the sea component. There are two diagrams according to whether the 

virtual photon scatters with a quark or with an antiquark, as illustrated 

in Fig. 7. In the processes we have not only the freedom mentioned 

above but also peculiar string structures. In Fig. 7a, for instance, 

the string I ranges from yl 2 Rn(&/mCT) to y2 2 -Rn(x2&/MCT) with 

the length 

(5.4) 
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and disintegrates into two jets [l] and [2]. On the other hand, the 

string II shrinks into the rapidity interval between y and h 3% 

y3 2 -Rn(x3&/mCT), where the cluster (3R) has the largest rapidity on 

the string II and the averaged value of w E m 
CT exp(-y 3R )/vG turns out 

to be u4mCTx/(3mq(l- x)) (-4mCTQ2/(3mqs)). Then, the string II becomes 

a single jet [3] on the negative rapidity side except for the case 

w < mCT/G (y3a > 0) . Since y3R possibly varies under the kinematical 

constraint -Y3t 5 -Y3 g Rn(x3&/mCT), the integration of y3R is left 

throughout taking inclusive sum. We have to insert the integral 

$dy 3 = $dw/w in the r.h.s. of Eq. (5.1) and the variable w is limited 

too<wsx 3' The case of w = x 3 means the threshold of the jet [3]. 

Consequently, the string II remains -!Ln(x3/w) in rapidity length. 

In the event of w < mCT /G, the string II expands also into the 

positive rapidity region. Therefore, the energy conservation should be 

taken into account on the positive rapidity side and for the string I 

Yl 2 &n(&/mCT) is replaced by yl 2 !Ln(u&/mCT> with u 2 l-mi,/(ws). 

However, we have u 6 l- 3mCTmq/(4Q2) in the dominant contribution 

because (w) z 4mCTx/(3mq). For this reason, on the positive rapidity 

side the effect of the energy conservation to the string I is not only 

restricted within Q2 < 3mq&/4 but also small in the region Q2 2 8m m 
CT q 

in which we have u 2 0.9. To illustrate the situation mentioned above, 

in Fig. 8 we show the behaviors of hadron plateaus from the'strings I 

and II. 

The structure function is put into 

VW 2 = consto (1 1 x> j1 dx3 lx3 dw fab,x3,d , 
0 0 

(5.5) 
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where 

h 
Id2 

fa(X,X3’W) = x(l-x)w 
3 3 

(5.6) 

for the case of Fig. 7a. Sis of the form 

x2 exp[-bll-yq2/ - IY~~-Y~~/ - 2y3(t;)(yp-y21) -Y2(t<)(Yp-Yjl)l , 

where 
(5.7) 

exp(-lyll - y,,/) z r , exp(-lyql - ~~~1) g min , 

(5.8) 

exP(Y21-Yp) ' (1-X) (I- x3)rMCT/M , exp(y31- y,) 2 (1-x)x3rM/mCT 

with A = xm,,/((l- x)m,). The arguments of y2 3 are given by 
, 

1 - t2-- l- 
{ 

(1 T:,., - M2 3 

. 

(5.9) 

t; = -M 
- (1-x)(1-x3) 2 > 
(1-x)(1-x3) ' 

The variable x3 represents the freedom of sharing the energy among jets. 

Then, the j-distribution function is involved in the expression of fa. 

As the Reggeon does not come into effect at large x, we have 

fa(x,x3,w) z consto x -4(1- xj8x3(1 - x3)3w (5.10) 

at large x. Then the distribution function is proportional to (l-~)~ 

at large x and the exponent of (1-x) amounts to 2ns-1 with ns = 4. 

This result is in accord with the spectator counting rule.20 On the 

other hand, at small x (x 5 0.2) fa is approximated as 
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fa = const . { (I- x)x33co) . { (1- x) (I- x3)}(1-4a3(o))'3 . 

-h l min{(%)',($)2} * 

(5.11) 

For the process in Fig. 7b the calculation is parallel. The dif- 

ference is attributed to the rapidity location of the qq-jet. fb is 

obtained by the substitution x 3-(1- x3) in Eqs. (5.10) and (5.11) and 

in Eq. (5.5) th e upper limit x3 with respect to w is replaced by 

mCTX3'MCT' The distribution functions for Fig. 7a and for Fig. 7b are 

almost equal to each other. However, it should be noted that the favored 

energy fractions carried by the qq-jet are different among two cases. 

If we consider only the effect of the valence quark, the probability of 

finding the qq-jet with the energy fraction v is given by 

Cl-4a3(tq))'3 -a (t ) ._ 
- c0nst.v (l-v) 2 qq , 

where 

2 m t '= - 
q 

l- (l- x)(1-v) (l- x) (l- v) -M2 , 
> 

t = -M2 (l- (1-x)vt2 
44 (1-x)v * 

(5.12) 

(5.13) 

As a result of (5.12), it becomes that the larger v is more likely with 

decreasing x. The function (5.12) is hardly influenced by.the sea-quark 

at small x but fairly affected at large x where the string II is short 

in rapidity length. The configuration with the large v is suppressed 

in Fig. 7a, whereas enhanced in Fig. 7b. This situation is also shown 

in Fig. 8. 
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VI. Mean Multiplicities 

In order to test the present model, in this section we calculate 
h 

the mean multiplicities (n) of final hadrons and compare with the data. 

Our calculations rely on the distribution functions derived in the 

preceding sections. It will become evident that the underlying string 

structure has a significant influence on the mean multiplicities and 

that not only the number of strings but also the large reduction of 

their effective energies are of critical importance in understanding 

the behaviors of (n). 

For the production of a single q-9 string with the c.m. energy & 

we take the parametrization 

(n>l(G) = a(Rn&j2 + bRn&+ 2cq , (6.1) 

where a, b and cq are numerical constants. This form gives a good fit 

to the pp data.21 The process e+e- + hadrons is one of the typical 

processes with a single string. Then, we have 

b-4 
e+e- 

<G) = (n>l(Gl , (6.2) 

supposing the universal property of extended strings both for the soft 

reactions and for the hard ones. In pp scattering accompanying double 

strings, (n) is given by 

Wpp(G) = 

1 
dx' SL2)(x) Si2)(x')((nI) + (nII>> 

1 

s 

1 
dx 

0 
dx' Si2)(x) Sj2)(x') 

, (6.3) 



-23- 

where (n,) and (nII) stand for the average multiplicities of hadrons 

from t&e strings I and II, respectively. They are of the forms 

(n,) = (,),(J,x(l- x1>) + cqq - cq , 

(6.4) 

(nII> = (nI)(xtfx’) . 

Since each string of this process consists .of a q-jet and a qq-jet, the 

constant terms of (n,) and ("II) are put into c + c 4 94' 
Equation (6.3) 

is transcribed as 

(n),,G) = 2 ( >1 h { n (5) +cqq - cq] +$ad2 , (6.5) 

where 

X2 = exp 
[ 
-+(Enx(l-x))2 , 1 ._ (6.6) 

d2 = ((P,nx)2)2 + ((kn(l-x))2)2 - ((!Lnx)2)2 - ((&n(l-x))2)2 . (6~~) 

The symbol (...)2 means the averaged value with the distribution func- 

tion Si2)(x). It should be noticed that the effective energy in the 

r.h.s. of Eq. (6.5) is reduced by the factor X 2 compared with Eq. (6.1). 

This is essentially a reflection of the multi-string structure. The 

value of h2 becomes fairly larger than the minimum value A2 = 2 because 

(xmin) is small. 

Similarly, for pp annihilation the average multiplicity is expressed 

as 

+$ad3 , 
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where 

h x3 = exp[-(Rn xj31 , (6.9) 

d3 = 3{Chd2), - ((Lnx)3)2t . (6.10) 

In this case the symbol (...)3 stands for the average value with 

s(3) 
P ( 

x,x'). The minimum value of h3 is 3. From Eqs. (6.2), (6.5) and 

(6.8) we obtain the relations 

(n)ppannih (~2) = s*(n) Pp($JiY) + 3(cq- cqq- $ad2) +$ ad3 , 

b-4 e+e-(L) = $- (n)pp(X26) + (cq- cqq- $ ad2) . 

(6.11) 

(6.12) 

Four constants X2, X3, d2 and d3 vary depending on the Regge intercepts 

a,(O) and ~~(0). As the leading trajectories, we take the values ._ 

a2(0) = 0.55 , a3(0) = 0.15 , (6.13) 

which lead to 

x2 = 4.1 , X3 = 6.5 , d2 = 5.6 , d3 = 9.6 . (6.14) 

It is worth noting that A2 and A 3 are about two times larger than their 

minimum values which were taken in Ref. 10. A2 and X3 are slightly 

sensitive to a,(O) and a,(O), respectively. For example, at a,(O) = 0.20 

we have X 3 = 6.9. But the calculations are insensitive to our approxi- 

mations of the j-distribution functions which are made in Eqs. (4.4) 

and (4.13). 

Here we take the pp data as an input. The data on the mean charged 

multiplicity can be fitted in terms of the function21 
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(n,,),,(&) = 0.472 l (!?.n&)2 + 0.88. Rn&+ 0.88 (6.15) 

with &V unit in the region 3 < & 5 152 GeV. In this case we get 

a = 0.236 , b=1.108 , 
c9 + c 

= 1.21 . 
qq 

(6.16) 

Only one adjustable parameter c - c is now left. 
q qq 

In Fig. 9 we show 

the calculations with c -c 
4 qq 

= 0.55 for pp annihilation and for 

-I-- ee + hadrons together with the data. As seen in Fig. 9, the calcula- 

tion is close to the asymptotic value24 (n)- ppannih'(n)pp = 1.5 as low as 

&u 10 GeV, because the ratio X,/X, is rather close to unity. And our 

calculations are brought into line with the data. While another 

asymptotic relation24 (n) 
e+e- 

= l'Wpp, is kept away in the calcula- 

tions even at & = 100 GeV. This is interpreted as due to the large 

value of X 2' Furthermore, the fit for e+e- is in good agreement with 
._ 

the data at & < 9 GeV but above 9 GeV the calculation is small compared 

to the data. This discrepancy may be attributable to the bottom pro- 

duction and to the hard-gluon jets which are suppressed in hadron-hadron 

collisions. It is necessary to extract the data on two-jet events 

without heavy quarks. We cannot expect the universal property of 

strings including the hard processes in the naive form. And also the 

presently available energy is not high enough to test the present model. 

Next we compute the mean multiplicity in deep inelastic lepton- 

hadron scattering, which has been discussed by several authors. 25,lO 

Since the valence component, for example, in e-p scattering implies a 

single string which comprises a hard q-jet and a soft qq-jet, we simply 

have 

(n)(V)(G) 
ep 

= ij ((n),(~l + (n) 
e+e- 

(&) } + cqq - cq , (6.17) 
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which is independent of Q2 at fixed s. On the other hand, for the sea 

component the final hadrons come from two strings. In order to cancel 

the contributions from the hard q-jet, it is adequate to consider the 

difference of the mean multiplicities among the valence component and 

the sea component 

(An)ep = (n):;) - (n):;) . (6.18) 

(An jep is described as 

Jldx3 d 

x3 
dwf(x,x3,w) ((n,) + (nII)) 

(A,,) = = - (n\ t&) , (6.19) \ -- I 1‘. - ‘-Az’eP x3 
dw fhx3,w) 

where 

(nI) + (nII) = (n)l(ds(l- x3) ) + (n>l(mcTv ) + cqq- cq (6.20) 

and f = fa + fb. As the sea component dominates over the valence one 

only at small x, it is sufficient to refer to the region x 5 0.2. The 

approximate expression becomes 

(An)ep % -i(a&ns+b)* RnX(x) + (n)l - 0.4 . (6.21) 

The comparison of Eq. (6.21) with Eqs. (6.19) and (6.20) shows that the 

first term of Eq. (6.21) is attributable to the reduction of the string I 

and that the second term is the contribution of the string II. h(x) and 

S(x) represent the reduction factors of the strings I and II, i.e., 

-PC- ( Rn(l- x3>)> and exp(- (en(x3A/w))), respectively. In the manip- 

ulation of taking the average w is converted into -A = m,,x/(mq(l-x)). J 
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X and 5 approach X2 = 4.1 at sufficiently large s with fixed Q2, but 

A > XL> 5. Especially, the reduction of the string I is considerably 

large. In fact, we have h w 15 while 5 W 1 at x -. 0.2 and X W 4.8 and 

5 - 2.4 at x y 0.01, when we set mCT = 2MCT/3 = 2mq and rni, = 0.6 (GeV)2. 

In Fig. 10 our calculations are exhibited. Although (An) in 
ep 

Fig. 10 (the dotted curves) is roughly a linear function of LnQ2, it is 

only in considerably small x region that (An) 
w 

keeps a positive value. 

For example, the regions in which (An)ep remains positive are 

Q2 2 6 (GeV) 2 ( x ,< 0.06) at &,= 10 GeV and Q2 < 200 (GeV)2 (x & 0.02) 

at 6 = 100 GeV. This results from the large reduction of the effective 

energies for the strings together with the shrinkage of the string II. 

In order to compare the calculations with the data, we define 

(s) 
((An>)ep E (Ad 

F2 
l ep cv) 

F2 
+ F;"' ' .f 

(6.22) 

where FF)'(') stand for the structure functions of the valence and the 

sea, respectively. The quantity is related as 

where (n)ep is the observed mean multiplicity and is given by 

V (n)ip) l F;“’ 
wep = (VI 

F2 

(6.23) 

(6.24) 

Since the sea contribution is negligibly small at large x, say x 2 0.3, 

( 
V n + ) ep 

in Eq. (6.23) can be replaced by the averaged value of (n),, at 

x > 0.3. Inserting the structure functions given in Ref. 26 into 
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Eq. (6.22), we obtain ((An))ep, which is shown by the solid curves in 

Fig. 10 together with the vp data at & = 8-10 GeV.27 However, the h 

present data27y28 are not enough to test our calculations and more data 

at higher & are desirable. 

VII. Summary and Discussions 

In this paper we have derived the j- and the c-distribution func- 

tions corresponding to the respective string structure. The 

j-distribution functions, which represent the freedom of sharing the 

energy among jets, imply that the energy fractions of jets are pre- 

dominantly far from the equal partition. Therefore, the freedom causes 

the large reduction of the effective energy of each string. It is the 

j-distribution function to which we ought to refer in the calculations 

for the soft processes. In order to compare the present.'model with 

experiments, we have calculated the mean multiplicities for several 

processes and found that the multiplicities are significantly affected 

by the number of the strings and also by the reduction of their effec- 

tive energies. The reduction factors are -4 and -6.5 in the soft 

processes with double and triple strings, respectively. In the deep 

inelastic lepton-hadron scattering the c-distribution function does not 

correspond to the freedom of distributing the energy among jets, which 

is described by another variable (x3 in Section V). Indeed, the valence 

component belongs to the single-string production, in which the freedom 

is absent. In the sea component we have a peculiar double-string 

structure and one of the strings shrinks compared with another one. 

The difference of the mean multiplicity (n) - (n)(v', which is free 
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from the effect of the hard jet, has been predicted to increase with 

decreasing Q2 at fixed & higher than -20 GeV. It is also a consequence h 

of the large reduction of effective energies that the increase of 

(n) - (n)(v' emerges at long last in such high energy region. Then, the 

more data at higher energies than the presently available region are 

needed to test the present model. 

To reveal the underlying string structure, it is also useful to 

study the one-particle distributions. In multi-string processes the 

hadron plateaus coming from each string overlap in the rapidity space. 

The detailed studies of the overlapping for BB and for BB have been 

already made by Capella et a1.g and by Sukhatme,2g respectively. How- 

ever, they used &functions for the distribution functions. The present 

model implies that the hadron plateaus overlap almost only in the small 

xF region because of the rather small value of (xmin). The expected 

one-particle distributions are similar in shape to those obtained in 

Refs. 9 and 29 in the central region. At large lxFl there appears only a 

slight difference between the one-particle distributions for multi-string 

processes and those for single-string processes. This feature in the 

fragmentation region is consistent with the experiments.2 

As for two-particle distributions in the multi-string processes, 

it is predicted that a positive correlation for the exotic combination 

associated with the initial hadron emerges in a specific region. On a 

+ + single string we have a negative short-range correlation for 71 - T 

but a positive one for ~~ - r-. In the multi-string processes, owing 

to the independent breakups of each string there are no correlations 

between hadrons decaying from the different strings except for the 
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leading particles, which get a positive correlation. For instance, in 

+ the double-string process of IT -beam we have a u-jet and a d-jet in the 

beam fragmentation region. In both the jets positively charged hadrons 

appear predominantly as the fastest particles compared with negative 

ones. Since (xmin) = 0.18, the rapidity difference of two leading 

particles becomes (lAyI> = Rn (0.82/0.18) 2 1.5 in average. Therefore, 

in this case it is expected that when the fastest IT + is triggered, the 

+ + 
IT - 71 correlation on the beam side changes its sign from negative to 

positive around /Ay 1 g 1.5 and then disappears as lAy/ increases. 

Furthermore, i t is important to study the overlapping of hadron 

plateaus in the sea component in deep inelastic lepton-hadron scatter- 

ing. In charm productions of e-p collisions D-5 correlations will also 

inform us about the string structure. When D (5) is produced as a lead- 

ing particle in the current fragmentation region, the rapidity location 

of 5 (D) varies depending on Q2 at large fixed s unlike D (5). 
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FIGURE CAPTIONS 

1. Examples of the soft hadron-hadron collisions; (a) BB, (b) %B with 

double strings and (c) BB annihilation. 

2. The string structure of deep inelastic lepton-hadron scattering; 

(a) the valence component and (b) the sea component. 

3. The soft MM scattering with a single string. 

4. The soft MM scattering with double strings, which results in the 

four-jet production a+b -t [1]+[2]+[3]+[4]. The jets [l] and [3] 

([2] and [4]) go along the direction of the initial hadron a (b). 

5. The soft EB scattering with triple strings, which implies the 

six-jet production a+b + [1]+...+[6]. 

6. The string structure of the valence component for deep inelastic 

e-p scattering, which shows the two-jet production 'ly"+p -f [1]+[2]. 

7. Two types of the string structure for the sea component, where 

mostly three jets are produced. The jet [3] (the string II) com- 

prises a q-jet in (a) and a qq-jet in (b). 

8. The averaged behaviors of hadron plateaus from the strings I and 

II. The cases (a) and (b) correspond to Fig. 7a while (c) and (d) 

to Fig. 7b. The locations and the overlappings of the hadron 

plateaus from the strings strongly depend upon x. 

9. The comparison of the calculations of (rich) with the experimental 

The fit of (rich) for pp in Ref. 21 are used as an input. data. 

The data for pp annihilation and for e+e- + hadrons are taken from 

Refs. 22 and 23, respectively. 
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10. The difference of the charged mean multiplicity 

gAnch)) = bch> - (rich)((). The solid curves and the dotted. 

curves show the calculations of ((Anch)) and (An,,), respectively. 

The data are from Ref. 27 and (rich) (v> is taken as' the averaged 

value pf (rich) at x 2 0.3. 
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