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ABSTRACT 

After introducing appropriate derivatives, the structure of 

Schwinger-Dyson equations, currents and Ward-Takahashi identities (in- 

cluding the anomalous ones) on a finite lattice is completely clarified. 

A general relation between correlation functions without-and with gauge 

fixing is given. 
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The recent interest cl-41 in lattice Schwinger-Dyson equations con- 

centr;ted on their relation to string equations. On the other hand, if 

suitably and generally derived for gauge theories, they could be a 

valuable tool in the nonperturbative analysis. In fact, the numerical 

calculations [51 of general features of QCD suggest to exploit the well- 

defined framework with a minimum of ingredients, consisting of a finite 

lattice with correlation functions defined by integrals C61, for analy- 

tical calculations too. An encouraging example within this respect is 

the general demonstration C7l of the interconnection between fermion- 

degeneracy regularization and axial anomaly. 

Fermions have been included in lattice Schwinger-Dyson equations by 

Weingarten C31, who interprets the arising contributions in a string 

picture. From the present point of view one of these contributions must 

correspond to the current related to the equation of motion. Thus a 

detailed derivation can reveal its form. On the other hand, this cur- 

rent, as well as other ones, can be derived by transforming the 

integration variables, which leads to Ward-Takahashi identities. Thus 

there is the opportunity to find the precise forms of the mentioned re- 

lations and quantities and to check their consistency. All this is im- 

portant for the envisaged calculations on a finite lattice. 

In the case of Ward-Takahashi identities with eliminated currents, 

to make contact to usual continuum forms, gauge fixing is to be studied. 

This can be done in the present formulation in an unambiguous way. 

In the present letter, gauge theory with fermions is considered on a 

lattice in four dimensions. To handle the non-Abelian fields, left and 

right derivatives are introduced, allowing to exploit the invariance of the 
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integrations. Then Schwinger-Dyson equations and Ward-Takahashi identi- 

ties Tincluding the anomalous ones) are derived and seen to get a clear 

and workable form. The structure of these relations is richer than, but 

close to, that of the respective continuum ones. The currents are found 

to be related to links and to have a form which necessarily leads to the 

point splitting as introduced in continuum theory long ago C8,91. Finally 

a general relation between correlation functions without and with gauge 

fixing is given, which shows that the choice of the gauge fixing function 

on a lattice needs some 

The finite lattice 

sional Euclidean space. 

care. 

to be used has 16 N1N2N3N4 sites in Ir-dimen- 

Periodicity for nA + nA + 2NA in the numbering 

of the variables is imposed as "boundary condition". The action is 

s=v c 
n',n 

i&,(P)-R+M) 4 n'n n 

+v c n,o,X Tr(l - UznU’, n+oUo n+XUXn) / (ga& 2 , , , (1) 

where v = a a a a 1 2 3 4, lb =T-rADA, R = -iy5TWA and M n'n = 6 m, with 
n'n 

DA and WA given by 

D An'n = (U;n,$g+X n - u&g n+A) / @a& 
, , 

W Xn'n = (U~n,6n'+A n + Uhn$.g n+x - 2$& / (2+ - 
, , 

(2) 

R is the fermion-degeneracy regularization of Osterwalder and 

Seiler ClOl, which differs from the one of Wilson 1111, W = c WA, by a 
A 

factor -iy5. R gives a simpler lattice fermion propagator and enables 

these authors to construct a Hilbert space with positive metric. R and 
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W, or more generally CR and cW, where c is a constant subject to c # 0, 

all gGe the same limit. In perturbation theory the crucial point is to 

ensure the correct limit for fermion loops. A nonperturbative criterion 

is that the triangle anomaly term Cl21 must arise correctly. This term 

turns out [71 to have a form which may be viewed as a generalization of 

the representation C8,131 Utr(y5Gc), in which Gc is the continuum fermion 

propagator and 1-1 its mass, the r;le of M now being taken by the regular- 

izations indicated above. This mechanism imposes no conditions on the 

coupling constant. 

In (1) - (3) one further has Uhn = exp{iBhn} with Bhn = xT"B$ and 
n 

the normalization Tr(T'Tj) = 35 6 
x 

!2j * 
In the Abelian case the operation 

Tr in (1) is to be replaced by a factor % to conform with usual con- 

ventions. To make contact with continuum theory one has-.to put 

Bhn = gaAAAns A general correlation function is defined by 

<P> = Je-SP/Je-s , (4) 

where s means &l-J- , with r '* 
standing for the Grassmann-variable inte- 

r!- 
UQ 

grations 
n,B 

d $nBd$nB and $ similarly for the invariant integrations 
U 

over the gauge group. 

For fermions left derivatives a/&j are abbreviated by 3' 
nB 

and 
nB 

right derivatives by 9 8 
n$' 

By using the general property 

(5) 

with Q = -e -S P one obtains 
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-J ( 
-s e 

J, 
@SS)P - 3&P ) = 0, JCe-"(P(SVS) - (P5zS)) = 0, (6) 

which by (4) gives Schwinger-Dyson equations. Analogous equations follow 

5 - for xna and xzB. Since by (1) one has nB 3" s = -sp 
nB' 

and because from P 

only odd Grassmann elements contribute to the integrals, the second 

equation in (6) actually contains nothing new as compared to the first 

one. 

TO obtain similar relations for the gauge field, for a function Q 

of the gauge field variables, derivatives with respect to one of these 

are introduced by 

-W a RAnQ = lim Q(...,exp{iTeejUXn,...) - Q(--*,U,np*** 1)/E 9 (7) 
E+o 

. 

Q$yxn = lim Q(...,Uhnexp{iTecl,...) - Q(--.,UAn,-*- 1)/E l (8) 
&+J 

From the invariance of the gauge group integrations, the property 

(9) 

U U 

follows. Inserting Q = -e -S P into (9) one gets 

/ ( eqS (Z!&S)P - $y,,P ) = 0, J e-S(p(S3:on) - (P$Fan)) = 0, (10) 

U 

which by (4) again gives Schwinger-Dyson equations. In contrast to (6), 

in (10) the two equations have different content. In fact, evaluating the 

derivatives one obtains 
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$qn = a ;ircllE _ ,&2la > (12) A oh,n aX,n-X / kauaX)2 - (T(fn - Th)i au, 

with 

+R 
J + ;n+o~oTaUon+n 3 

on 

tR 
J - ?n+o~5$& , 

on 

(13) 

(14) 

and with "in and ; un 
differing from (13) and (14), respectively, by 

having TR on the other side of Uon and of Uin. The $LT'i = 
, 

2Tr(T'SLyin) 

are given by 

&d = -t- 
ah,n ( wP (a> 

- wpca) I (23 
) 

(15) 

where w = UT u+ is the product starting with U 
n on X,n+oUo,n+XuAn An 

at point 

p(l) = n, and the other w p Cd 
its cyclic permutations starting from 

P(2) = n + A, p(3) = n + A + o, p(4) = n + o, i.e., from the other 

corners around the plaquette. In the continuum limit'3bT1n/(gaoaA) for 

all c1 tends to FOX(x), 3zn and 1' On to J'(x), and Iin " (the re- and ho, 

mainders from R) to zero, and one gets the usual classical equations. 

In the quantum case the limit needs some care, as can be seen, for 

example, in the context of the anomaly C-/l. 

The products of gauge field factors around plaquettes in pLunS and 

s'Lsn have the link from n to n + o in common and start from n + o and n, 

respectively. Thus (10) can be immediately specialized to a Wilson loop 
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by choosing P = 2Tr(TRLn+,) and P = 2Tr(TRLn), respectively, where Ln is 

a prQ$uct of gauge field factors along a closed loop with starting point 

n. Then summing (10) over all R, deformations of the loop show up in 

terms as, for example, 

c 9 C4lR *h ,P(!Z) = 2Tr . 
R , 

(16) 

Further special cases are readily obtained by appropriate choices of P 

in (6) and (10). In addition to (6) and (lo), Schwinger-Dyson equations 

involving repeated application of the derivatives can straightforwardly 

be derived. 

In the Abelian case, where f becomes simply 

derivatives $yo, 
+-U U 

n f" > , the 
n,X -v 

and a Ron in (9) and (10) are replaced by a/aBon, and one 

has to be aware of the requirement P(B) = P(B + 2~). Instead of (11) and 

(12) 
1 as now - - = 
v aB on 

q (sinfaX n - sinfoA n_,)l(gaoa,)2 - (Jon - jor,)/ao 
, , 

occurs, where f oX,n 
= B + B -B 

on A,n+o o,n+X - Bhn, and Jon and jon are 

of form (13) and (lb), respectively, with TR replaced by 1. 

Next, by deriving Ward-Takahashi identities, currents are obtained 

in a more general way. First the transformation of variables 

with V n = exp{iFTeae) n is performed in f ewSIP, in 
$ 

which for later convenience a factor I, invariant under the transforma- 

tion, is included. Now derivatives 31n +-V and a Rn 
are introduced, which are 

related to Vn and c1 i in the same way as (7) and (8) are to UXn 
R and BXn. 

+V Then, by applying aRn to f eBSIP, 
J1' 

one gets 

{,e+I(P(S51n) - (P51n)) = 0. (17) 

By calculating the derivatives (the usual chain rules for Grassmann 
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variables extend to -N 3 
an)' and then going back to the variables $,, 5 

n' 
(17) g<ts the form 

/, [(= e-'1 P 
x 

(3:, - ZR X,n-$ / aX - CGfn - T,",,-,I 1 ah 
i 

i -- 
=( v B 

($zgP) (Te$'& + ($nT')B$zBP )I = 0. 

(18) 

With (18) one has the Ward-Takahashi identities for the currents intro- 

duced before (proceeding with $1, instead of -W a Rn leads to (18) with TR 

replaced by V)% 
n' 

i.e., to nothing new). 

The corresponding relations for the singlet current follow by using 

the transformation I/J' = exp(iun)$ 
n n, $A = qnexp{-iun), in which case one 

has (17) with a/sun instead of 31n and gets (18) with TR replaced by 1, 

for Jon and jon given by (13) and (14) without T'. . 

The identities for the axial currents are similarly obtained. The 

transformation $' = expCiy c TLc+,, ?' = $,exp{iy5 T T'ui}, leads to n 5 R n 

i -- 
V v 

n',B 
q, BP) (6 n,nY5T%n)8 - (GnY5TC, nn'$ $&P 

)I 
+ x; = 0, 

where 

15" 
An = &Y~Y~U;~TR"~+~ + $n+X~A~5TRUAn@n) 

(19) 

(20) 

-+5R and J 
An as (20) with TR on the other side of Ut 

An and of U 
Xn' Now the term 

XL = i~'-c (?n,Rn,n~5TL$n -t $,Y~T'R~~,Q) 
rcI n' 

(21) 
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occurs, which contains the full R and therefore requires special care in 

the cfitinuum limit C71. By using (6) with P$, and Pin inserted for P 

there and defining G = (@ - R + M) -l, (21) can be cast into the form 

+ RG)nn 
)/ 

emSIP 
*dJ 

(22) 

where tr refers to y-matrices as well as to internal symmetry indices 

(while Tr applies only to the latter ones). Now (19) with (22) gives the 

Ward-Takahashi identities. Combining the terms with derivatives of P 

from (19) and (22), t(6n,n + (GR)n,n) and i(6nn, + (RG)nn,) occur which 

1 
can be shown C71 to give, as well as ;6n,n alone, S 

4 
(x' - x) in the con- 

tinuum limit. For the trace term, adapting the demonstration for the 

singlet axial current C71, it follows that 

$tr 
2 

+ RG)nn 
> 

-t % TrTR c *Fpv b-9 Fliv (x) (23) 
8~r UV 

in the continuum limit. The r.h.s. of (23) is the usual continuum 

result C141. 

For the singlet axial current the transformation $A = expCiany5)$,, 

5; = $nexp{iany5) is to be used, and one gets (19) with (22) where TR is 

replaced by 1, for Jz, given by (20) without T'. In (23) TR no longer 

occurs, and in the limit one has the Adler-Bell-Jackiw anomaly term [121. 

The currents which have been obtained here on the basis of (l)-(3) 

are obviously related to the links of the lattice as the gauge fields 

are. Thus their nonlocality does not exceed the one already present due 
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to the gauge fields. On the other hand, it has been known for a long 

time [??,91 that point-splitting forms of the currents are able to re- 

solve some troublesome points in continuum theory. Therefore it appears 

rather satisfactory that the present lattice formulation provides such 

forms automatically. It seems then interesting to study, for example, 

current commutators along these lines; the details thereof, however, at 

the moment remain to be worked out. 

Coming back to the transformation Vn it is to be noted that instead 

of the fermion variables one may transform the gauge field ones as 

'in =v n+xUAnVi, which gives a relation of form (17) with4, replaced by 

s 
tv 

This can be evaluated by using QaRn = which 
U' * 

leads to 

1 -- c (PSYXn - qA &P) = 0 . 
v A , 1 (24) 

Hereby it has been used that SLT'i = - S 
Cal 

, 
Xa n for ~1' = a = 1, for 

, 

a ' = ~1 = 3, and for ~1' = 2, ~1 = 4. 

The combined transformation of $,, Gn and u 
An under V n' i.e., the 

gauge transformation, gives the Ward-Takahashi identities with eliminated 

currents 

+t ($P)(T'I& + ($nTa)B??BP )I = 0. (25) 
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To make contact to its usual continuum forms Cl51 gauge fixing is to be 

introAced. 

The lattice counterpart of the usual gauge fixing procedure Cl61 can 

be derived in a general and well-defined way. Denoting the group inte- 

grations over the transformations by s V' 
for a given gauge fixing func- 

tion /'the invariant function 9 is defined by $(U)J;i&(U') = 1, from which 

it follows thatJueDS =&e-'$~/(u') =4,/j e-S$&). Then correlation 

functions with gauge fixing are defined by 

<P>f =$ e -'$fP /J eBS4 f . (26) 

Conversely one obtains <P> f = S,Se3fP <le-'+f= 

Je-S~~fOP(U' ,$' ,$') /Se-', i.e., the general relation between corre- 

lation functions with and without gauge fixing 

<P% = <J ~(U')P(U',$QiJ')/J /(U')> . 
V V 

(27) 

According to (27) the effect of gauge fixing is to provide by/' suitable 

factors for P, such that gauge-invariant terms arise which lead to non- 

trivial correlation functions. 

Now, choosing I = $ and replacing P by/P in (25) by (26) gives the 

Ward-Takahashi identities with gauge fixing 

+ <t '!' P)('+$& + (inTk) (28) 

It is, however, to be noted that according to (27) 1 is to be chosen 

with care. To illustrate this, the Abelian case with P = Q I$ n'B n"B" may be 
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considered, where the first term in (28) becomes 

(which corresponds to the diver- 

gence of the fermion-untruncated vertex function). Then looking for the 

lattice analogue of exp it is seen that the naive 

choice cl71 / = n exp - BX n h))} , because of 
n , - 

its prescribed combinations of the B hn, does not allow to form gauge- 

invariant combinations as are necessary by (27) to avoid identically 

vanishing correlation functions. A choice with the same continuum 

limit, giving suitable contributions in (27), is 

f = exp {- (2ag2)-'(FA 4(1-cosBXn) + c 
, n',X',n,A 

sinBAInI sinBAn 

x (1-S ( X'X)(*n'n + ' n' ,n-X1+X) - 26n',n+X ))I- ' 
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