
A "FRONT PAUEL" HUMAN INTERFACE FOR FASTBUS* 

David B. Gustavson, Terry L. Uolmes, 
Leo Paffrath and John P. Steffani 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

SLAC-PUB-2640 
October 19BO 
(1) 

ABSTRACT 
h 

A human interface based on the Snoop<l> diagnostic 
module has been designed to facilitate checkout of 
FASTBUS<Z> devices, diagnosis of system faults, and 
monitoring of system performance. This system, which 
is a generalization of the usual computer front panel 
or control console, includes logic analyzer functions, 
display and manual-control access to other modules, a 
microprocessor which allows the user to create and 
execute diagnostic prograns and store them on a mini- 
floppy disk, and a diagnostic network which allows 
remote console operation and coordination of informa- 
tion from multiple segments' Snoops. 

THE FASTBUS EHVIRO~I~fEIIT 

FASTBUS is a powerful and flexible data acquisi- 
tion and general purpose modular bus system which 
supports multiple processors and multiple busses 
(segnents). Such systems can be quite complex, so 
FASTBUS has been designed from the beginning with the 
problems of fault avoidance, detection and diagnosis in 
mind. A FASTBUS diagnostic module, called the Snoop 
Ifodule, has been designed to facilitate the process of 
detection and diagnosis. 

Because large or complex systems are difficult to 
initialize correctly by nanual operations such as 
setting switches, FASTBUS avoids switches. Initializa- 
tion must therefore be performed by a Host computer in 
the system, which loads registers in the modules in 
order to specify addresses, priorities, and options. 
Uowever, for the service technician or user who deals 
with only a few modules at a tine such an automated 
system is an annoying and wasteful overhead. For these 
simple situations, a convenient interface equivalent to 
manually operated switches is needed. Displays and 
controls similar to those provided by the "front panel" 
or console of a small computer are needed for the 
module repair technician. The Snoop Module contains a 
microprocessor and the necessary hardware to become a 
llaster on the FASTBUS, along with an interface to a 
display, keyboard and diskette storage device in order 
to provide these functions. 

In normal large-system operation it is desirable 
to run occasional non-destructive tests at low prior- 
ity, such as writing data to an unused register and 
reading it back, or reading known test patterns. The 
Snoop contains enough hardware to allow its micro- 
processor to simulate a simple slave with module type 
identifier, test patterns, switch registers, display 
registers, and scratchpad registers for this purpose. 

_----me -------- 

*Ilork supported by the Department of Energy under 
contract number DE-AC03-76SF00515. 

Contributed to the 1980 IEEE Nuclear Science and 
Iiuclear Power Systems Symposium, Orlando, Florida 
Iiov. 5-7. 1980. 

When a FASTBUS system has failed or is being 
exercised by the Snoop, it cannot be used simultaneous- 
ly for communication with the diagnostic equipment. 
Furthermore, diagnosis may require comparison of bus 
signals on several segments in order to localize inter- 
connection failures. FASTBUS provides a Serial Diag- 
nostic Network (FSDH) to solve this problem. The Snoop 
provides a convenient access point for human interface 
to the FSDU when its supporting terminal is connected. 
The Snoop can also be controlled through the FSDU from 
a remote terminal. Snoops can communicate with their 
neighbors and with the system Host processor to set up 
test conditions and coordinate test results for inter- 
connect fault isolation. 

Complex multiprocessor nultisegnent systems like 
FASTBUS need performance monitoring tools in order to 
discover the location of bottlenecks or overloaded 
segments. The Snoop can take statistical samples and 
snapshots of FASTBUS activity periodically, providing 
the needed information. Bottlenecks can frequently be 
removed without moving modules or changing addresses by 
nerely adding a direct interconnection between two 
overly communicative segments, since FASTBUS allows an 
arbitrary interconnect topology. Predicting traffic 
loads in advance is not always easy, so measurements 
and subsequent optinizations will be needed occasion- 
ally in most large systems. 

IlIPLEIIEUTATION STRATEGY 

In a FASTCVS system, there is too much information 
to be displayed on any module front panel. A compact 
terminal is needed which can be easily moved to a 
location convenient for the current problem. The 
package also should include a small floppy disk for 
storage of diagnostic routines to be executed in the 
Snoop. De selected the Heath (now Zenith) HC9, an 
inexpensive but compact, rugged and convenient package 
which includes a ZOO microprocessor with 48 kilobytes 
of random access memory and two serial ports. One 
serial port comnunicates with the Snoop, and the other 
is available for connection of an optional hardcopy 
device. 

The general structure of the software is shown in 
Figure 1. 



Porloble Human Inlrrfoce 

Mini Floppy Disc 

Zenith HE9 Torminol 
r 

. zeo Processor 
*FORTH Erculin 
l Snoop Looder 
0 lllilil~os, Editor, 

Dieploy Control 
0 Communication MUX 

I * 
RS232/422 
Serial Port I 

FSDN Pwt 

Snoop Module 

0 MC 68,000 Processor 
l Communication MUX 
. FORTli Executive (ROM - 

Bored Yullitosking Korncl) 
l Resident Ulllitics For Disploy 

ond Control 
. Tronsienl Programs From 

Network, or Loco1 H89 Disc, 
or Entered From Keyboord; 
Prepochoged or Ad Hoc 
Diognostlc Routines 

l Simple Host Emulotion 
l FASTBUS Module Editor For 

Displaying ond Modifying o 
Module’s Registers 

l Silo Control For History or 
Logic Analyzer Recording 

l Control For Wait-Step Logic 
and Traps 

l Master Protocol Control 
s Slave Protocol Control 
l Slave Register Emulotion: 

ID, Porometar ROM. Swilct 
Display, and Test Patterns 

100 k Front End Interfoce ond 
Control Hordrorr 

I I 
F8 Crate Segment 

FASTBUS 
Serial 
Diagnostic 
Network 

Figure 1. Snoop Software Organiza :ion 

FORT8<3> was selected as the system implenentation 
language because we needed multitasking, interrupt 
handling, full processor speed for certain critical 
code sequences, interactive diagnostic program develop- 
ment and execution by the ultimate user, and an extens- 
ible language to support a wide variety of applications 
conveniently. Iio other single language covers this 
broad spectrum from rnachine code to structured high- 
level constructs in such a natural way. 

The FORTH version used as a starting point was the 
public domain version distributed by the FORTH Interest 
Croup<4>. Though we have enhanced and optimized it for 
our needs and have rewritten it for the l7C68000, it 

remains faithful to the FIG model and the proposed 
FORTH standard. Its public doFain nature will facili- 
tate distribution of our work to other Snoop users. 
Its primary disadvantages lie in its novelty and its 
potential unreadability. There are not many exper- 
ienced FORTH programmers as yet, and FORTH is not much 
like any other language. Its unfamiliarity, Reverse 
Polish Notation and extensibility conspire to make 
FORTH programs hard for the novice to read. It is easy 
to write obscurely in any language, but easier in FORTH 
than in most others. Nevertheless, disciplined pro- 
grammers can and do write intelligible programs in 
FORTH, and many technicians have mastered FORTH at the 
test bench. When extensions appropriate to the appli- 
cation and environment are provided, the system can be 
quickly learned and efficiently adapted and used. 

Because it was not practical to include a floppy 
disk in each Snoop, it was decided to simulate one by 
serial communication with the supporting terminal, 
whether connected directly or through the FSDN. Disk 
traffic thus shares the communication path with display 
and keyboard traffic. In most applications envisioned 
for this system, disk traffic is infrequent and light. 
FORTll is very compact, so prograns are short. The 
worst case will probably be data gathering for FASTBUS 
traffic neasurenents. 

The Snoop contains all the essential software for 
responding to FSDII messages and responding as a FASTBUS 
slave in read-only memory (ROM). Thus Snoops power up 
in a useful state even if no disk is available. If RO?l 
storage should prove insufficient, an automqtic boot- ~ 
strap via the FSDIi is easily implemented with help from 
a bootstrap server on the network, perhaps the Host 
computer. 

Since program creation and editing are directly 
related to the disk contents/the program editor can 
run in the 1189 with no.conmunication with the Snoop. 
Another task of the H89 is the multiplexing of communi- 
cations over the single serial line to the Snoop so 
that the one line can be shared by terminal command 
string traffic and by binary disk block images. Part 
of the work of formatting displays is also done by the 
H89. Command lines for the Snoop are also collected 
and edited in the H89. 

A similar multiplexer is needed in the Snoop, but 
it must take care of traffic from the FSDII as well as 
from the H89. It must also provide a transparent node 
which routes traffic from H89 to FSDU enroute to a 
renote Snoop or other station, while also supporting 
Snoop to Snoop communication through the FSDN. 

Since FORTH runs interpretively at its higher 
(nachine independent) levels, it is easy to do exotic 
things like have one program create another and send it 
to a remote Snoop for execution. One simple example of 
such behavior is the loading of a diagnostic program 
into the Snoop by the FORTE l.oader which is running on 
the support terminal. 

THE HUMAN IIITERFACE 

The effectiveness of a tool such as the Snoop is 
largely determined by the appropriateness of the nech- 
anisns provided for displaying infouation and control- 
ling the hardware, and their ease of use. 

Display formats are particularly important, as 
there is so nuch information available that it can be 
difficult to find the relevant items. Formats appro- 
priate to the more connon applications will be provid- 
ed, but the fornat-specifying primitives will also be 

2 



available. This allows the user to easily modify a 
standard display temporarily in order to tailor it to 
his current interests, or to create new display types 
and save their descriptors for future use. 

A typical display, for example, shows the main 
control registers of the module at address A. The 
contents of the registers are changed by editing the 
display with the screen editor running on the I189 and 
then typing an - update command which causes the new 
values to be written into the module. 

Periodic displays can be requested which take a 
coherent snapshot of the module every few seconds. 
Display formats can be changed interactively by the 
user. The lower part of the screen is normally treated 
as an independent display used for displaying command 
lines, but can be used for other purposes as well. 

The logic analyzer part of the Snoop has several 
modes of operation, and several corresponding display 
formats. Control of the analyzer is usually by means 
of screen-editing parameter fields in the display, but 
may also be by typed keyword commands. Commonly used 
setups can be stored and recalled as needed. One 
display uses a timing diagram format, with hexadecimal 
information accompanying each cycle as appropriate, and 
a scrolling nechanism to allow searching through the 
whole history silo of the Snoop. Comparing histories 
on two different se8nents requires a dual split display 
with independent scrolling, and some software assist- 
ance for finding matching entries in the two Snoop 
silos. 

An initializer for small systems is driven by a 
hierarchy of displays, one showing which modules are to 
be initialized, and others showing the initialization 
actions needed for each module. The initialization 
specification is stored on the diskette and can be 
changed or executed as needed. This capability is 
especially useful on the test bench, where modules are 
frequently removed and replaced. 

Convenient tools for describing FASTBUS operations 
will also be included. For example, to read a single 
word from a given address and leave the result on the 
stack: 

<address> DRD 

To write to a particular control register: 

<data> <register number> <nodule address> XCNR 

Individual FASTBUS cycles can be described and combined 
into arbitrarily complex operations by using a norc 
primitive level of descriptors. For example, XCIR 
above could be described in terms of an address cycle, 
extended address cycle and data write cycle. 

The performance measurement systen is usually set 
up and coordinated by the Host, the computer which has 
all the system configuration information. The 1189 will 
receive the display information from the Host through 
the FSDII. If it is necessary, this information can 
also be gathered by the 1189 through the FSDII, usin 
configuration information previously obtained from the 
Host or manually entered. This avoids the problem of 
the measurement changing the behavior being measured. 

The II89 can also communicate with processors 
through the FSDIi in order to act as a remote terminal, 
if the processors support such remote terninals. 
Equipment other than Snoops is likely to use the FSDN 
in a shared manner in the future, with interesting 

possibilities including gateway connections to other 
networks and perhaps telephone ports which could permit 
remote diagnosis from the expert's home terminal. 

In extensive systems, multiple 1189's and other 
processors may be active, and communication among 
multiple persons cooperating in the use of the diagnos- 
tic system may be important. The FSDtI should make this 
straightforward. 

CURRENT STATUS 

As of October, 1980, the 1189 system is running the 
FORTH multitasking operating system developed for this 
application. Evolutionary improvements are still 
occurring, but the basic system is reliable and stable. 

The real Snoop hardware is not yet available, but 
experience is being gained by connecting the H89 to a 
small 280 processor which is also running FORTU. A 
low-speed network interface on the 280 has been built 
and is beginning tests involving three 280 "Snoops". 

Support functions for the display system are being 
developed, but design of the format controls is not 
complete. 

The FORTH kernel has been written for the IiC68000, 
and testing on a EDhI development board<5> will begin 
shortly. 

SLJIIIlARY 

The Snoop/l139 system promises to be a flexible and 
convenient tool for a wide range of problems, from 
diagnosis in large systems to single-module systems on 
the test bench. It could even serve as the main com- 
puter for small systems... Though its full capability 
will be reached only through time and an evolution 
based on practical experience, the underlying system 
has been designed to provide a sound basis for that 
evolution, and the essential capabilities should be 
available as soon as the hardware is ready. 

1. 

2. 

3. 

4. 

5. 

REFERENCES 

FASTBUS Snoop Diagnostic Nodule, R. Downing and 
!I. Iblz, contributed to the 1980 IEEE Iluclear 
Science and Nuclear Power Systems Symposium, 
Orlando, Florida Nov. 5-7, 1980. 

FASTBUS Tentative Specification, July 1980, 
and updates September 1930, U. S. NIM Committee. 

Status of the FASTBIJS Standard Data Bus, 
R. S. Larsen, invited paper presented at the 1980 
IEEE Nuclear Science and Nuclear Power Systems 
Symposium, Orlando, Florida 110~. 5-7, 1980. 

A good introduction to FORTH can be found in the 
August 1980 FOCTLI theme issue of Byte magazine. 

FORT11 Lntercst Group, P. 0. Box 1105, 
San Carlos, CA 94070 

IlC68000 Design !lodule User's &&de, IlIZ681'D)ri. 
A publication of Ilotorola Seniconductor Products, 
P. 0. Box 20912, Phoenix, AZ E5036. 


