
Abstract

FASTBUS SNOOP DIAGNOSTIC MODULE*

Helmut V. Walz
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305
and

Robert Downing
University of Illinois

Urbana, Illinois

SLAC-PUB-2637
November 1980
(I/A)

Development of the FASTBUS Snoop Module, under-
taken as part of the prototype program for the new in-
terlaboratory data bus standard, is described. The
Snoop Module resides on a FASTBUS crate segment and
provides diagnostic monitoring and testing capability.
Communication with a remote host computer is handled
independent of FASTBUS through a serial link. The
module consists of a high-speed ECL front-end to moni-
tor and single-step FASTBUS cycles, a master-slave
interface, and a control microprocessor with serial
communication ports. Design details and performance
specifications of the prototype module are reported.

I. Introduction to FASTBUS

FASTBUS is a proposed standard data bus for modu-
lar, high-speed data acquisition systems. It has been
developed by the Fast System Design Group of the U.S.
NIM Committee. FASTBUS systems can be configured from
multiple bus segments. These segments are able to
operate independently or link together selectively for
exchange of data. Each segment accmnodates multiple
processors. The basic FASTBUS operating mode is
asynchronous to allow for wide variations in operating
speed of attached devices. Data block transfer rates
of 100 MHz are expected possible between devices
residing on the same bus segment.

A general description and status report of FASTBUS
development work in progress is offered in two papers
presented at this Symposium.1~2 Those readers inter-
ested in complete specification details for FASTBUS
may obtain a copy of the proposed bus standard from
the National Bureau of Standards.3

II. Snoop Module Concept

The FASTBUS Snoop Module has been devised for
diagnosing problems inside crate segments, and for
monitoring communications from segment to segment in
FASTBUS systems (Fig. 1). Since all bus-segment signal

II ..” Dlognostic Network 1141.

Fig. 1. Typical FASTBUS System with Snoop Modules

*
Work supported by the Department of Energy,
contract DE-AC03-76SF00515.

lines are accessible at each crate module location,
such a diagnostic module may be used to monitor and
record FASTBUS transactions within a crate segment.
The FASTBUS wait line (WI) may be used to single-step
bus cycles and implement programmable trap functions.
The serial bus lines within each crate segment may be
used as an independent communication path between diag-
nostic modules and the host computer, when connected to
a serial network which bypasses all segment interconnect
units.

The basic hardware organization of the Snoop Mod-
ule is shown in Fig. 2. A fast front-end section
connects the module to the crate segment bus. This
section handles diagnostic recording and control of the

r----u7

L- FE Serial
Dmgnostlc Network Port

TTL/MOS
Micro-

PrOCtXSOr
Svstem

General
Purpose
Ser10
Port

Fig. 2. Snoop Module Organization

crate segment, with response capability to match the
fastest devices on the bus. It also provides interface
and control for master-slave operation and connection
to the serial bus lines. Hardware realization is
based on emitter coupled logic (ECL) in general, with
all speed-critical parts implemented with Fairchild
100 K ECL circuits and a high degree of parallelism.
Control and supervision of the fast front-end section
is handled by a compact microprocessor section, which
includes a second, general-purpose, UART-type serial
port. A powerful 16-bit CPU (MC 68000) has been sel-
ected to optimize handling of serial communications,
interrupt driven control of the front-end diagnostic
functions and master-slave operations, and replacement
of random logic by firmware-based processor control
throughout the module.

Since the Snoop Module is expected to see wide-
spread usage in FASTBUS systems, this module organi-
zation combines the low functional complexity and ex-
tensive hardware parallelism of the fast ECL front-end
with the high level of integration of the processor
section, achieving a single-width module implementation.
A detailed block diagram is shown in Fig. 3. Based on
this block diagram, a description of important design
details is offered in the following two sections.

III. Fast ECL Front-End

The fast ECL front-end contains the basic diag-
nostic functions of the Snoop Module: programmable
wait-step logic, traps for address, address-data, and
parity-error detection, activity history silo memory,
and master-slave interface logic. To allow processor

(Contributed to the 1980 Nuclear Science and Nuclear Power System Symposium,
Orlando, Florida, November 5-7, 1980.)

CONTROL PROCESSOR fMOS/TTL)

INTERFACE
IECL)

ADDRESS BUS 4

8 ..b
DATABUS I_ i

24,)

16, ; > i %ENStON

8 MHz MC68000 PIC INTERRUPT

OSCILLATOR CPU BMHz Z TYPE INTERRUPT
100 K FRONT, END

(ECL)

HISTORY SILO
- MEMORY

MISCELLANEOUS
M 8 S LOGIC

--5 ADDRESS 8 DATA BUS DRIVER GATES
TRAPS - AD,CB,NH.PA.PE,RD

PARITY ERROR BUS ARBITRATION,
TRAP LOGIC

kB

&I 41
SLT SLR - ”

/ GENERAL
FE FSDN PURPOSE

PORT UART PORT IO - 80 FE CRATE SEGMENT

Fig. 3. Snoop Block Diagram

control of this section, control and status word regis-
ters, address decoding, and ECL-TTL level conversion
are also provided. This section is implemented with
a mixture of 100 K and 10 K ECL integrated circuits.

REGOUTENABLE

,+ DO BUS

FB

LOAD AT
SEL A. Programmable Wait-Step Logic

The wait-step logic asserts the WAIT line in
response to bus timing and control signal transitions.
The selection of signals used as trigger inputs is
made by setting enable bits in two control word regis-
ters. Available trigger sources are AS, AK, DS, DK,
AG, GK, address-data trap, and parity-error trap.

A typical wait circuit is shown in Fig. 4. The
estimated wait response delay is 5 ns.

B. Address-Data and Parity-Error Traps

The address-data trap is illustrated in Fig. 5.
The 32 AD lines, CB and NH are compared with a pair of

LOAD DT
SEL EN 3;A;AREG 3;4&$EG

DO BUS

AS+A

EN AD1 .RAP

FB ReCelW
Tlmlng Buffer
Llrk? Input Waf Step

r-

WTAS? To SWI

FkpFiop Status lnpui Byte
FiOOlI2

AS-
r

FIOOIOI &T

jP--“’

WAIT I I ’
I I RESET

STROBE D MATCH

EAS?
Enable

From CWI
Register

Fig. 5. Address and Data Trap Logic

34 bit registers at address and data sync times.
The contents of these registers allows each bit to be
specified as 0, 1 or "don't care". The trap may be
used as an address trap or an address-data combination
trap. The combination trap can be utilized to detect
extended address cycles.

Other Watt
SOWXS

Typtcol Propogot!on Delays
From Timmg Input To Wdlt Output:

IC Delay = 2.8ns
Estwnated Total Clrcut Delay = 5ns

Fig. 4. Typical Wait-Step Logic

-2-

The expected response time for address or data
detection is 8 ns. The parity-error trap Consists Of

a 33 bit parity checker (F100160) driving an array of
five parallel flip-flops. These flip-flops are
clocked by appropriately delayed timing signals and
their outputs are used as wait sources driving the
WAIT output line. Th,e estimated response time for
parity-error detection is 15 ns.

C. -Activipy History Silo Memory

The silo memory is able to record 256 FASTBUS
cycles with a speed in excess of 100 MHz. (Fig. 6).

SILO RAM
Fi

DI BUS

ADDRESS BUS

WEI

WE3
LOAD
ADDR
RESET
DO BUS

;: 2:.

Fig. 6. Activity History Silo Memory

For each cycle, 52 bus signals and a time-out failure
bit (TOF) are recorded. Several programmable modes for
start and stop of silo recording are available. For
example, the address-data trap, described previously,
may be used to start recording with automatic stop and
wait generation when the memory is filled. Choices of
FASTBUS-synchronized or real-time clock recording modes
are available. For read-out the silo is addressed from
the processor and each word is multiplexed onto the
b-bit data bus to the processor in 7 bytes. The data
path from the crate segment bus lines through the silo
memories onto the data input bus to the processor is
also used during WAIT= 1 to read the bus status.

D. Master-Slave Interface Logic

To support master-slave capability of the Snoop
Module, hardware is provided for bus priority arbitra-
tion with a control word register for the module arbi-
tration level. For slave mode, geographic address
recognition is implemented. FASTBUS protocol response
and generation is handled with processor interrupts,
status word input buffers and control word output
registers. Master-slave operation is described in more
detail in Section V.

IV. Control Processor and Serial Ports

Processor design is the result of the following
Snoop Module requirements:

0 highly compact implementation in order to
accommodate all module hardware on one PC board;

0 multi-channel, programmable, high-speed interrupt
handling;

approximate 300 K bit serial port handling for
FASTBUS Serial Diagnostic Network;

maximum CPU execution speed to optimize throughput
and minimize memory requirements;

32-bit CPU registers and instructions to handle
32-bit wide FASTBUS data.

The implementation uses approximately 25 integrated
circuit packages. For the CPU the MC68000 (8 MHz)
microprocessor was chosen. Memory has a word width of
16 bits and consists of 8 K words of EPROM and 8 K
words of RAM. To minimize package count, 64 K bit
EPROM and hybrid static RAM units are utilized.

The programmable priority interrupt structure
accommodates 25 interrupt vectors. Three interrupt
handling schemes are combined. The 15 interrupt inputs
from the fast front-end section and the module front
panel are processed by 82598 interrupt controllers
(Intel). Interrupt sources from the dual serial IO
port and 4-channel counter-timer (IO sources) are
connected into a Zilog-type daisy chain configuration.
Both interrupt handlers are then connected to the in-
terrupt control inputs of the CPU. Some special logic
is used to combine all three interrupt schemes. The
four-channel counter-timer subsystem has two real-time
clock inputs (1 and 2 MHz) and two serial port clock
inputs (1.2672 MHz and a programmable baud rate genera-
tor clock with 0.8 to 316.8 kHz). This system is pro-
vided for implementing real-time clock, elapsed timer,
and serial communication related timer functions.

Two serial ports are available from a 280A-SIO
controller unit. The general purpose UART port oper-
ates asynchronously with 16 programmable baud rates
from 50 baud to 19.2 K baud. By means of jumpers the
serial interface standard is selected from RS232 and
RS422 formats. Standard modem control signals are also
available. Receiver,-transmitter and status interrupts
are generated to the CPU. The second SIO channel is
used as port for the FASTBUS Serial Diagnostic Network
(FSDN).~ FSDN will be used for remote control of Snoop
Modules (and other diagnostic modules) and communica-
tion among Snoop Modules for diagnosis of segment in-
terconnect and cable segment problems. The prototype
FSDN is an Ethernet-like carrier-sense-multiple-access
network with collision detection. Manchester coding is
used to combine data and clock and achieve constant 50%
duty-cycle serial output modulation. The synchronous
transmission rate is 316.8 K bits per second.

The SIO channel, operating in SDLC mode, takes
care of network address recognition, cyclic redundancy
code generation and checking, and vectored interrupt
handling. As shown in Fig. 7, two registered PROMS are

Receiver Logic

Port In

x 8 Clock
(2.5344 MHz)

,/..!

Fig. 7. FSDN Serial Port Interface

-3-

used to form Mealy finite-state logic machines to.
encode transmitted data, separate received data and
clock information, detect collisions when several
stations try to transmit simultaneously, and perform
miscellaneous logic functions. Another register is
used for staticizing asynchronous signals. Translator
circuits and an ECL driver and receiver couple the
FSDN port to the crate segment serial bus lines.

The module front panel is shown in Fig. 8. The
16-bit statfus LED display is CPU driven as an output

1 r

I
PC Board with I
Approximctely
190 IC Packages

I

(400~322.6mm) ,

_ Module Awl~ory
Connector with
Processor Bus
Extension and
Alternate
RS 232/422
Serial Port
Connection

,Moduie Segment
Connector lncludlng
FSDN Lines

,1 Unit Width
FB Module

Type A

Fig. 8. Illustration of Module with Front Panel

port register. For testing work, it may also be used
as a 16-bit data display. Two switch functions gener-
ate CPU interrupts for manual FB WAIT generation and
for a processor self-test. The third switch function
performs a direct hardware reset of the CPU. Finally,
the processor section contains a small amount of ran-
dom logic to combine the different interrupt schemes,
to generate the handshake responses for the MC68000
CPU, and decoding required for addressing all proces-
sor peripheral devices.

V. FASTBUS Master-Slave Capability

A simple master-slave capability for the Snoop
Module has been implemented by utilizing part of the
fast front-end hardware of the basic Snoop Module and
by adding some dedicated logic. Control of master-
slave operations is handled by the processor through
interrupts and IO instructions. The history silo memo-
ry serves as an input buffer for 32 AD lines and some
control and information signal lines (Fig. 6). output
of AD lines, CB and NH is accomplished with two of the
four trap registers and added driving gates onto the
segment bus. One register holds the information for
an address cycle, the other for a data cycle. This
sharing of hardware implies that silo recording and
address-data trap operation is not available during
master-slave operation.

The required dedicated hardware consists of arbi-
tration gating logic with module priority register, AR
and CK flip-flops, geographic address decoder and SEL
flip-flop, broadcast TP output logic, processor control
word output registers and interrupt input handling for
timing and control signals. Operation as bus master
works simply by acquiring mastership through priority
arbitration, and then executing single FASTBUS cycles
with processor IO instructions. The asynchronous
handshake protocol of FASTBUS allows execution at
microprocessor speed. Slave mode operation is more
critical in order to avoid time-out failures. Exten-
sive use of processor interrupts and hardware-generated
FASTBUS WAIT states is required to synchronize the
Snoop processor as a slave.

No logical addressing is available in slave mode.
All control and data space registers are emulated by
software.

VI. Prototype Module Development Effort

Two major considerations dictated the construction
of the Snoop Module hardware:

0 all logic circuitry to be contained in a single-
width FASTBUS type A module:

0 minimum propagation delay requirements for fast ECL
100 K front-end section.

The Snoop Module design requires approximately 190 in-
tegrated circuit packages of mixed sizes. This calls
for a high density, multilayer printed circuit board.
The PC board has power distribution and ground on the
two interior layers. All signal traces are on the
outer two sides. Fairchild 100 K ECL devices used for
parts of the fast front-end section are in 24-pin flat
packages. This optimizes circuit speed and board den-
sity. The leads of these flat packs are formed into
"dog-leg" shape and reflow-soldered to the surface of
the board. A finned heat sink is epoxied to the
ceramic case. For best heat transfer results the IC
flat package has been inverted to locate the die as
close as possible to the heat sink. Flat packs are
mounted on a 0.55~ 0.55 inch grid. PC board layout is
based on 0.010 inch signal trace width with a center-
to-center spacing of 0.025 inch. This allows one
trace between flat pack leads. Signal traces are
microstrip lines with a characteristic impedance of
approximately 85 ohms. Special care has been taken to
minimize interconnecting line lengths and keep stub
lengths from the FASTBUS bus connector as short as
possible.

In parallel with this hardware effort, software
for the Snoop control processor and a FASTBUS diagnos-
tic system with several Snoop Modules linked by the
FSDN is being developed. '

VII. Conclusion

This paper has described a high performance
diagnostic module for FASTBUS. Since the basic Snoop
Module functions were developed as part of the FASTBUS
Standard Specif&ation, this module is expected to find
extensive usage in future FASTBUS systems. Beyond the
standard application of the Snoop Module, numerous
other possibilities may be of interest. Some of these
possibilitiesare illustrated in Fig. 9. For reference
purposes, features and basic specifications of the
prototype Snoop Module are summarized in Table I.

Complete fabrication and extensive testing of a
prototype module are expected during the next three
months.

Table I

FASTBUS Snoop Module Features and Basic Specifications

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fast front-end implemented with 100 K ECL devices
in 24-pin flatpaks.

Programmable wait-step-logic with 5 ns response time.

Address and address-data combination traps with 8 ns
response time; each trap with 34-bit trap and mask
registers.

Parity-error trap with 15 ns response time.

Activity history silo with 53-bit x 256 word RAM;
100 MHz recording speed; programmable recording
modes; FB or real-time synchronized; logic analyzer
mode with internal or external clock source.

Simple master-slave capability with geographic
address recognition, bus arbribration, IO register
programmed protocol control, software emulation of
CSR slave registers.

MC68000 CPU (8 MHz).

25 level programmable priority interrupt structure.

16-bit x 8 K word static RAM (350/480 ns
access/cycle time).

16-bit x 8 K word EPROM (250 ns).

4-channel, programmable counter-timer subsystem with
real-time and serial interface related clock inputs.

2-channel, programmable serial interface.

BS232/422 asynchronous serial port with programmable
baud rates (50-19.2 KB).

Synchronous serial port interface to FSDN with
316.8 KB.

Processor driven front panel with status display;
manual wait execution switch; interrupt sense switch
for processor selftest; CPU reset switch; NIM level
scope trigger outputs from waft-step logic.

l-unit wide FB module type A with 190 IC packages
on a 4-layer PC board; estimated 85 Watt power
dissipation.

SNOOP BENCH TEST STATION

MODULES UNDER TEST

SNOOP REMOTE SEGMENT HOST

-.-,-.--e FSrJN

LINK TO
CENTRAL HOST

IPERIPHERALS]

REMOTE SYSTEM DIAGNOSTICS VIA PHONE LINES

- -CABLE SEGMENT

_,/.
/’ /

I ‘.- .-.-. -.-FSDN

Fig. 9. Some Snoop Module Applications

Acknowledgments

The authors of this paper would like to express
their appreciation for contributions to design and
specifications of the Snoop Module by D. Gustavson
and L. Paffrath. The effort on PC board detail layout
by Ruth Kastner of the.University of Illinois deserves
special recognition. Finally, the leadership and
encouragement by R. Larsen was a vital ingredient
to the success of this project.

1.

2.

3.

4.

5.

References

Status of the FASTBUS Standard Data Bus,
R. S. Larsen, Stanford Linear Accelerator Center;
invited paper presented at the IEEE Nuclear
Science Symposium, Orlando, Florida,' November 1980.

FASTBUS Software Status, D. B. Gustavson, Stanford
Linear Accelerator Center; paper presented at the
IEEE Nuclear Science Symposium, Orlando, Florida,
November 1980.

FASTBUS Draft Specification, September 1980, avail-
able from L. Costrell, Department of Commerce,
National Bureau of Standards, Washing, D.C. 20234.

Design Considerations for the FASTBLJS Serial
Diagnostic Network, D; B. Gustavson, Stanford
Linear Accelerator Center, FSDG-089 Internal
Report, 20 October 1980.

A "Front Panel" Human Interface for FASTBUS,
D. B. Gustavson, T. L. Holmes, L. Paffrath and
J. P. Steffani, Stanford Linear Accelerator Center;
paper contributed to the IEEE Nuclear Science
Symposium, Orlando, Florida, November 1980.

-5-

