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ABSTRACT 

Global symmetry realizations in QCD with two massless quark 

flavors are studied by semiclassical methods at high temperature. 

The response of QCD to external field theory probes gives an indi- 

cation of symmetry realizations and their interdependence as the 

temperature is lowered. The semiclassical approximation of QCD 

is equivalent to the statistical mechanics problem of a quark and 

gluon plasma in a background field of correlated instanton fluctua- 

tions, and is shown to be described by an effective field theory. 

From the collective instanton effects with quarks some insight can 

be gained into how the dielectric properties of the medium affect 

chirality correlations responsible for the onset of the spontaneous 

chiral SU(2) symmetry breaking phase transition, and alternatively, 

how quarks affect the dielectric properties of the medium. 
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1, 

I. INTRODUCTION 

An understanding of the hadronic physics of ordinary matter is 

expected to come from QCD with two massless quark flavors. In partic- 

ular, the theory must explain the confinement of quarks into color 

singlet hadrons, and the symmetries of the strong interactions. The 

classical Lagrangian for this theory, besides being Lorentz, scale and 

C, P and T invariant has a local color SU(3) gauge symmetry and a 

global UL(2) x UR(2) symmetry of the massless left- and right-handed 

quark fields. There are many possible realizations of these symmetries. 

While the realization of some of the symmetries of the classical 

Lagrangian are understood in the quantum theory-for example, how the 

classical scale invariance is broken by the renormalization anomalies 

and how the chiral U(1) symmetry is broken by the axial--anomaly and 

e-vacuum C1,2,31, other symmetry realizations are less well understood. 

For the other global symmetries, from an analysis of effective poten- 

tials for possible order parameters, built out of polynomials of color 

SU(3) and chiral SU(2) invariants of bilinear quark fields, it is pos- 

sible that the chiral SU(2), isospin, and P and CP symmetries could 

all be spontaneously broken C41. Also, the color gauge symmetry could 

in principle be realized as a spontaneously broken symmetry as opposed 

to either a confined or normal (Coulombic) symmetry C5l. 

We would like to better understand how QCD actually realizes its 

chiral SU(2) symmetry as spontaneously broken, its isospin, P and CP 

symmetries as manifest, and realizes its color SU(3) symmetry as a 

confined symmetry. We would also like to understand how these realiza- 

tions are interdependent. An example of an interdependence of symmetry 
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realization comes from the fact that any dimensional order parameter 

assoc&ated with spontaneous symmetry breaking can only exist because 

of the breaking of the classical scale invariance by quantum renormal- 

ization effects (spontaneous symmetry breaking cannot occur if all 

couplings are at their fixed points) [6]. Also, without the axial 

anomaly the realizations of chiral U(1) and chiral SU(2) symmetry are 

1inked;l with the anomaly the realization of the chiral U(1) symmetry 

is linked to topological properties of color gauge field configurations 

C1,2,31, and consequently the realization of chiral SU(2) symmetry may 

also depend on topological properties of color gauge field configura- 

tions. Since these configurations may furthermore have something to do 

with the confinement realization [7,81, the color gauge symmetry reali- 

zation and spontaneous chiral SU(2) symmetry breaking may also be linked. 

In order to study symmetry realizations, and since QCD presumably 

has only a single phase, we consider the finite temperature theory 

which can have many phases. (While the Wilson lattice gauge theory is 

known to have only one phase for all values of its coupling, the finite 

temperature theory has a phase transition [9,101.) We can imagine 

heating the theory to a high temperature for which it is as symmetric 

as possible, and then lowering the temperature to see various phase 

transitions. 

At moderately high temperature the theory can be analyzed semi- 

classically. Temperature serves as an infrared cutoff, and with it the 

contribution of quantum effects with large coupling strength can be 

controlled. It is reasonable to expect there to be an indication of 

the resulting phase structure of the low temperature theory even in 
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the high temperature phase, since the kinds of correlations responsible 

for tie phase transition begin to set in before the critical temperature. 

One indication of the resulting phase structure can be obtained from 

the high-temperature phase by coupling external fields to the order 

parameters, and exploring how the free energy changes. If the strength 

of an external field is increased, then the total free energy is 

lowered because this increase in free energy is more than compensated 

by the dynamics lowering its internal energy. The external field im- 

poses order energetically preferred by the dynamics, but which is 

opposed at high temperature by the randomizing thermal fluctuations. 

We will consider external fields that can exist in the vacuum 

because of spontaneous symmetry breaking of an external field theory. 

If the QCD response increases the magnitude of this vacuum field, then . 

the internal energy of QCD is lowered by the imposed order parameter. 

If, on the other hand, the external vacuum field is decreased by the 

QCD response, then the QCD internal energy is raised by such an imposed 

order parameter, and so will not tend to spontaneously break the 

associated symmetry. It will also tend to restore the symmetry spon- 

taneously broken in the external field theory. 

Even for those external vacuum fields that are increased by the 

QCD response, though, there is no guarantee that the QCD dynamics will 

actually be able to create a phase transition as the temperature is 

lowered. For example, an external magnetic field will be increased 

by a paramagnetic material as well as by the high-temperature phase 

of a ferromagnetic material, However, in the fixed weak external 

magnitude field, as the temperature is lowered, there will be a rapid 
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decrease in internal free energy of the potential ferromagnetic 

materj,al compared to that of the paramagnetic material. We would 

therefore expect that those correlations responsible for the onset of 

the phase transition turn on very rapidly as the temperature is lowered. 

Now studies of lattice QCD without quarks at zero temperature show 

that there is a very rapid transition from weak to strong coupling 

behavior C11,121. The B function that describes the change in effec- 

tive coupling strength for different scales changes almost discontinu- 

ously from its weak coupling perturbative behavior to its strong 

coupling confining behavior at a certain small value of the coupling. 

This transition occurs over a range of couplings that are so small that 

2-100~ perturbative corrections are negligible. This indicates that 

there are very important nonperturbative weak coupling effects. Semi- 

classical tunneling fluctuations, instantons C131, are an example of 

such effects. They also have the property that at finite temperature 

their contribution turns on exponentially fast as the temperature is 

lowered C141, and so we expect they give a good description of the onset 

of the phase transition. We do not know if in fact the semiclassical 

approximation is valid at the critical temperature for the spontaneous 

chiral SU(2) symmetry breaking phase transition, but the methods we 

will describe can in principle be extended to answer this question. 

This paper is organized as follows: in the next section, IIA, 

we review some of the symmetries of QCD with two massless flavor quarks. 

In IIB we show how some of the implications of spontaneous symmetry 

breaking follow from Goldstone-Ward identities. The consequences 

follow from nonzero-order parameters; whether or not the dynamics 
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chooses to have nonzero order parameters is determined from the minima 

of the., effective potential, which is discussed in Section IIC. In .~ 

Section IID we show that QCD with massless quarks could potentially 

spontaneously break P and CP as a consequence of the unusual way it 

realizes its chiral U(1) symmetry. We also give a simple heuristic 

explanation of how the realization of this chiral U(1) symmetry follows 

from the O-vacuum. In Section III we discuss 't Hooft's chirality 

selection rules Cl1 that govern the behavior of massless quarks in 

background color gauge fields with nontrivial topology. These selection 

rules are realized by way of zero-eigenvalues of the Dirac operator in 

such background gauge fields. From the dependence of the determinant 

of the Dirac operator in both background gauge and scalar fields we 

can simply understand the flavor structure of the 't Hooft interaction 

Cll, as well as corrections in higher powers of the external fields. 

We can also simply understand the 0 transformation property under 

chiral U(1) rotations of the quark fields C21. In Section IVA we re- 

view the instanton contribution to the Euclidean functional integral 

Cl51, including higher order external scalar field dependence, and in 

IVB discuss some of the corrections to this contribution when finite 

temperature boundary conditions are included. 

In Section V we consider QCD coupled to various scalar field 

theories, analogous to scalar sectors of weak interaction models. 

The classical potentials for these scalar models are chosen to realize 

global symmetries in various ways: (1) spontaneous chiral SU(2) and 

isospin breaking, and (2) spontaneous chiral SU(2) and CP breaking. 

We consider these models at finite temperature and heuristically show 
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that the QCD corrections to the scalar effective potentials can induce 

variow phase transitions. The QCD corrections enhance the tendency 

for spontaneous chiral SU(2) symmetry breaking in these models, and act 

to restore isospin and CP symmetry. 

In Section VI we analyze chirality correlations in the semiclassi- 

cal approximation to QCD at finite temperature. These effects are 

shown to be describable by an effective fermionic field theory, essen- 

tially the finite temperature version of the quantum field theory of 

't Hooft interaction c21. We physically motivate a transformation of 

this field theory to a form suggestive of a chiral SU(2) u-model, the 

simplest approximation to which has a correspondence with previous 

analyses [7,16,171. The QCD free energy in external scalar fields is 

briefly discussed in this approximation. 

In Section VII we consider additional corrections to the semiclas- 

sical approximation. The collective effects of dipolar correlations 

of instantons and anti-instantons, represented as an effective field 

theory by Jevicki C181, is here generalized to include the effects of 

massless quarks. From an approximation to this field theory we show 

how to compute the quark corrections to the Callan-Dashen-Gross 

dielectric susceptibility C7,81. Our final result is expressed as an 

effective Lagrangian added to the usual QCD Lagrangian. Perturbative 

evaluation of this field theory generates (besides the usual perturba- 

tive QCD graphs) an approximation to the effects of configurations 

with nontrivial topological field fluctuations-that is, a plasma of 

instantons and anti-instantons interacting through dipolar and chirality 

correlations, with quarks propagating in background instanton fields 
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and interacting through gluons in background instanton fields. Finally, 

Sectios VIII is a summary. 

IIA. SYMMETRIES OF QCD 

The Lagrangian for QCD with two massless flavor quarks is 

1 

2g2 
tr Fuv(A) F'"(A) . (2.1) 

The color W(3) gauge covariant derivatives, D(A) = a,,+iAll, 

Ap = A;(Xa/2), act on the three component color spinors u and d, each 

component of which is a four component Dirac spinor. The color curva- 

ture is 

F,,,,(A) = allAY - aVA,, - i Ap,AV [ 1 . (2.2) 

This classical Lagrangian is invariant under local color gauge 

transformations of the quarks and gauge fields, 

and 

A,,(X) + G.(x)$(x)Slt(x) - in(x)a,,a'(x) , 

(2.3a) 

(2.3b) 

where n(x) is an element of color SU(3) associated with the space-time 

point x; associated with a path in space-time is a path on the SU(3) 

manifold. It is also invariant under P, C, T and global UL(2) X UR(2) 

transformations of the left- and right-handed quark flavor doublets: 

defining \I, = (l), and the left- and right-handed projections 
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$L 
0 

= i(l 7 y5)/21$, then .5? is invariant under 

R 

0 e in (2.4) 

that is, under independent U(2) transformations of the left- and right- 

handed flavor spinors. The subgroup is the UB(1) baryon 

number subgroup, implying the conservation of the baryon number current 

eig*;?/2 0 
$Y,vJ l The subgroup 0 eiZ*?/2 > 

is the SU 
I 

(2) isospin subgroup, 

implying the conservation of the isospin currents, JE 5 +yV(ra/2)$. 

Both of these symmetries are manifest symmetries of the strong inter- 

actions. That is, the strongly interacting particles fit into families 

associated with the group representations of these symmetries, and the 

interactions of these paraticles are governed by selection rules which 

follow from the local conservation of these currents. The transforma- 

tions 

eic 0 
i ) 0 ,-is 

are the chiral U(1) transformations; they rotate all left-handed 

fermion fields one way and all right-handed fermion fields in the 

opposite direction by the same amount. Associated with this symmetry 

is the classically conserved axial vector current $y,y5Q. This chiral 

U(1) symmetry is, however, neither a manifest symmetry of the strong 

interactions, nor a spontaneously broken symmetry in the usual way. 
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Finally, the transformations 

are the chiral SU(2) transformations which rotate the left-handed u L 

and d L into a linear combination of one another, and the right-handed 

UR and dR into a linear combination of one another in the opposite 

direction, and associated with this symmetry are the axial vector 

isospin currents, J$ = ~r,v5(r2/2)$. This chiral SU(2) symmetry seems 

to be a spontaneously broken symmetry. The understanding of these 

chiral symmetries must come from the quantum field theory. 

IIB. GOLDSTONE-WARD IDENTITIES 

Chiral SU(2) spontaneous symmetry breaking is studied by means of 

the Ward identity 

Y)=([9;,iiy5$ Y]) = -6ab<+4> . (2.5) 

The last equality (which follows from the canonical anticommutation 

relations of the fermion field operators) implies that if F'Y has a 

nonvanishing vacuum expectation value, then Q T does not annihilate the 

vacuum state, but connects it to the same particle state as-does the 

isovector pseudoscalar operator ivy5(rb/2)Y. The theorem of Goldstone, 

Salam and Weinberg Cl91 applies here and implies that this contributing 

state is that of a massless particle. This is manifest as a massless 

pole in the term on the left of Eq, (2.5), 
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3 <YY>6ab . q:o 2 (2.6) 
4 

These three massless particles are identified with the pions C201. 

Also, following from the Ward identity for the axial vector vertex 

function embedded in Eq. (2.5), 

b 
(x)?(0)y5 % 

u 

JS b = 
X Z,Z’ 

tr '5 % G(O,z) a?'; (z,z';x) 1 G(z',O) 
lJ 

b 
= tr y5 $- G(O,z) $- a 64(x-z'> 

a 
+ ti4(z-x) 5 y5 G 

-1 
(x,z'> 1 G(z' ,O> 

6 ab = 
s 

tr G(P) , 
P 

(2.7) 

and from the consequent behavior of the vertex function implied by 

Eq. (2.61, 

c (P,-p';q) 
a 

1-I 
&P)Y, F + $ Y~G-'(P') 1 64(P-P'+q) , (2.8j 

The u and d quarks acquire the same dynamical mass proportional to 

fly>, since Eqs. (2.7) and (2.8) imply a nonvanishing anticommutator of 

G-l(p) and y5. 

Spontaneous isospin breaking is governed by a Ward identity similar 

to Eq. (2.5) f or spontaneous chiral SU(2) symmetry breaking, 
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s, 'a'(J;p(x)fAl) = ([QvkbY]) = Eabc(TrcY) . (2.9) 

If we pick the direction of spontaneous isospin breaking to be in the 

3-direction, then 

(k3Y) = <&> - <dd> + 0 (2.10) 

would lead to different dynamical masses for the u and d quarks. The 

generators Q1 and Q2 would be spontaneously broken and this would imply 

the existence of massless charged scalar particles, the neutral partner 

of which -3 (created by YT Y) would not have to be massless. There 

seems to be no evidence in the real world, though, for this dramatic 

pattern of scalar particles CZOI. 

IIC . EFFECTIVE POTENTIALS 

The question of whether or not <?Y>, for example, is nonzero is a 

dynamical one. It can be answered by computing the effective potential 

V(<vY>)C6,211. If V has a global minimum for <!Y> nonzero, then the 

ground state spontaneously breaks the chiral symmetry. In order to 

study the possible spontaneous symmetry breaking of other global symme- 

tries we will consider the effective potential for the more general 

quark bilinear color singlet order parameter, (Fi[: (l+yg) /‘l’j) ’ 

The computation of the effective potential proceeds as follows: 

First a source term 

(2.11) 

is added to the Lagrangian, Eq. (1.1). The 2x 2 flavor matrix scalar 
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field 3 can be represented, 

(2.12) 

If @ is considered a dynamical field (as we will do later), this Yukawa 

coupling is invariant under UL(2) X UR(2) transformation; under 

sum ' suR(2), Cp transform as the ($,s) representation. This Yukawa 

coupling represents the interaction energy of the external source 

fields Oij, with the quark fields $iC(l+y5)/21Jlj. 

The ground state energy in the presence of the external source 

fields Cp 
ij is proportional to W(O) = -i Rn Z(Q), where Z(0) is the 

vacuum-to-vacuum amplitude in the presence of Cp. The computation of 

W(Q) can be formulated in terms of the determinant of the u and d quark 

inverse propagators in the background @ field, 

det[(i’y’ ilb,) -m% -@+?I (2.13) 

The 2x 2 matrix of color covariant derivatives is diagonal in the u and 

d flavor space, while the matrices Q and Q t are not, in general. Ex- 

pressing the determinant as the exponential of the trace of the loga- 

rithm, this logarithm can be expanded in powers of Q, and (P+ , and 

corresponds to the sum of all graphs, with arbitrary numbers of external 

@ and ip' fields, of a single quark loop, with the quark propagating in 

a background color gauge field (see Fig. 1). Thus the 0 dependent part 

of the determinant can then be expressed in the form 

exp{i/ [z tr/a,,@12 - vA(@)]} (2.14) 
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where the kinetic energy term comes from the local contribution of the 

vacuum polarization graph, and VA(@) is a nonlocal polynomial in all 

powers of Q and @+ and their derivatives , the coefficients of which 

depend on A. The determinant is weighted by the amplitude for each 

color gauge field configuration, exp(iS(A)}, where 

S(A) = 1 
2g2 s 

tr F,,(A) F""(A) (2.15) 

and is summed over all possible configurations, giving for W(a), 

W(ip> = -i&n 3A eiScA) det[(i';' ia;A)) - @+- Qt"i']] 

(2.16) 

= -iRn (/,, exp{i(S(A) -itr Rn d(A))} exp(i/-[ztrlaU@i2 - VA(@,]}) 

The effect of coupling the scalar fields a.. to the quarks is almost 
1J 

like coupling to QCD the scalar sector of a weak interaction model, 

since QCD induces the dynamics for such a model, apart from infinite 

renormalization. All that is needed is to make Cp a dynamical degree of 

freedom, partly just to carry out the renormalization. In order to 

get an indication of the symmetry realizations in QCD, we could ask 

what effects QCD has on the symmetry realizations of various weak 

interaction models. W(a) would contribute to the effective quantum 

action of the weak interaction sector, and thus to its effective 

potential. Models of this kind will be pursued in Section IV. 

From W(@) a Legendre transformation is performed to obtain 

‘(~i~yj))Ew@) - J(Y(QT +a+%) 9, (2.17) 
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where ' 

( 

yI 1+y5 y . (SW(O) 
i2 

j > =‘F l ij 
(2.18) 

In performing this transformation the source dependence of 

<~iC(l+Y5)/2lYj> must be inverted; all the Oij dependence in W(Q) must 

be transformed to <yiC(1+y5)/21Yj> dependence. T is the generating 

functional for all one-particle irreducible vertex functions with 

<\lli[(1+y5)/21Yj> vertices. It has the structure 

The kinetic energy comes from the local structure of all (liC(1+y5)/21Yj> 

vacuum polarization graphs; and V is, in general, a nonlocal polynomial 

in all powers of <yiC(li-y 5 )/2lY.> and their derivatives. 
J 

T is thus the 

full quantum action for the <?iC(l+y5)/21Yj> fields; that is, it contains 

the full QCD dynamics of these composite fields. In the long-wavelength 

limit, it presumably reduces to the nonlinear u-model which contains 

the content of current algebra chiral dynamics [23]. 

The ground state is characterized by constant <TiC(l+y5)/21Yj> in 

which case all derivatives of <PiC(1+y5)/21Yj> vanish. V is then a 

polynomial in all powers of the constant <yiC(1+y5)/21Yj> . It is the 

quantum potential which has a minimum for the background field 

<?i[(l+y5)/21Yj> of the vacuum. The ground state energy could be lowered 

by such a background field due to the consequent spontaneous symmetry 

breaking dynamical correlations. 
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IID. VACUUM COSETS, &VACUUA, CHIRAL U(1) SYMMETRY AND CP VIOLATION 

1; our discussion of the Goldstone-Ward identities for spontaneous 

chiral SU(2) symmetry breaking we had considered a particular frame. 

In the massless theory there are an infinite number of possible degen- 

erate vacuua, and <iY> is a choice of one of these directions (analogous 

to choosing the direction of magnetization of a ferromagnet in, say, 

the Z direction). The different possible directions are characterized 

by the elements of the coset space2 UL(2) x UR(2)/SUI(2) x UB(l) x 

Z2(chiral SU(2))x Z2(chiral U(l)), where Z2(chiral U(1)) is the discrete 

subgroup of chiral U(1) rotations {(es e!iT),l} and the Z2(chiral 

SU(2)) is ((tt' e-Oix),l}. SUI(2) x UB(l) x Z2 x Z2 is the invariance 

group of the vacuum apart from the usual space-time and gauge symmetries 

(analogous to rotations about the axis of magnetization of a ferromag- 

nteic); that is, <vY> is invariant under SUI(2) X UB(l) X Z2 x Z2.3 

Different elements of the coset space are obtained from <vY> by chiral 

U(2) transformations, 

JIL 
ei6/4ei~~6/2 0 

+L 3 

ii ii $R 0 e-i0/4e-iz*:/2 
I il 

(2.20) 

JIR 

<VY> + e 
i0/2 

Under this transformation it appears that isospin symmetry is also 

spontaneously broken; however, the isospin transformation must be 
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conjugated 

(2.22) 

and this conjugated isospin is an invariance of the vacuum. 

An important point about this chiral U(2) transformation is that 

the functional integral not only transforms in the covariant way just 

described, but has another change as well. Fujikawa [24] has shown 

that the fermionic integrations measure is not invariant under chiral 

U(1) rotations but transforms under exp {i(8/4)y5} 

ka$Gi?J$+ 9+97$e iev(A) 
, (2.23) 

where 

v(A) = -?-- 
16a2 s 

tr FVv(A) ?"(A) (2.24) 

and is nonzero for gauge field configurations with nontrivial topology. 

This derivation effectively assumes there is no chiral U(1) massless 

particle. There is thus an extra term induced in the color gauge field 

action. This term is odd under P and T, and so it would appear that CP 

is violated, but just as in the case of isospin there is a conjugated 

CP operation under which the theory is invariant. Thus physical 

quantities cannot depend on 8. 

Because no physical quantities depend on chiral U(1) rotations of 

the quark fields, there is a chiral U(1) symmetry of the quantum theory. 

Nevertheless, this chiral U(1) symmetry is not realized explicitly; 

different 6 values correspond to different possible superselection 



-18- 

sectors such that no QCD4 perturbations can change 8 C2,31. Thus there 

are an-infinite number of possible degenerate vacuua, related by chiral 

U(1) rotations. The chiral U(1) symmetry is therefore spontaneously 

broken. However, this situation is different from usual spontaneous 

symmetry breaking in two respects. First, this spontaneous chiral U(1) 

symmetry breaking is independent of the obvious order parameter-it 

occurs whether or not chiral SU(2) symmetry is spontaneously broken by 

<h> # 0. Second, there is no associated massless particle. This 

spontaneous chiral U(1) symmetry breaking is somewhat analogous to 

spontaneous breaking of a gauge symmetry. There the gauge fields 

define a frame at each space-time point which can be chosen so that 

relative to this frame the phase of the order parameter does not 

oscillate-the Nambu-Goldstone mode can be gauged away. Here 

exp Ci(e/16a2)I trFVV(A) y""(A)} is a topological phase shift of the 

amplitude for a given gauge field configuration exp(iS(A))-it is a 

phase shift proportional to the topological charge of the configuration 

A. This phase defines a frame. Under a chiral U(1) rotation of the 

quark fields (or change of phase of the order parameter) 8 is trans- 

formed; but for 0 constant throughout space-time the phase of the 

order parameter cannot oscillate-it is locked to the constant 

direction given by the topological phase, so the Nambu-Goldstone boson 

cannot get excited. 

As we have said, physical quantities cannot depend on which 

element of the coset space is chosen to describe spontaneous chiral 

SU(2) symmetry breaking; associated with any chiral U(2) rotation of 

<yY> there is a conjugated isospin and CP invariance of the vacuum.5 
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Nevertheless, these isospin and CP symmetries could in principle be 

spontaneously broken. Spontaneous isospin breaking would be described 

by (the conjugated version of) the order parameter <yr3Y>. As we will 

now discuss, spontaneous CP violation is only in principle possible 

because of the particular way the chiral U(1) symmetry is 

spontaneously broken. 

Spontaneous CP violation would arise if both <vY> and <ivy5Y> were 

nonzero in a 8 = 0 vacuum (or any chiral U(2) rotation of this situa- 

tion).6 If the theory had a chiral U(1) symmetry either explicitly 

realized or spontaneously broken in the usual way, one could choose a 

frame by making a chiral U(1) rotation so that <iTy5Y> would be zero. 

Now, though, under a chiral U(L) rotation <iTy5Y> could still be rotated 

away, but in that frame we would have spontaneous chiral SU(2) symmetry 

breaking driven by <vY>, # 0, where this expectation value is defined by7 

I- gA .iS(A) eiev(A) i@(A) 0 
<TY>, = lim det \ L+Y5 

-@7 
” w-0 J 

L-Y5 
- o+ -y-- 

I ( 
tr x 

L\ 0 i@(A)/ 

[(i;(A) (1)) _ @qL - @+& 3, 

(2.25) 

with the explicit addition; 1: L phase factor expIiev(A)) accompanying the 

functional integral over all color fields. This phase could now lead 

to CP violation; it can only be rotated away by making <iyy5Y> nonzero. 

Thus from symmetry considerations, and from the link between chiral 

U(1) global transformations of quark fields and the color gauge field 

topological phase, spontaneous CP violation as well as spontaneous 
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isospin and chiral SU(2) symmetry breaking are possible. It is a ques- 

tion of dynamics how these symmetries are in fact realized. 

We comment that the dynamics that governs spontaneous global 

symmetry breaking can be translated to a problem in gauge field corre- 

lations. Both the determinant and tr GA in Eq. (2.25) can be expressed 

in terms of gauge field invariants, as exemplified by Schwinger's [271 

formulas for expressions of this kind (in QED, and for AV that gives a 

constant F 10 
1-I" 

). For example, for @ = M o 1 , the leading term in the 
( ) 

weak field expansion of GA(M) is proportional to (l/M) tr F2 TV (A) . 

Since this relation is an approximation to the trace anomaly C281, 

implying a further relation between the breaking of scale symmetry and 

spontaneous symmetry breaking, we expect an exact formula is possible.) 

Alternatively, <FY> can be expressed in terms of topological fluctua- 

tions through Crewther's formula C291, 

trFuv(A)?"(A) 4 trFoB(A)FaB(A) 
4Tr 

M-+0 (2.26) 

When expressed in terms of a functional integral, this formula and 

Eq. (2.25) imply an association 

tr GA(M) : k tr FuV(A) ?"(A) V(A) ; (2.27) 

The averages (over all A weighted by e iS(A),iev(A) detCig(A) -Ml) of 

both sides of this relation are equal to M + 0. For the right-hand 

side, a mass dependence proportional to M must be induced from the 

determinant by the topological factors. Crewther's formula implies 

that tr FF correlations, which are dominated by glueballs and chiral 
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U(1) mesons [30], are important for QCD to spontaneously break its 

chiral SU(2) symmetry. 

III. CHIRALITY SELECTION RULES 

In order to explicitly demonstrate the kind of effects that follow 

from color gauge field configurations with nontrivial topology, we 

review 't Hooft's chirality selection rules Cl] which govern configura- 

tions with v(A) # 0. These selection rules follow from the relation 

between the anomaly in the U(1) axial vector current and v(A). In a 

background field of any color gauge field configuration A, there must 

be a chirality change for each massless quark flavor of 

A (Q5)A = -2” (A) (3.1) 

For two flavors the total chirality charge is -4"(A). This chirality 

change can be expressed in terms of changes in the numbers of quarks 

and antiquarks of a particular chirality, 

AQ5 ( =ANR+NL-NL-tiR) . (3.2) 

Thus the necessary chirality change in a background field with v(A) # 0 

can be achieved by the creation or annihilation of massless quarks. 

In the presence of a color gauge field configuration (in Euclidean 

space-time) with v(A) = 1, there must be a chirality change of -2 for 

each flavor. This can be achieved, for example, by the creation from 

the vacuum (with zero-chirality) of quark pairs, uL+iR+dR+aL. If 

there are sources present to absorb these quarks (and the chirality 

changes), this Euclidean space-time event can be represented as in 

Fig. 2. In this figure the sources that absorb the quarks can have 



-22- 

color as well as flavor. Any field configuration with v(A)= -1 could 

be a source of quarks of opposite chirality, or a sink for the quarks 

created by a configuration with v(A)=+l, as represented in Fig. 3. 

For a configuration with many fluctuations, with relatively 

localized fields with V(A)=? 1, the chirality selection rules can be 

satisfied by exchanging massless quarks between them in many possible 

ways. When there are not enough regions with v(A)= -1 to absorb the 

quarks created from regions with v(A)=+l, they must be absorbed 

by sources. 

The way these selection rules are explicitly asserted is that the 

functional integral contains the factor det P)(A); this determinant is 

the product of eigenvalues obtained from 

@(A) JI, = cn $, (3.3) 

for each flavor. For any background field configuration with Iv(A) 1 =N, 

there are N zero eigenmodes for each flavor. Such a field configuration 

can only contribute to Green's functions with chirality 2N times the 

number of massless quarks C1,2,31. 

Now let us consider the Euclidean vacuum-to-vacuum amplitude in 

the presence of the color singlet source fields @ of Eq. (2.12), and 

the analogous color octet fields 0, where 0 = OaXa can be expressed 

in terms of Hermitian fields analogous to Eq. (2.12) for Q,. 

We consider these fields, which couple to quarks like 

9 (3.5) 
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since chirality changes can be absorbed by scalars coupled to quarks 

and antiquarks in either the color singlet or color octet channels 

(since 3x 3 = 1+8). The vacuum amplitude can be expressed in terms of 

a functional integral, 

Z(Q,O) = J gAe-S(A)eie’)(A)det 1+y5 
+ (a+@> -y-- . 

(3.6) 

Consider the contribution of a color gauge field configuration with 

v(A) = -1. From the chirality selection rules the first nonvanishing 

term in the functional 

external source fields 

l+Y5 
-I- (@+a) 2 

expansion of the determinant in powers of the 

is the second-order term, 

1 = det@(A)+ s) i 

1+r, 
XL 

l+y5 
2 

--y---- (0+0) 
I 

(3.7) 

- tr 
1+y5 

(a+@) - 2 a(A;+s + '** 

where s is infinitesiql, and the trace is a functional space-time trace 

as well as one over color, flavor and Dirac indices. This term is 

represented graphically in Fig. 4. 

Expressing the space-time matrix element of the operator (d(A)+ E) 
-1 

in terms of eigenfunctions of $(A), 

(x, / g(Af+E lx) = 'O(xT~'i(x) +T$ "n(x'Ly'"' , (3.8) 
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with the zero-mode eigenfunctions being a consequence of iv(A)] = 1, 

the deJerminant becomes 

l+Y5 0 
det'@(A) 2 

do(x)d;(x) )I 
J K 

u,(x’)u~W) 0 l+Y5 
X tr 

X 0 d,(x')d;(x') 2 
(0(x') f 0(x')) 1 

l+Y5 u,(x)u~W) 0 
(O(x)+@(x)) 7j- 

0 d,(x)d;(x') 

l+y5 x (0(x'> + B(X'))F 
c 

u,(x')u&4 
(3.9) 

0 

The l/e2 from the zero-mode piece of the propagators canceling the s2 

from det (@(A)+s) due to the zero-modes. The prime on the determinant 

refers to the product of nonzero eigenvalues, and u. and do are the 

zero-mode eigenfunctions of the Dirac operator in a background color 

gauge field with v(A) = -1 and have positive chirality. Since the zero- 

mode propagator is diagonal in flavor (but not in color), the flavor 

traces for the external fields @ can be immediately done; they have 

the flavor structure, 

1 
T (tr @)2 - tr Q2 1 = det @ . (3.10) 

( For Nf flavors, this structure easily generalizes. For example, for 

three flavors Cp is a 3x 3 matrix; the leading term from a v(A)= -1 

configuration will involve 3 scalar fields. Functionally expanding 
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Eq. (3.7) to third order gives a flavor structure, 

1 
3-r (tr 0)3 - 3trQ2 tr 0 + 2trQ3 1 = det Cp .) (3.11) 

For a gauge field configuration with v(A) = 1 the expression has the 

replacements: (l+y5)/2 +(l-y5)/2, @ + at, 0 -f at. The zero-mode 

eigenfunctions of the Dirac operator now have negative chirality. 

Again the flavor trace can be trivially done, giving for the Qt fields 

i [(tr @t)2 - tr(@t>"] = det at (3.12) 

For 8 # 0, each of these determinants has a phase factor e +i0 ; the sum 

of these terms has a flavor structure proportional to 

-iB e det 0 + el' det ot = 2 case ( T2- (b2> - 4 sin0 ~0 $ ., (3.13) 

where T 
1-I 

= (a,%) and 0 
lJ = b-l,-$1. This general structure follows 

simply from the chirality selection rules and SUL(2) x SUR(2) x UB(l) 

symmetry (as will be shown more explicitly later); therefore, the 0 

terms must also have the same flavor structure. On the other hand, 

the coefficients of the @ and 0 terms will not be equal, in general. 

Of course this is only the lowest approximation to the external 

scalar field dependence of the determinants. In general there are 

terms of all higher powers in the scalar fields. To see this, we 

consider another way of deriving the 0 dependence of the determinants 

which follows simply from linear algebra.* For all configurations with 

v(A) = -N, for each flavor there are N zero-mode eigenfunctions of $(A) 
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with positive chirality, and for v(A) = +N there are N zero-mode 

eigenfunctions of negative chirality 

Q Jtoi , v= -N 

(3.14) 

v=+N 

where i = 1, . . ..N. Also, since for all nonzero-eigenmodes, 

ld(y5$n) = -En(Y5’n) ’ (3.15) 

it follows that 

l+y5 l-95 
a,-++- 

1+Y5 l-Y5 l"5 
--j--- JI, = En y- dJ, + @ 2 JI, (3.16a) 

and 

l+y5 l-Y5 
oy+@+_l?_ 

l-Y5 l+v5 
--+'n=~zl 2Qn + Q 

f- l--Y5 
--+', . (3.16b) 

For constant 0, the determinant then becomes 

1 @ 'n 0 n 

'n/ 0 ( E 0 n 
i ' 

& 0 

2 ) 1 
, (3.17) 

where the first terms in the curly brackets are determinants of the 

2X 2 flavor matrices, the top term is for v(A) = -N, and the bottom 

term for v(A) = +N; and where the product over n is a product of 

determinants in the Dirac, flavor and color spaces-the direct product 



7.277 

with the unit matrix is itself a direct product; the unit 2x 2 matrix 

countcthe particle and antiparticle modes, and 1 is a 3x 3 color unit 

matrix. For each n, 

1 0 
det 

0 1 

E 0 
cp n 

i ) 0 sn 

E 0 n 

i ) 
a+ 

, 0 En 

4 - s2tr a+0 + det @+@ > 
6 

n n . 

(3.18) 

Let us consider the first few terms in the expansion of the 

determinant for weak Cp. We write 

1+Y5 
#J + @F+ @+ 21 = exp {6 &' ,n(et- sztr ata + det ~+a)\ 

= exp{6tg ba si)/ exp{6c‘.knk->tr@'@+$det a'@)) (3'1g) 

n n 

Expanding the second log, the first few terms give, 

K tr 2 det 18 

1 

c 
n 

1 

E2 
n 1 2 

( tr a+@ > 2 + . . . 

(3.20) 

. 

Since 

tr O+@D+Q = ( tr Qt@ 2 - 2 det @+a > , (3.21) 
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and since the nonzero-mode propagator is 

c 
1 

G(A) = - E ' n n 
(3.22) 

the determinant, for A such that v(A) = + N, and for constant @, can 

be expressed 

det 

= { ;I:: :iyN) det’gl [l+tr (G(A) + G(A) >) tr Q+T (3.23) 

l-Y5 
G(A) -y-- 

l+Y5 
G(A) -y-- 

l-Y5 
G(A) 2 tr (Pi@@+@ 

l-Y5 
G(A) -j- G(A) q+r !A)'+ . . .I. 

The terms in square brackets can be obtained from an expansion of 

exp( tr Rn [l + G(A)( @ !$- + Qi q )]I (3.24) 

If @ is considered a constant mass matrix that does not transform 

under chiral U(1) rotations, then when $-texp {iay5)$, the mass terms 

in the original Lagrangian is transformed to 

q. e2ia lfy5 l-Y5 
2 $ + Ljh+ e-2iu 2 J, . 

In the determinants there will then be extra phases, 

det(e2ia 9) = e4ia det 9 

det(eB2iu @‘) = e-4i’u det r$’ . 

(3.25) 

(3.26a) 

(3.26b) 
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iBv(A)I, the effect 

of th&s chiral U(1) rotation of the quark fields is 8 -t e-4a. This 

derivation of the 8 transformation property shows it remains valid for 

arbitrary mass quarks C311. (The Fujikawa C241 derivation of the trans- 

formation of the fermionic measure of the functional integral is only 

valid for massless quarks.) Of course the existence of the zero-modes 

of the Dirac operator g(A), which imply the (det @)lv(A)l,(detCt)lv(A)' 
> 

terms, requires the assumption of no chiral U(1) massless pole. 

For nonconstant 0, the product of eigenvalues in the function 

space does not diagonalize; there are now nonzero matrix elements of the 

form +iP% and $~,Q[(l+Y5)/21$ n' For a background field with v(A) = -N 

so that the zero-modes are labeled by i= 1 , l -*, N, the determinant in 

function, Dirac and flavor space becomes 

det 
1+Y5 E 0 

i ) 

1+v5 

Y- 
n 

0 sn 2 

fEn O '-'5 

\ 

o+ '-'5 

0 sn ) 2 
2 

'n 

(3.27) 

The eigenfunctions are flavor doublets of four component Dirac spinors, 

with matrix elements in flavor space implied; also implied are the 

diagonal color contractions, 

The new matrix elements of the form $LIQ$, do not produce new 

structure, they only imply the 0's cannot be pulled out of the integrals 
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in Eq. '(3.23) and so the traces over the G(A)'s do not simply contract 

to sums of products of inverse eigenvalues. Further discussion of the 

structure of these determinants, including the mixing of zero and nonzero 

models, will be discussed for a particular background gauge field in the 

next section. 

IVA. INSTANTON CONTRIBUTION 

Let us review the contribution to the Euclidean functional integral 

of the instanton and anti-instanton configurations [151, first without 

the periodic boundary conditions; later the effect of these boundary 

conditions will be included. The instanton and anti-instanton configura- 

tions are the first of a class of nontrivial minima of the Euclidean 

action with all integer values of v(A) and S(A)= [(8n2)/g2]1v(A>J. 

The action is expanded in fluctuations about these configurations, 

S(A + 6A) = S(A) + -$ tr 6AP 9;: (A) 6Av (4.1) 

where is the inverse gluon propagator in the background field 

A. The fluctuation fields are expanded in eigenfunctions of the 

fluctuation operator, 

6Au(x) = c an Anp(x) , (4.2) 
n 

where 

@$(A) A,,(x) = An AJx) . (4.3) 

The contribution to the functional integral Z(.@,@) is given by a sum 

of the weights of these eigenstates. However, the operator g;:(A) 

has zero eigenvalues due to fluctuations associated with transformations 
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of A that leave the action invariant. For the instanton background 

field,g 

Au(x) =-Ga 
?JV (4.4) 

the action does not depend on p, Xp or Q. The position and scale 

parameters are due to translation and scale invariance of the classical 

action, while the global gauge rotation is due to a mixing of color and 

Lorentz properties. In Euclidean space-time the Lorentz group is 

O(4) = SU(2) x SU(2). Acting on Dirac spinors, the Lorentz generators 

are DuvC(lky5)/21 = T+ ~~~~~~~~ C(lfy5)/21; that is, the left- and right- 

handed spinors are Lorentz rotated by self-dual and antiself-dual 

SU(2) subgroups of the spatial O(4). On the other hand, Xa associates 

with pairs of Dirac spinors in the fundamental representation of color 

SU(3), a color SU(2) vector. This color SU(2) index and-the spatial 

SU(2) vector index are to be contracted, but the color and spatial SU(2) 

vectors can have an arbitrary relative orientation. The integration 

over s2 averages over all these relative orientations, as well as over 

all embeddings of this color W(2).. subgroup within color SU(3). The 

sums over the weights of these modes are converted to collective coordin- 

ate integrations over Euclidean space-time positions, scale sizes and 

global gauge orientations.lO The result is 



-32- 

z1 
1 

inSfanton + 
anti-instanton 

= I d4X dsi? 
6 

e 
-8n2/g2 det - D:(A) 

x (emie det[@(A) + (o+o) G + ($++a+) 2](4 5) 

. 

1+r 
+ (a+@) + + (c)t+@+) 

The prime on det' refers to the product of nonzero eigenvalues, and the 

term det-DE(A) is the Faddeev-Popov gauge fixing determinant. 

The fermionic determinants have been discussed formally in the last 

section. The zero-mode matrix elements can now be evaluated with the 

explicit eigenfunctions C171, 

$,(x-X) = -(8r2) 
4 3 

. p' %(x-X) $ , 

where 

G(x) S(x) E -- 9 

and where 

G(x) E -1 - yv x?J 

2a2 (x2)2 

(4.6) 

(4.7) 

(4.8) 

is the Euclidean free massless fermion propagator, and X is-a constant 

color and Dirac spinor (for each flavor) of definite chirality; 

Y5X = fX for an instanton (anti-instanton), with the property 

tr 
1+Y5 

colorXx+ = 2 ' (4.9) 
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This singular-gauge zero-mode wave function is obtained from 't Hooft's 

regular gauge result Cl51 by a color gauge transformation with 

Q(x) = (Apxu)/d~, where Xu 5 (l,iXa), a=1,2,3, and by using the fact 

that the zero-mode wave function has definite chirality and zero angular 

momentum, 

JaJIO = 

where the spin is S a g kn a 
l.Jb 

for instantons or &~vouv for anti- 

instantons. The zero angular momentum condition implies a color rotation 

has the same effect on right- (left-) handed spinors as Lorentz rotations; 

this implies APxP and yPxP have the same action on right- (left-) handed 

spinors. 

The evaluation of the nonzero-mode determinants has been performed 

by 't Hooft Cl51, and has the essential effect of renormalizing the 

action. This is heuristically seen by expressing the nonzero-mode 

determinants in Eq. (4.5) 

exp -i tr' Rn @it(A) + triln-D:(A) + tr' an@(A) 
> 

(4.11) 

and functionally expanding the terms in the exponent in powers of A. 

This gives all one-loop graphs with external A fields; there is a 

local contribution with the structure jtrF2 Uv(A) to renormalize the 

classical action. Defining the coupling X(p) (essentially the partition 

function for a single instanton), 

12 e-S(A) det-D;(A) 
(4.12) 
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it therefore has the form 

X(p) = const. e-8a2/i2 (PP) . (4.13) 

where g2(p~) is the usual one-loop effective gauge coupling, for scale 

size p, and subtracted at the momentum scale 1-1. 

The instanton and anti-instanton contribution to Z(@,O) becomes 

Z = 1 instanton + s 
1 anti-instanton 

d4X F dQ A(o)(F'ie det l $io(X-x) 

l+y5 x rat (a(x) + O(X)) 2 Q +f, o(x-X) + eie de? 
/ 

JIio (X-x) 
X 

(4.14) 

l-Y5 
x n'(~'(x> + o+(x)) --y--- i-2 lJf,o(x-x) ] exptr Pn{l + G(A) [(a+@) 

1+Y5 
X- 

l-Y5 
2 + (et + oi) --j--- 11 + mixing of zero-and nonzero-modes 

i 
. 

The zero-mode determinant is in the 2x 2 flavor space. The integration 

over all global color gauge transformation 52 will not affect the @ 

terms but will give a different coefficient to the 0 zero-mode terms. 

The result is 

Z 1 instanton + = (SIT~)~ Jd4Xpdp X(p) J tr %(X-X) %(x-X) 

1 anti-instanton x,x' 

x tr %(X-x') g(x'-X) 2Re e -ie u(x) + in(x))(o(x') + in(x')) 

-(t(x) + iA?(x)j*($(x') + 2(x'))]- & [(6.ta(x) + isa( 

X (Ca(x') + iGa(xl)) -(;a(x) + iza.(x)) l ( 2(x’) + ibt”Cx’))]} 
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X ( s 1+ l+y5 tr GA(x-X,x'-X) 2 
17Y5 

GA(x'-X,x-X) 2 

X + Z(x) l %x1, + ll(x)n(x’) + T(x) l $(x1)] 

+ [~“(x)S”(x~) + 8”(x) l za(xf, + sa(x)<a(x’) + P(x) ’ axq} + . . .) 

(4.15) 

The nonzero-model propagators GA are those of Brown, Carlitz, Creamer 

and Lee C321. These terms are shown graphically in Fig. 5., The first 

term is the 't Hooft termI cl,lSl, and the second term has nonzero- 

mode propagators in the same background instanton or anti-instanton 

of the first term. 

The structure of the remaining terms not shown in Eq. (4.14) can 

be simply expressed graphically (Fig. 6). In the first term of Fig. 6, 

the instanton serves as a quark source; these quarks interact with the 

external scalar fields, and between scatterings propagate in the back- 

ground field of the instanton. The second term represents a quark loop 

(in general there are many such loops), interacting with external 

scalar fields and propagating in the same background instanton field of 

the first term. 

In the constant external scalar field limit, the terms involving 

the mixing of zero-and nonzero-modes vanish by orthogonality. The 

flavor and color contractions of the zero-mode terms can also be 

expressed in the form 
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( 
-ie e de; @ + e+iedet @') - & (eWiedet Ga + e+iedet@+a) 

= ( 2 T0se [($+G2) - (n'+$')] + 4 sine (on-q*b)) . (4.16) 

- & { 2 COS e [(Ea2+F2) - (ga2+ p2)] + 4 sine (c~L;“-~. y)) . 

The color and flavor contractions of the nonleading terms multiply 

the first term by a polynomial in all powers of invariants of the form 

tr @+a, 

tr O+OO+O , tr @+@@+@ , tr @+@@+@ , tr @+@@+Q , 

and for color SU(3), 

tr @+@@+EJ , and tr @+@@+Q . 

Consider the leading term in the external fields. %or fixed p, 

for that part of the position integrations for which (x-Xj2 
2 

" P and 

(x’-x)2 >> p2, the effective propagators g are essentially free 

fermion propagators, and our amplitude is essentially that of lowest 

order perturbation theory from a four-fermi interaction. For short 

distances, however, the extra factors of Cl+~~/(x-X)~l~'~ in Ce act to 

dramatically soften the short distance behavior of the effective four- 

fermi vertex. 

In our expression for Z, we must also integrate over all scale 

sizes p. For large p the gauge coupling g2(pu)/87r2 in the effective 

coupling X(p) gets large, invalidating the semiclassical approximation. 

On the other hand, if we consider the theory at finite temperature, 

for high enough temperature the thermal fluctuations will surpress the 
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contribution of the large-scale strong quantum fluctuations. This is 

because any quantum fluctuation with energy that is small compared to 

the temperature is washed out by thermal fluctuations, independent of 

whether the low-energy quantum fluctuations have large coupling. 

Correspondingly, any quantum fluctuation with large energy relative to 

the temperature is unaffected by thermal fluctuations, so temperature 

serves as essentially just an infrared cutoff. 

IVB. EFFECT OF FINITE TEMPERATURE 

We will now consider the theory at finite temperature and show 

how the,leading high-temperature effect of thermal fluctuations is 

to exponentially cut off the contributions of large instantons with 

strong coupling.12 The result valid for all temperatures has been given 

by Gross, Pisarski and Yaffe C14l. . 

Finite temperature gauge fields are obtained from the Euclidean 

fields by requiring them to be periodic in their time variables with 

period B (inverse temperature). The Harrington-Shepard C351 finite 

temperature instanton corresponds to a multi-instanton configuration 

with the infinite set of instantons spaced in time with the interval B, 

but at the same position in space and with the same scale size. For 

the 't Hooft form of the multi-instanton configuration it is 

co 

Aa(t,z) = - nEvavRn l+ 
c 

2 

; n=--CD (t-T-nS) + (;t-%)2 1 
(4.17) 

22 
=- i;Vav Rn l+ ",", 2 

sinh F [Z-Z\ 

Blx-xl cash F ];-?I + cos F (t-T) 1 
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Although this configuration is made up on an infinite number of instantons, 

it sti+ll has v(A)= 1 because the time integration goes only from 0 to B. 

As the temperature goes to zero, this reduces to a single instanton in 

singular gauge. 

The thermal fluctuations about the finite temperature instanton are 

obtained along with the quantum fluctuations by imposing periodic boundary 

conditions in the Euclidean fields and propagators in the calculation of 

Feynman graphs for the quantum fluctuations. On the other hand, the 

thermal and quantum fluctuation effects can be separated in these graphs 

by transforming back to a Minkowski space-time description where the 

free propagators can be split into temperature independent and 

dependent terms, as for example C361, this massive scalar propagator, 

k2im2 - 
2ni 6(k*-m2) 

eBE- 1 
(4.18) 

where E = ,,/w . The effects of these fluctuations can be described 

by an effective action. The leading high-temperature contributions to 

this effective action are determined by the graphs, most divergent by 

power counting [371, that arise in the functional background field 

expansion of terms like $ tr' Rn a,:(A). This is because, in the 

temperature dependent terms, the high energy contributions to the graphs 

are cutoff by Boltzmann factors, exp {-BE), essentially replacing the 

ultraviolet cutoff in the temperature independent terms by l/B. The 

seagull graph is quadratically divergent; it contributes to the 

effective action a term proportional to 

(4.19) 
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While in the temperature independent piece, this quadratic divergence 

in the seagull term is cancelled by a Schwinger term; this temperature 

dependent mass term is not cancelled13 because of the lack of manifest 

Lorentz invariance of the temperature dependent terms. This term is 

similar to the photon mass term in a plasma. The integration over the 

finite temperature instanton is proportional to p2, and so this correc- 

tion to the classical action of 8r2/g2 is proportional to p2/B2. The 

thermal fluctuations therefore cutoff the effects of large scale sizes 

like exp I-const. p2/B2}. The constant, evaluated by Gross, Pisarski 

and Yaffe [141,is2~r 2 /3 times the number of colors. 

Finite temperature quark fields are obtained from the Euclidean 

fields by making them antiperiodic in their time variables, 

$(t+ n,3 = (-l)n lJJ(t,Z) . (4.20) 

These boundary conditions must be imposed on the eigenfunctions of 

the Dirac operator in Eq. (3.3). Similar to the gluon fluctuations 

just considered, there is a thermal correction to the instanton density 

coming from the quark contribution to the action, -tr' Rn @(A). The 

leading term at high-temperature comes from the most divergent graph, 

the vacuum polarization graph with external thermal instanton fields. 

Again, in the temperature dependent terms the seagull and Schwinger 

terms do not cancel, the quadratic divergence (photon mass) being 

replaced by 1/B2. Integrating over the instanton fields, the quarks 

thus contribute to the constant in the exponential suppression of 

large scale sizes in the instanton density; the constant is IT~/~ 

times the number of flavors C14l. 
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The zero-mode eigenfunction of the Dirac operator in a background 

instanJon field must also be corrected to include the antiperiodic 

boundary conditions. 9, is now an antiperiodic solution of 

(8 + d(x)) *,w = 0 9 (4.21) 

where Au is a finite temperature instanton. It can be obtained from 

Grossman's C381 analysis of the zero-mode eigenfunctions in a background 

multi-instanton configuration, and has the form 

where 

and where 

$, w = - l 
d-- 2a2p 

l+(x) d p& -j( 
( ) 

2 
ll(x)rl+ p 

(x-x)2 ' 

co 
Q(x) E c (-lP P2 

n=--co (t-T+nf3)2 + (&?)2 * 

(4.22) 

(4.23a) 

As l/S + 0, this reduces for the singular gauge zero-mode wavefunction, 

Eq. (4.6). 

v. MODELS OF PHASES 

In order to get an indication of the symmetry realizations in QCD 

we will couple to QCD various scalar field theories, analogous to 

scalar sectors of weak interaction models. We choose the parameters 

of the potentials for these scalar models so that different combinations 

of symmetries are spontaneously broken, and then study the effect of QCD 

corrections on their effective potentials, and thus on their symmetry 

realizations. We consider these theories at high temperature, and 
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lower temperature to explore phases. Two scalar models will be discussed 

with the following spontaneously broken symmetries: (A) both spontaneous 

chiral SU(2) symmetry breaking and spontaneous isospin.breaking; 4B) 

both spontaneous chiral SU(2) symmetry breaking and spontaneous P and 

CP violation. These 

by the Lagrangian 

-g= 1 - - tr FEv(A) + 
2g2 0 

models of flavor symmetry breaking are described 

-- 
-f(ud) l+y5 cp2 +a+ +] (i) - t tr lapoi2 - V(Q) (5.1) 

A. - 

In the first model we consider V(Q) to be invariant under 

UL(2) x U@ - The potential is chosen to be a quartic polynomial 

of the two possible UL(2) x Uk(2) invariants, 

Q tr @+a = ( CT2 +2") + (112 + $2) = 7T2 + q12 ) 

and 

tr @+Q@+ig = (tr @+@)2 - 2 (r2 - $2)2 + 4("* $I2 1 9 

(5.2) 

where again r 
P 

= (a,:) and 41 
lJ = (Gb. Under chiral U(1) transforma- 

tions these four-vectors transform into linear combinations of one 

another, and under chiral SU(2) transformations the components of (a,;) 

are transformed into one another so that 02+G2 is invariant, and 

similarly for (n,-9). 

We choose V to bel4 

2 
V(Q) = - $-- tr @+a + &- ( tr Q+Q>2 - &tr @+@@+a (5.4) 



-42- 

Let us first classically analyze the scalar sector at zero temperature. 

For X - h > 0 this potential is bounded from below. The tachyonic mass 
h 

term creates an instability of the symmetric phase, leading to spontaneous 

symmetry breaking. Because h is chosen positive, the potential can be 

minimized for <T,,>~ = <$,>2 # 0 and for <~u><$~> = 0. Of the infinite 

number of minima, we can choose the frame for which <a>#0 and <$3>= -<a> 

corresponding to both spontaneous chiral SU(2) symmetry breaking and 

spontaneous isospin breaking. Because the magnitudes of <a> and <e3> 

are equal, the u quark remains massless: 

where m d = 2f<U>. Therefore there remains an unbroken chiral U(1) 

There are three pseudoscalar pion-like massless particles associated 

with the spontaneous chiral SU(2) symmetry breaking that gives the same 

mass to the u and d quarks, and two massless charged scalar particles 

associated with the spontaneous isospin breaking that splits the masses 

of the u and d quarks. 

Now let us consider the complete model in order to compute quantum 

corrections to this potential. The Euclidean functional integral for 

this theory is 

(5.7a) 
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where 

II J @A e-s(A) e i0v(A) 

x det [@(A) + f (m s + (pt +)I (5.7b) 

The semiclassical effective potential can be obtained from the semiclas- 

sical effective quantum action, W(Q) - tr gn 3 
-1 (@), where g-l(Q) is 

the inverse scalar propagator in a background scalar field. W(Q) is 

calculated by approximating the QCD functional integral semiclassically, 

expanding about the approximate minima of S(A). This gives 

x { eifJ de+(A) + @ ?+ @+ !qq + eBie det[$& + @ ? 

+ a+ f$]] + . ..) exp{-S[:Lr/3UI!Z + v(Q)]\ , (5.8) 

where Z(0) is the first term on the right-hand side. These expressions 

are to be evaluated with finite temperature boundary conditions. The 

constant @ dependence of the fermion determinants in background 

instanton fields is [from Eq. (3.23)1, 
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f2(e-i6 det Q, + e +'I3 det at) 
[ 

2 
1 + $- tr @to 

m 

X ( tr G(A) G(A) - tr G(0) G(0)) + . . . 1 (5.9) 
In the dilute instanton gas limit, these single instanton terms 

exponentiate; the scalar potential V(Q) is corrected from these 

instanton effects by the terms, 

V(Q) + f2k2 (eeie det @ + e+ie det @+) 1 + Ef2 
2K2 

tr @+ip 

where 

K2 E J dp A(P) , 
7 

and where 

E 3 
/ 

9. 
P3 

X(P) ( tr G(A) G(A) - tr G(0) G(0)) . 
._ 

(5.10) 

(5.11) 

(5.12) 

The effects of finite temperature boundary conditions on the instanton 

contribution, as were previously discussed, essentially just cut off the 

instanton density with the factor exp (-const. p2/fi2}. The temperature 

dependence of 

z(0) = 
det(-a:)det [$ + f(m % + Q+ %j] 

J-a;:co) det g-l(0) 

(5.13) 

gives exp 1-B (free energy of quark, gluon and scalar gases)). The 

leading high temperature terms in the free energy go like C36,371 

- const. T4 -t const. T2 tr at@ (5.14) 
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The temberature independent terms from the quark and scalar determinants 

will renormalize tr at@ and tr @+@a+@, as well as give terms of all 
- 

higher powers of these invariants. Because of the explicit mass scale, 

though, all powers higher than quartic will be neglected. 

Therefore, up to quartic terms, the @ dependence of the potential 

is of the form 

V(Q)=(const. T2-p2)a tr@+@+& (tr lpt@)2 7 s tr@'@@'@ 

K2 -- 2 f2 (eie det Cp + eBie det at) 1 + < . 
2K 

(5.15) 

To analyze the symmetry realizations from this potential, let us first 

briefly consider 6 = 0; we will return to the 8 dependence. Then the 

most important modification of the original potential comes from-the 
._ 

mass terms, which are now 

1 
( 

2 2 2 
T const. T -u -K (T) r ) 2 + i (const. T*- p2+ K.~(T))@~ (5.16) 

From these terms we see that the instanton contribution increases the 

tachyonic mass term for the u and G fields, increasing the tendency 

for spontaneous chiral symmetry breaking, while on the other hand it is 

trying with the thermal fluctuations to stabilize the mass term for 

the n and $ fields. 

To study the symmetry realizations for 8 # 0, we can in general 

choose a basis for 4 so it is diagonal, -Qu 
“U” 

0 

0 
-i@d 

me d 

(5.17) 
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Then the potential becomes 

V = $;(const. T2- u2 )(mi+m:) +-+(mt+mi)2 - $ (m:+mz) 

2 2 
- Gj- f mumd cos O-+U-$d) 

( [ 
1 -5 

K2 f2 (2+,: )] (5.18) 

For a range of parameters and temperatures, this potential has a 

global minimum for mu # md, and 0 
U 

+ $I, = 6. The latter equation is 

the condition for no CP violation; it is a consequence of the chiral 

U(1) symmetry of the scalar sector as explained by Peccei and Quinn 1391. 

The elimination of strong CP violation is accompanied by an axion 1401, 

but is corresponds to a state most naturally identified with no rather 

than n.15 Spontaneous chiral symmetry breaking would create massless 

0 lr and n states; spontaneous isospin breaking then mixesthese states. 

The massless state IT'- n could be identified as the neutral partner of 

?I 
= , while the massive state IT'+TI could be identified with the 

"isosinglet! state, The instanton effect gives mass to the ordinary n 

state, and so the neutral "isotriplet" particle acquires a small mass; 

the "isosinglet" pseudoscalar mass is slightly shifted. Also, the u 

quark which had been massless before including instanton effects now 

acquires a small mass. 

Kf (5.19) 

Of course there is still a charged pair of massless pseudoscalars and 

scalars, as well as two neutral scalars, one the partner of the massless 

pair, and the other the o. 
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As'the temperature is lowered further k2 rapidly increases; there 

could then occur a phase transition to a phase with restored isospin 

symmetry.16 The massless charged scalars will now acquire the same 

mass as their neutral partner; the quark masses will also become equal. 

Furthermore, the massive n will become light-it will correspond to 

the axion 1341, and there will again be an isotriplet of massless 

pseudoscalar G's 

As the temperature is lowered still further, corrections to the 

dilute gas approximation become important; these will be discussed 

in Sections VI and VII. Already, from this very simple model, we see 

that QCD effects tend to restore the isospin symmetry and spontaneously 

break the chiral symmetry of this scalar model. This is an indication 

that the dynamics of QCD will choose this combination of symmetry 

realizations as the temperature goes to zero. 

B. - 

In this model of spontaneous CP violation we choose the potential 

in Eq. (5.1) to be invariant under SUL(2) x SUE(2) [as well as UB(l) 1, 

and of the form, 
2 2 

p1 u2 2 

2 

V(Tr,$) = - 2 IT 2 - 2 4 + a ( lT2+ tf12 ) 

- >b2 - m2)2 a h2(s. $)2 - 5 .2$2 l 
(5.20) 

This potential has a minimum for spontaneous symmetry breaking such 

that <IT,,> and <$p> are both nonzero (from the h term), are parallel 

(from the h2 term), and are unequal in magnitude (from the hl term). 

We choose the frame so that <$> p 0 and <n> # 0. This potential 
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therefore implies the spontaneous breaking of chiral SU(2) symmetry 

and P Gd CP; because there is no chiral U(1) symmetry of this 

potential, this CP violation cannot be rotated away. The spontaneous 

CP violation shows up as a phase in the quark mass term, 

$,<@>a, + i,<m+>$ = iJL(<a> + i<n>)$P + i,(<o> - i<n>)$, 

where 6 = tan -I (<?-+/<a>). Transforming this phase out of the quark 

mass term by a chiral U(1) rotation makes it show up in the scalar 

self-couplings and in Btr F $W 
I.lV 

, thus this weak interaction CP 

violation induces strong interaction CP violation. 

At very high temperature this model is in its symmetric phase, 

and as the temperature is lowered it undergoes a phase transition to 

a phase with spontaneous chiral SU(2) and P and CP symmetry breaking. 

As the temperature is lowered further instanton effects sharply turn on. 

The effective mass term becomes 

1 .- 
2 const. f2T2-ut- k2 2 )IT + i (,,nst. f2T2-pi + k2)$2 (5.22) 

Once again the instanton effects reinforce the tendency of the scalar 

theory to spontaneously break chiral SU(2) symmetry, but they also 

tend to restore the CP invariance (they tend to reverse the tachyonic 

sign of 11;). 

This effect should be contrasted with the Pecci-Quinn C391 effect 

where a chiral U(1) symmetry of the weak interactions prevents weak 

interaction CP violation from inducing strong interaction CP violation. 
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Here there is no weak interaction chiral U(1) symmetry; the dynamics of 

the strong interactions tends to restore weak interaction CP violation. 

If in the real world weak interaction CP violation is spontaneous, the 

tendency of the strong interactions to restore this symmetry may be a 

clue to why CP violation is so small. As a consequence we would expect 

that at high energy, CP violating effects get larger. 

We have seen that the effect of QCD instanton corrections on weak 

interaction symmetry realizations has been to enhance the tendency for 

spontaneous chiral SU(2) symmetry breaking, and suppress the tendency 

for spontaneous isospin and CP breaking. Further, these same instanton 

effects give mass to the weak interaction chiral U(1) massless particle 

(axion) c341. Therefore, they have the tendency to create the same 

combination of symmetry realizations in the weak interactions that are 

presumed to occur in the strong interactions; that is, QCD wants to 

lock the weak interaction symmetry realizations to its own. When we 

later include the instanton chirality correlations, these tendencies 

will be further enhanced. 

The reason for the restoration of CP symmetry has the same origin 

as the reason for the restoration of isospin-the opposite sign of the 

+-2 instanton induced mass terms for o2 + G2 and n2 + I$ . Chiral SU(2) 

symmetry links n and $ just as it links o and G, therefore the realiza- 

tions of isospin and CP are linked simply by chiral SU(2) symmetry. 

It is the instanton induced (spontaneous) chiral U(1) breaking that 

produces this interrelation of symmetry realizations in which the 

tendency for spontaneous chiral SU(2) symmetry breaking is linked to 

the tendency for isospin and CP symmetries to be manifest. The reason 
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the instanton effect tends to produce this combination of symmetry 

realizations is completely a consequence of the chirality selection 

rules. 

The relative minus sign between a2 + :2 and n2 + J2 is a reflection 

of instanton induced attractive interactions between quarks in $JI and 

i.$y5& channels versus repulsive interactions in the iG,$ and G$J 

channels. The positive mass contribution to the n, for example, is 

due to the instanton induced repulsive interaction between quarks in 

the flavor singlet pseudoscalar channel. This repulsion must be 

contrasted, though, with the confinement dielectric effects, the onset 

of which are associated with the large dipole moments of the same 

instantons. There will certainly be confinement independent of flavor 

channel; the difference between the G and n, though, is that % can be 

a vacuum (phase oscillation) state before (at a higher temperature) 

becoming a confined state as well, while the n is not a vacuum state. 

Instantons also induce interactions between quarks and antiquarks 

in color octet channels, as seen from Eq. (4.15). In general we should 

consider models with color octet scalar fields, 0, which have 

UL(2) x Uk(2) quantum numbers. Expectation values for these fields 

would simultaneously spontaneously break both the color gauge symmetry 

and the flavor symmetry. However, the instanton induced forces between 

quarks in these channels are much weaker than in the color singlet 

channels, so spontaneous symmetry breaking of this kind will not be 

considered. 

On the other hand, spontaneous color gauge symmetry breaking could 

in principle occur, and without directly also breaking the flavor 
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symmetry. This would require colored scalar glueball states. (It is 

difficult to see how this could happen, though, since gluon exchange 

gives repulsive forces between gluons in color octet scalar channels. 
. 

These colored glueball channels would couple to colored scalars, Gi, 

but not directly to quarks, Induced nonlocal couplings with quarks 

would exist, though, and these would induce mixing terms in the 

effective potential between these colored scalars and the Q's (see 

Fig. 7). This kind of mixing implies that in principle the realization 

of the color gauge symmetry and the flavor symmetry are interdependent. 

VI. EFFECTIVE FIELD THEORY FOR CHIRALITY CORRELATIONS 

In this section we will include the effects of chirality correla- 

tions between instantons and anti-instantons. It will be shown that 

the contribution of these correlations can be approximated by the 

effective quantum field theory C2l of the 't Hooft Lagrangian Cl,lSl. 

At moderately high temperature the semiclassical approximation 

is assumed to be valid; the functional integral will therefore be 

dominated by configurations close to the minima of the classical gauge 

field action C7, 411. While the exact minima of the Euclidean gauge 

field action are multi- (anti-) instanton configurations with all 

integer values of v(A), the volume in field configuration space for 

these minima is very small C73. On the other hand, there are many more 

configurations close to the minima than there are minima. The configu- 

rations close to the minima with large volume in field configuration 

space correspond to a plasma of well separated instantons and anti- 

instantons with v(A) = +l. The instantons do not interact with one 
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another'classically in the sense that the action for an exact multi- 

instanton configuration equals the sum of actions of individual instan- 

tons c423. Instantons and anti-instantons do interact classically, 

though, like 4-D color magnetic dipoles C71. (Actually, the action for 

a configuration with a sum of instantons does not equal the sum of 

actions for separate instantons, but this interaction is weak relative 

to that between instantons and anti-instantons [43].) The instantons 

and anti-instantons also have additional quantum mechanical interactions, 

the most important of which arise because of the chirality selection 

rules for massless quarks; they interact by the exchange of chirality 

in all possible ways consistent with these selection rules C21. 

The semiclassical computation of the QCD free energy is equivalent 

to computing the corrections to the perturbation theory free energy 

due to the external field from a plasma of thermal instantons and anti- 

instantons. The effect of finite temperature can be implemented by 

imposing (anti) periodic boundary conditions on the Euclidean theory; 

we will first consider the contribution to the Euclidean functional 

integral without the periodic boundary conditions, and,later mention 

the effect of these boundary conditions. In the following discussion 

we will also neglect the dipolar interactions compared to the chirality 

correlations, and will later show how to include these corrections. 

The QCD Euclidean functional integral is approximated by 

. 

Z- c 

configurations 

/ d(;zj-;;;;;;;s) e-;‘e=ev’;~;~‘A’ det @(A) 

det' 
close to minima PV 

(6.1) 
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For A the field of a gas of instantons and anti-instantons, the 

evaluation of these determinants is analogous to the evaluation of the 

determinant of the Hamiltonian of a molecule. The eigenvalue problem 

is approximated by perturbatively expanding the molecular wavefunctions 

about a basis of atomic wavefunctions. In the lowest approximation, 

corresponding to large instanton separations, the determinants factorize 

into a product of determinants for separate instantons and anti- 

instantons. The collective coordinates are then those for separate 

instantons and anti-instanton This contribution to the functional 

integral vanishes, however; the operator $(Ai), for Ai an instanton 

or anti-instanton, has a zero eigenvalue due to the violation of the 

chirality selection rules. (When we previously considered QCD coupled 

to external fields, the external fields absorbed the required chirality 

changes. The approximation for QCD previously considered-in our dis- 

cussion of QCD coupled to weak interaction models was just this lowest 

order approximation.) 

The correlations between instantons and anti-instantons necessary 

f,or consistency with the charality selection rules arise from the first 

order correction to the zero eigenvalues. Degenerate perturbation 

theory, in the basis of the zero-mode eigenfunctions of the Dirac 

operator in separate instantons and anti-instantons, is used to 

calculate the corrected eigenvalues: 

det ~~ (Xi-X) ~(A) ~ o(x-xj) - dij = 0 1 (6.2) 
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is an Nth order equation for E, the N roots being the corrected eigen- 

values. We need only the product of these eigenvalues, though, and this 

produc;‘ is just 

det ~~(Xi-X) E3 (A) ~ 0 (x-'j ) 1 E det H(Xi,Xj) 

The lowest nonvanishing contribution to the QCD Euclidean 

integral from this gas of instantons and anti-instantons, 

the form of a grand partition function: 

co 

z== 
c 

N+=O 

(6.3) 

functional 

then takes 

N++N 

4 
J n-c 

d XidoidniX(pi) e 
if3(N+-N-) 

det H 

i=O 

, (6.4) 

The matrix elements H(Xi,Xj) are evaluated with the explicit zero- 

mode eigenfunctions of the Dirac operator in a singular gauge instanton 

or anti-instanton. These matrix elements are nonzero only if do(x-Xi) 

and $,(x-Xj) have opposite chirality [2]; that is, if one is from a 

background instanton and the other from an anti-instanton. This is 

because 

(6.5) 

The H(Xi,Xj> describe the space-time dependence of the exchange of 

chirality between instantons and anti-instantons, For (Xi-.Xj)'>> P.P., 
=J 

this space-time correlation approaches that of a free massless fermion 

propagator. This can be seen by approximately evaluating the matrix 

elements C21. 
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S, $('iex) Pl (A) $0(X-Xj) 

= 

/  e;(xi-x){[ -  25 -qx-xi)] + [d -qx-xj)] 

X 

k#i,j 
I 

= l QA(xi-x) [' - kgj "(.-xx)] 'O("-'j) 
f 

(6.6) 

The first term in the last expression can be rewritten 

/ 
x,x, ((xi-x) 64(x-x’> i4 $o(“‘-xj) 

(6.7) 

= /, x, ~~(Xi-X) G-‘(x-x’) Jlo(X’-Xj) 
, 

and with Eq. (4.7) gives the stated result. The second term in the 

last expression of Eq. (6.6) is a small contribution of the overlap 

of three distantly separated wavefunctions; we will ignore it in the 

following discussion, but will 

We will now show that the 

instantons and anti-instantons 

field theory. The determinant 

expansion 

N 

discuss its effects in the next section. 

space-time correlations between the 

can be described by a fermidnic quantum 

of H(Xi,Xj) is expanded in a cycle 

det H(xi'xj)= 'Ul.B.vN H(XIJpl) l 0. JJ(XN'XIIN) , (6.8) 
lli=l 
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whereN'=N++N . This is the sum of all possible closed loops, with 

appropriate exchange minus signs. There is actually a product of 

determinants for each quark flavor since 

det 
(J > 

#+I% = det 

s U+$U 0 

i I J 

.m 

0 d+@d 

= det [u'flu)det ( jd'J?jd). (6.9) 

Some examples of terms for N+ = 3, N = 3, and 2 flavors follow: the 

simplest term occurs when, for each flavor, n1 = 2, u2\= 3, . . . 1-1~ = 1, 

as illustrated graphically17 in Fig. 8(a). Another kind of product of 

the two largest cycles comes from a different ordering of the vertices 

for the two flavors, as in Fig. 8(b). A term with the same structure 

as the first we considered in Fig. 8(a) comes from a product of smaller 

cycles, Fig. 8(c). Disconnected graphs are also generated, Fig. 8(d), 

as well as products of cycles of different sizes, Fig. 8(e). Other 

permutations give all possible combinations. Each vertex Xi is multi- 

plied by a factor A(pi)e +i0 , and integrations are performed over pi, SIi 

and X.. 1 

This grand partition function therefore corresponds to an infinite 

number of graphs;18 these graphs are exactly all the graphs of an 

effective quantum field theory. Therefore expression (6.4) for Z is 

approximated by 

d 1 + 9eff 1 (6.10) 



-57- 

where ' 

geff4x> = JFA(p) JdQ {e'" y+(SI,X,p) + eeie ~~(~,X,p)) (6.11a) 

where 

6;p+ = s [ x,x’ 
u(x’>G-~ (x1-x> uo(x-X);o(X-y) G-l (y-y’)u(y’) ] 

Y,Y’ (6.11b) 

&')G-l(z'-z) do(z-X)d;(X-w) G-'(w-w')d(w')] 

The only difference between the instanton contribution, g', and anti- 

instanton contribution, LZ'-, is the chirality of the constant spinors X 

in the zero-mode wavefunctions, Eq. (4.6). Performing the integration 

over all global color gauge transformations gives contractions of the 

color indices of the X spinors in different ways; the color contractions 

of these spinors give, from Eq. (4.9) chirality projection operators, 

consequently implying contractions of Dirac indices. The result is 

geff = Jpdpl(p) [eie ({ ['; ')T 2(i)]' _ 

-.je "Y5 '+Y5 
+e -+- 

( 2 2 
,1 

, 

I 
2 

‘c 

( 

(6.12) 

where T are the ordinary 2~ 2 flavor isospin matrices, Xa are the color 

matrices, and where the implied space-time structure in, for example, 
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the color matrix current 

is 

(ii a> w5 u 
I Xa -y-- 

() d 

(U a> 
(x) 1(x-X,x'-x; ) Xa (3 ' > , (6.13) 

where 

1(x-X,x'-X;p) E s 
eiP*(x-X) 

h(O) I e iP’“(x-x’) h(ppt) , (6.14a) 
P P' 

and where h(pP) is the Fourier transform of the space-time dependence 

of the singular gauge zero mode Dirac eigenfunction, Eq. (4.7),with a 

factor of l/# taken out C171, 
00 

2 

ds cl+: > 
2 312 

J2(pPs) . .. (6.14b) 

The complicated looking expression for peff is simply the analytic 

realization of e ie times a AQ,= -4 operator that couples quarks (without 

regard for different color contractions), like 

- - 
URULdRdL - udau RLRL ' 

and e -ie 
times a AQ, =+4 term which couples quarks like 

;uad LRLR -udau LRLR ' 

(6.15) 

(6.16) 

Note that if we perform a chiral U(1) rotation of the quark fields by 
. 

~1, $ -f e-i"'5 $, then 8 + 8 - 4cr, consistent with the transformation 

law implied by the chiral U(1) Ward identity. This expression has a 6 
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periodicity of 2n as expected from the fact that the contributing config- 

urations had locally v(A) = 51. 

While the current structure in Eq. (6.12) for geff simply illus- 

trates the chirality properties, for purposes of studying possible 

spontaneous symmetry breaking it is best to reexpress the current 

structure as 

geff = /pdi, A(P) ( [eie det o(Q,$) + emie det m+(#,i)] 

ie det Qa($,$) + e -ie det Qa'(J1,$) 

where the 2x 2 flavor matrices Q and 0 are defined 

and 

l--Y5 - 
UI - 2 d 

A 

l--Y5 - 
UI Aa - 

2 d 

l-Y5 
;iI Xa 2 d 

(6.17) 

(6.18) 

. (6.19) 

These composite fields can be decomposed exactly as in EqsL(2.12) and 

(3.4) for the scalar fields, where now 

(6.20) 
a(+,$) = [(?I*) + i ( iSIv5h) l T] 

+ i[(i$Iy,$ ) - i ($13) 41 
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and wheie 

oa(JIpS)= [(?Iha+) + i (iijIy5Tha$ .:)I 

+i[(i$Iy5ha$) - i($I:X $ l T)] (6.21) 

This effective field theory of quarks represents the leading semiclassi- 

cal approximation to QCD. The nonlocal quark dynamics results from 

chirality correlations of gluon topological fluctuations, and is not 

the result of semiclassically integrating out the gluon degrees of 

freedom keeping the quark fields fixed. The later effective nonlocal 

field theory of quark degrees of freedom would be an appropriate 

approximation for heavy quark dynamics C461. 

Finite temperature boundary conditions on the original QCD function- 

al integral have the effect on this effective field theory of including 

the modifications discussed previously for a thermal instanton contri- 

bution to finite temperature QCD: the coupling h(p) is exponentially 

suppressed for large p, and the form factors in I (from the zero-mode 

wavefunctions) must be corrected to be consistent with the antiperiodic 

boundary conditions. Also, the fermonic functional integral here must 

be over antiperiodic fields. 

We must still approximate the effective field theory in order to 

obtain the instanton contribution to the QCD free energy in the 

temperature range for which i2(f3n)/8~2<< 1. From this free energy we 

can explore for phase structure in QCD in this temperature range; if 

the free energy becomes complex as the temperature is lowered to a 

critical value, this signals an instability, and thus a phase transition. 

In order to explore for phase structure in QCD, we can consider the 
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phase structure of the effective field theory. The characteristic 

feature of the onset of a second-order phase transition is a buildup of 

long-range correlations in the associated order parameter. We can 

therefore obtain the behavior of the free energy near a phase transition 

by finding an approximation to the effective field theory that empha- 

sizes long-range correlations of the relevant order parameter. 

Now in the effective field theory the nonrenormalizable dimensions 

of the operator in Peff implies the dominant importance of short dis- 

tances, although the very short distance behavior is tempered here by 

the form factors that reflect the asymptotic freedom of QCD. Correspond- 

ingly, the dimensions of this operator suggests the unimportance of long 

distances. How, then could such an interaction lead to long-distance 

correlations: This can happen if composite order parameter fields can 

create massless bound states; these could form for strong-enough attrac- 

tive forces between quarks at moderately short distances C2Ol. The long- 

distance behavior of these composite states would then be that of a 

weakly coupled (IR free) effective renormalizable field theory C47,481. 

We therefore first attempt to convert the effective field theory 

to a representation that emphasizes the interactions of composite 

fields closely related to the order parameters. Now at first sight 

it seems natural to introduce auxiliary fields @ and 0 of the same form 

as the external fields, Eqs. (2.12) and (3.4). These auxiliary fields 

can be introduced so that their field equations equate them with the 

composite fields C49,501, 

@ = Q($,q (6.22a) 

0 = @($,S) (6.22b) 
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The functional integral would then become 

where 

(6.23a) 

e -W(Q,@) = 

J 
ka$G7$ exp {-/ [$'li, + %ff($")]} 

x exp(- JA trl(cr+iZ*:)+ i(n-i$*q)- @($,S)12) 

x exp {- + /A tr((ca+i7;a*7)+ i(ca-i?= T)- @($,?J)]2} 

(6.23b) 

Introducing the auxiliary fields in this way leads to certain 

simplifications. For example, for fields such as u, 

(6.24) 

where the four-quark field terms have cancelled. On the other hand, 

for composite fields such as n, for example, we have 

exp - 
i/ 

5 ( i?*yg+)2 

= exP (- Sh(i$*-f5+)2]~Gi7u exp{-JA (2 - i$Iy5$n)\ '2 (6.25) 

with no cancellation of the four-quark field terms. The mathematical 

reason why some terms cancel and others do not is relative minus signs. 

Physically, these signs represent attractive versus repulsive inter- 

actions between quarks in the different channels, as we have seen to 

some extent from our discussion in Section V. It is therefore best 
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not to 'introduce auxiliary fields for those composite fields associated 

with channels which have repulsive forces between quarks. Also, even 
h 

for the color octet channels with attractive forces, since these forces 

are much weaker than for the color singlet channels, it is not appro- 

priate to introduce auxilliary fields. This is because there could be 

no phase transition driven by massless bound states in these channels 

until a much lower temperature (where this effective field theory is 

certainly not a valid approximation) than for the color singlet channels. 

We will therefore deal with the repulsive n and $I channels and the color 

octet channels one way, and the attractive u and $ channels another: 

We introduce u and z auxiliary fields, and sources for the quark 

fields. With the help of these quark sources the functional integral 

for the effective field theory can be reexpressed. 

(6.26) 

where 

e -NGi) = 
/ 

Las 9Zexp - J$ (u2+q2) + tr RnG-l(u,;) + :1Q= (u,;) rl 

(6.27) 

where 

(x~t+(u,:)lx') E S4(x-x1)$ +JpdpA(p) J 1(x-X,x'-X:p) 
x 

X 

I( ) 
U X,p + iy5t.(X,p)*T , 1 

and where 

(6.28) 

(6.29) 

x exp {- [z [,,t ea ($,:)+ det gat (kg :)I) 



-64- 

where 4' 
51 

and 0 are of the same form as the fields in Eqs. (6.20) 

and (6.21), but with $J replaced by 6/&t and $ replaced by 6/6n. 

The remaining functional integral is an order parameter field 

theory. The instanton contribution to the free energy of QCD in this 

moderately high temperature range is approximately equal to the free 

energy of this order parameter field theory. It is not unreasonable, 

because of universality, that QCD should be well approximated by an 

order parameter field theory in the neighborhood of a second-order 

phase transition. It is therefore suggestive that the semiclassical 

approximation to QCD reasonably well describes the onset of correlations 

approaching the spontaneous chiral SU(2) symmetry breaking phase 

transition. 

For an effective infrared free-order parameter field theory, the 

dominant long-distance correlations arise from the semiclassical 

approximation. At the same time, for a phase transition to occur, the 

composite order parameter fields must propagate like massless particles, 

and this can only happen if there are strong enough attractive forces 

between quarks at short distances. The forces between quarks get 

stronger as the effective coupling X gets larger, and A gets larger very 

rapidly as the temperature is decreased. Thus a mixing of long- and 

short-distance effects, from the moderately short-distance behavior of 

the most infrared important graphs, is necessary to produce.the correla- 

tions responsible for a phase transition. We will therefore approximate 

the functional integral in our effective field theory semiclassically, 

and treat the effects generated by z perturbatively. 
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T&IS, in the lowest approximation we have 

exp -S 
t 

eff b,3 
> 

where (with the fermi sources turned off), 

Seff(u,Z) 5 $ (u2+Z2) - tr Gn C-l(u,f) 

and where the inverse u and % propagators are defined by 

A(rl(X,p;X',p') f 62 'eff 
GO(X,P) 60(X’ ,P’) 

and 
-1 

A;b(X,p;X',p') 
62 'eff 

&iTa(X,p) Gab(X’,p’) 
._ 

(6.30) 

(6.31) 

(6.32a) 

(6.32b) 

These functions are to be evaluated at the minimum of Seff, and thus 

at the solution to the equations 

(6.33) 

By a chiral SlJ(2) rotation the direction of the minimum can be chosen 

in the u direction, and so the minimum condition implies 

U(X,P) = 
s 

tr 1(x-X,x’-X;p) (~‘1 G (u) Ix) (6.34) 
x,x’ 

which is independent of X by translation invariance of the ground state. 

On expressing the integral in terms of Fourier transforms, this equation 
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becomes 

where 

u(p) = tr s 2 

P h (pp) l+:(P) 

M(P) f 
s 

p'dp' X(p') h2(p'P) a(~') 

This equation for u(p) can be reexpressed in the form 

M(Q) = 8 
I 

& X(P) 
h2(pQ) h2 (G'> M(P) 

P P2 + M2(P) 

(6.35) 

(6.36) 

(6.37) 

Essentially this equation, but without the effects of the finite 

temperature boundary conditions, has been discussed by several 

author~s C7,16,17,511. 

In the temperature range for which the instanton density is small, 

this equation (probably) has only a trivial solution. To this 

approximation, then, the semiclassical correction to the QCD free 

energy from a gas of gluons and quarks is & tr Rn A -1 , the free energy 

of a gas of composite u and g particles. (Even for couplings too weak 

to form a massless G, there are weakly bound u and d resonances." 

With scalar fields coupled to the quarks, as in the models 

previously considered, the effective field theory must be modified. 

While it seems the scalars should just couple to the quarks.in the 

effective field theory like $C$ + @ C(l+y5)/21 + 0' C(l-y5)/211$, this 

is only approximately correct. In the presence of the external scalar 

fields there are two new kinds of graphs in the effective field theory, 

Fig. 9, to this order of approximation. In one a quark can propagate 
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from an instanton, interact with a scalar field and be reabsorbed by the 

same instanton. In the other a quark can be exchanged between two 

instantons or two anti-instantons, interacting with a scalar field in 

between. Instanton graphs with two or more scalar field insertions on 

a quark line should not be included to this order of approximation (see 

Fig. 10). (As was shown in Fig. 6, these graphs should have quarks 

propagating in background instanton fields between scatterings.) 

In the presence of external scalar fields, we can consider 

corrections to the free energy W(Q) of Section V. Now the minimum 

equations (6.33) are nontrivial. Including the first-order effects 

generated by the operator z, we now have 

2 
W(Q) + - y (Re det 0 - tr Qt@) +J 4 (u2(Q)+G2(@)) 

(6.38) 

- tr Rn C-l (u(@),$(@),Q)+itr1n A-'(u(@),;(Q)) + const.' T2 tr @'@ 

where 

!p(u,G,O) E d + [ ( l+y5 XI u+iZ*T +@ --j- ) 1 -I- 
[ 

l-Y5 
AI(u-iG*5: +@+ 2 ) 1 

(6.39) 

If the second and third terms are approximated perturbatively in A, 

in first-order they will produce a term (-tc2/4)(Re det tp + tr at@> which, 

combined with the first term, reproduces our previous result. 

Without making this approximation, though, the third and fourth 

terms of Eq. (6.38) can be interpreted two ways. First, they represent 

the free energy of free quarks and composite mesons but for which the 

quarks have acquired a dynamical mass due to the external scalar fields. 

(See Fig. 11.) Alternatively, the second and third terms, when expanded 
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I’ 

in powers of @ and @‘f represent the lowest approximation to the sum of 

n-poin# Green's functions for composite u and $ mesons. (See Fig. 12a.) 

The fourth term of Eq. (6.38) contributes meson radiative corrections to 

the external meson propagators and to the n-point vertex. (See Fig. 12b.) 

VII. EFFECTIVE FIELD THEORY FOR SEMICLASSICAL QCD 

We have shown how, at moderately high temperature, the semiclassical 

approximation to QCD is approximately described by a finite temperature 

effective chiral SU(2) o-model like field theory. As the temperature 

is lowered, the contribution of larger instanton-scale sizes becomes 

-2 important as g /8a2 gets larger. The larger instantons have a higher 

density, and so interactions between them, apart from those required 

by the chirality selection rules, become more important. We therefore 
._ 

discuss some of the corrections to this picture. 

The classical gauge field configurations we have expanded about 

correspond to the sum of fields from separated instantons and anti- 

instantons. The instanton field can be interpreted as the vector 

potential for a 4-D color magnetic dipole C71, for (x-X)~ 2 
" P , 

AU(x) = M 
(x-x) ~ 

pu (x-x)4 ' 
(7.1) 

with the dipole moment 

a 
M 

JJV 
= 2p2 ;;v R $- $2 . (7.2) 

The dipole moment for an anti-instanton has Fa replaced by na The 
UV W' 

corrections we consider correspond to the interaction of these dipoles, 
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and to 'the propagation of the quarks in these dipole fields. These 

effects are corrections as the instanton density increases. It will 

turn out that it is natural to also consider higher-loop corrections 

to the semiclassical approximation at the same time. These are effects 

associated with gluons propagating in background instanton fields. 

We first consider the interaction of these dipoles. Because the 

gauge field configurations of separated instantons and anti-instantons 

are not exact minima of the classical gauge field action, the difference 

between the action for these configurations and the sum of actions for 

separate instantons and anti-instantons represents an interaction-action. 

The dominant interaction-action corresponds to the 4-D Abelian magnetic 

field energy of the superposition of fields minus the field energy of 

separate dipoles; for $ 
UV 

5 apAv - avAu 

v(xi-xj) = 2 -$ J, tr $v (xi-x) ;Y,,(x-'j) 

For an instanton and anti-instanton, this takes the form 

(7.3) 

(7.4) 

which is the result of Callan, Dashen and Gross C71. For two instantons 

or two anti-instantons, though, this interaction is smaller-by an extra 

power of p2/(Xi-Xj)2, as shown by Bernard C431. The interactions 

between pairs of instantons or pairs of anti-instantons will be neglected 

in the following; there are other interaction terms of the same order 

(see below). 



-7o- 

The QCD functional integral is approximated by the grand partition 

functcn describing this 4-D instanton dipole plasma with chirality 

correlations; from Eq. (6.1) with 

S(Ai) + C V(Xi-Xj) ' ifj 
we have 

co 

Z=YA1 d4Xi dSIi 
dp . 

i=l LJ l”+! I\(-: J N+=O 

(7.5) 

(7.6) 

X 
ei8(N+-N-) exp{-gV(Xi-:,) det H(Xi$Xj) 

. . 

The effective coupling X(pi) again arises from exp I-S(Ai)) times the 

factorized nonzero-mode determinants and zero-mode Jacobians. We should 

also include the correction to the factorized nonzero-mode determinants 

and zero-mode Jacobians that renonnalize V. However, this correction 

remains to be done; the only corrections to factorization have been 

computed for exact multi-instanton configurations C43,521 which give 

higher order instanton interactions that we neglect in the following 

discussion. These interaction terms are @Cp2/(~i-Xj)61 just as the 

dipolar interactions between pairs of instantons or pairs of anti- 

instantons. Also, H is again the matrix of zero-mode matrix elements 

of the Dirac operator in the background field from the instanton gas, 

Eq. (6.3). When these matrix elements were previously considered the 

terms 

Jx *to('iFx) '(x-Xk) 'O("-'j) (7.7) 
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were neglected. Since the zero-mode wavefunctions are effective quark 

propagators, these terms simply represent the lowest approximation to 

quarks porpagating between Xi and Xj in the external dipole field of 

an instanton at Xk. They will be included below. 

This grand partition function can again be represented by an effec- 

tive quantum field theory. Without the quarks, Jevicki [181 has given 

the generalization, appropriate to a dipole plasma, of Polyakov's C411 

effective field theory for the monopole plasma in 2+1..dimensional 

compact QED, We will generalize Jevicki's effective field theory to 

include the chirality correlations between instantons and anti-instantons 

due to the massless quarks. Defining the dipole field 

(7.8) 

i=l 

and the corresponding field Muv(x), which is the sum over all anti- 

instantons with the 
-a 
n in M we consider the 

lJv PV 
replaced by na 

w' 

functional integral formula, 

JgA exp{ - j Itr A,,(-a2) Au - $ str(M,v+%Uv) (apAv- avA,,) 1 

. &mxj)p (xi-‘j) v 
= 

Jdet ~a2 G~v) exp ~ E tr Map 
1 

-- 
(xi-‘j) 

Gi v 

1 

c.7. 9) 
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This formula is derived by completing the square in the Gaussian 

functignal integral. It is only approximate since we neglect the 

dipolar interaction between pairs of instantons or pairs of anti- 

instantons. The functional integral is over a color matrix of vector 

potentials, A 
1-1 

= A: (Xa/2) and can be made to look more electromagnetic- 

like with a gauge constraint. 

(7.10) 

This represents the interaction of a color matrix of Euclidean electro- 

magnetic fields with 4-D color magnetic dipole fields. Inserting this 

relation into the grand partition function, Eq. (7.6), gives 

fiA ya,,+,) exp (- 2 Jtr @f$) 

dp . 
d4X. --eL dRi X pi 

IL P; ( ) 

ere 
exp 

da A o 
( ) 

-i8 
j je exp 

x det H Xi,pi,Qi;X.,o.,R. 
( J J J > 

where we have made explicit the p and 0 dependence of the dipole moments. 

The expression in curly brackets is the same as Eq. (6.4), but with 
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modified couplings 

i.0 
Ae -+e 

iB 4n2 
exp - trM 3 

g2 
lJv l-iv 

(7.12) 

and analogously for the anti-instanton term. Therefore the effective 

Lagrangian, Eq. (6.11), is modified to 

Zeff(X> = /pdp X(P) s dQ { eie exp (5 tr MuV(c,Q) SPv(X)) 

X 9+(n,X,p) + eTie 
i 

2 
ew + tr Gpv(~,Q) sip_(Q,X,P) (7.13) 

g 
~uvW 

) I 

where 9+ are the same expressions as Eq. (6.11b). 

The grand partition function describing the plasma of instantons 

and anti-instantons interacting through both dipolar interactions and 

chirality correlations is therefore described by the field theory 

JC@A exp{- --$ J tr $Ev(A)\ "(aVAu) e-w(A) (7.14) 

where 

e -W(A) - 
/ 

= 

W(A) is the free energy of an instanton plasma interacting only through 

chirality correlations but in an external field. (In this expression 

we have included a gauge interaction with the fermions which we have 

not yet explained; we will do so later.) 



In order to begin to discuss the physical content of this effective 

fieldtheory we must consider the gauge averaging integration in JXeff. 

The gauge averaging gives contractions of color indices in all possible 

color singlet ways. In general it will mix terms from the instanton's 

dipole moment interaction with the interaction of fermions. There will 

be terms, though, for which the gauge averaging associated with the 

quark interactions and the dipole interactions factorize; these we 

will consider first, and then consider the terms for which they mix. 

One of the factorized terms in geff is proportional to 

4n2 
- tr M,,\,(Q) 
g2 

gp\, 
e ie det a($,$) 

+ exp SPv 

i. 
e -ie det a+($,$) (7.16) ._ 

I 

Expanding the exponentials to perform the gauge averaging, just as for 

the theory without quarks, gives the leading term 

3 I.lV ~- e ie det 0 (+,$) 

det Q’($,$) 
Re e ie det @ - i 

16a2 

p41m e ie det @ (7.17) 
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The first term has the effect of increasing the instanton density, 

that is 

X(P) -+ X(P) 

C 

1+8*2 22 tr32 

g2 2g2 ?JV 1 (7.18) 

This is the modification of the instanton density in an external field 

found by Callan, Dashen and Gross [‘I]. The external field is now, 

however, a quantum field that must be integrated. Alternatively2' 

this term can (formally) be seen to modify the dielectric properties of 

the vector field, 

2 Jtr ;~zv [l - r2 /pdp $ X(p) Re eie det a(+,$)] (7.19) 

The fermions modify the Callan, Dashen and Gross susceptibility c71 

[apart from the usual coupling renormalization effects in X(p)1 

space-time dependent det @($,$) terms which must be integrated over the 

fermion fields. Other quark contributions to this susceptibility 

arise from additional interaction vertices generated by the gauge 

averaging, which we now schematically discuss. 

The linear terms in the expansion of the exponential of the dipole 

interaction in .LZ eff, Eq. (7.13), for example, 

/ 
dR tr Mvv(Q,p) 3pv<x, ~+W,P) , (7.20) 

will lead to a vertex involving a color nonsinglet quark current 

interacting with the field 3Pv through the dipole moment (and analo- 

gously for the anti-instanton terms). This vertex is depicted 

graphically in Fig. 13(a). The quadratic term in the expansion of the 
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exponential requires the gauge averaging integral, 

(7.21) 

There will result a factorized term, previously discussed, as well as 

new vertices coupling two dipole moments with two quark currents, 

depicted in Fig. 13(b). The physics of these new vertices is exemplified 

by treating Seff perturbatively in Eq. (7.15) for W(A). In second- 

order (1 instanton and 1 anti-instanton contribution) we have the graphs 

of Fig. 14. All of these graphs are proportional to tr 32 
W' 

and there- 

fore give a contribution to the susceptibility. 

If we further integrate over A in Eq. (7.14) perturbatively, we 
!J 

can check that this field theory generates all the effects of the semi- 

classical approximation to QCD included in Eqs. (7.6) and (7.7). The ._ 

graphs in Fig. 15 show that the field theory generates instantons and 

anti-instantons interacting through both dipolar interactions and quark 

exchange, with quarks propagating in the background dipole fields of 

the instantons, and interacting through gluon exchange. The graph in 

Fig. 15(c) will actually be canceled by a corresponding graph with the 

quark interacting with the dipole field of the other (anti) instanton; 

this is because of the zero-modes ( see Eq. (6.6)). Quarks do propagate, 

though, in the background dipole fields of instantons that are not 

their sources. Besides the semiclassical effects of Eq. (7.6), this 

effective field theory generates additional corrections not yet discussed. 

First, there are multiple insertions of the background instanton fields 

on quark propagation, as depicted in Fig. 16. These multiple insertions 

on the quark lines sum to give nonzero-mode quark propagators in 
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background instanton fields. These effects can be derived either from 

the degenerate perturbation theory expansion of the determinant of the 

Dirac operator in a background field from an instanton gas, as in 

Section VI, but for the nonzero-modes, or by expanding exp (tr Rn $(A)) 

in powers of A, as was done by Mottola 1441 and Levine and Yaffe [451. 

Finally, this effective field theory also generates gluon exchange 

between quarks. Now in higher order in the semiclassical approximation 

(in ti), gluon corrections are generated, but these gluons are propagating 

in background instanton fields. This is depicted in Fig. 17. Our effec- 

tive field theory generates only the lowest approximation to the graph 

in Fig. 17(a), depicted in Fig. 17(b). However, the graph in Fig. 17(a) 

could be generated by the full non-Abelian version of our vector field 

theory~! 

Therefore, semiclassically integrating out the instanton gauge 

degrees of freedom in QCD should reproduce another non-Abelian effective 

gauge field theory, but with more complicated quark interactions. This 

is what one might expect from renormalization group ideas. This 

effective field theory is 

Z= 
s 

GAG?$GJ$ exp tr FEv (A) 

+ 
/ $$(AN + (7.22) 

where 

.L? 
eff * s 

pdp X(P) sdfi [ eie exp{(.f$ 

x S+(G,p,X) + emie exp tr $,&LQ (7.23) 
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The boundary conditions on this field theory , besides those of finite 

tempersture, must exclude integration over instanton degrees of freedom, 

and require the constraint of singular gauge. The perturbative analysis 

of this field theory then reproduces the instanton effects. 

VIII. SUMMARY 

In this paper we have considered QCD at finite temperature in order 

to begin to study phase structure. Since temperature serves to define 

an energy scale, the high temperature behavior of the theory is calcula- 

ble because of the asymptotic freedom. As the temperature is lowered, 

nonperturbative effects must be included, not only because the effective 

coupling is getting large, but because some quantities in QCD are 

dominated by nonperturbative effects even for perturbatively weak 

coupling. Instanton contributions are the nonperturbatil;e effects we 

have studied here; these are the weak coupling effects that seen to be 

responsible for the onset of the rapid transition from weak to strong 

coupling behavior in the theory. Their effects can be qualitatively 

compared and contrasted with the perturbative effects, Perturbative 

effects have UL(2) x LJR(2) symmetry. They are weak for short distance 

scales and get stronger slowly as the scale increases. They produce 

equally attractive forces in all color singlet channels. Instanton 

effects, on the other hand, effectively have SUL(2) x SUR(2) x U,(l) 

symmetry. They are exponentially small at very short distances and 

correspondingly turn on suddenly at relatively weak coupling. They 

effect the vacuum in two ways. First, they contribute to the dielectric 
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function of the QCD vacuum (just as perturbative effects do) which leads 

to attractive forces in all color singlet channels. However, the 

chirality correlations that also follow from the instantons give rise 

to additional attractive forces between massless quarks in the o and G 

channels, but repulsive forces in the n and $ channels. The forces 

between quarks due to these chirality correlations in the color octet 

channel also depend on flavor, but they are much weaker than the forces 

in the color singlet channels. 

In the high temperature phase, the theory can be probed with 

external fields. Its response to these fields offers an indication of 

the kinds of symmetry realizations to expect from the theory at low 

temperature. At high temperature, but approaching the critical tempera- 

ture, the QCD response to external scalar field theory probes indicates 
._ 

an interrelation of symmetry realizations. The chirality selection 

rules associated with color gauge field configurations with nontrivial 

topological fluctuations, that prevent the chiral U(1) phase oscillation, 

lead to operators with AQ, = +4 and with SUL(2) x SUR(2) x UP(l) symmetry 

that tend to induce spontaneous chiral SU(2) symmetry breaking and 

restore isospin and CP symmetry in these models. These configurations 

with instanton and anti-instanton fluctuations, which are near minima 

of the classical action and therefore dominate semiclassically, further- 

more give large contributions to the dielectric susceptibility, and thus 

are also important for the onset of confinement. 

Probing the response of QCD to external scalar fields may give a 

reasonable indication of the symmetry realizations that will result 

when the temperature is lowered, but is of course no replacement for a 
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computation of the free energy as the temperature approaches the critical 

temperature for phase transitions. In this direction we have considered 

the contribution of an instanton plasma to the QCD free energy. The 

usual high temperature plasma of quarks and gluons feels a background 

field from correlated topological field fluctuations. At very high 

temperature these topological fluctuations give no contribution to the 

free energy due to the violation of chirality selection rules. This is 

manifest in the vanishing of the determinant of the Dirac operator in 

the extreme dilute limit. The leading contribution from these instanton 

fluctuations comes from corrections to the zero-eigenvalues of the Dirac 

operator that preserve consistency with the chirality selection rules. 

The grand partition function for this instanton plasma was shown to be 

equal to the functional integral for a fermiinic field theory, the field 

theory of the finite temperature version of the 't Hooft effective 

Lagrangian. This field theory was transformed to an order parameter 

field theory, the dominant approximation to which adds to the quark and 

gluon gas contribution to the QCD free energy that of a gas of excitations 

with a and % quantum numbers. 

At still lower temperatures these instanton and anti-instanton gauge 

field fluctuations are correlated both due to chirality selection rules 

and due to 4-D magnetic dipole-dipole interactions. The grand partition 

function for this complicated statistical mechanics model was shown to 

be equivalent to the functional integral for an effective gauge field 

theory, 

(8.1) 



where the functional integral over A 1-I does not include instanton 

configurations; their contribution is contained in the graphs of this 

effective field theory. One of the important instanton effects arises 

from the term in yeff proportional to tr F2 
WJ' 

This term gives a 

temperature dependent coupling renormalization, 2 
g2* g 1-1. We have shown 

how to compute the effect of quarks on the Callan, Dashen and Gross 

susceptibility. (This evaluation will be considered elsewhere.) 

Because the statistical mechanics system that arises from the 

semiclassical approximation to QCD is so physical, a 4-D color magnetic 

dipole plasma with quarks interacting through chirality correlations 

and propagating in the dipole fields, we expect an understanding of its 

properties is possible. Instanton interactions with anti-instantons 

will align the dipoles, and quarks propagating in this vacuum will 

feel attractive forces in color singlet channels. Combined with the 

effects of the chirality correlations, this additional attractive 

interaction, associated with the onset of confinement, may perhaps be 

enough to induce the spontaneous chiral SU(2) symmetry breaking 

phase transition. 
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(I 
FOOTNOTES 

1 - <$2hspontaneously breaks both chiral SU(2) and chiral U(1) symmetry. 

2 A coset G/H is a set of elements of G that are considered to be 

equivalent if they differ only by multiplication (from the right) 

by an element of the subgroup H. A particular spontaneous symmetry 

breaking vacuum is actually a set of vacuua that differ only by 

a transformation by an element of the unbroken subgroup. The set 

of such vacuum cosets is a coset-space. 

3 Particles fall into representations of the vacuum symmetry. 

For chiral SU(N) symmetry breaking for N r 3, there are nontrivial 

representations of the discrete subgroup of vacuum global symmetries 

combined with discrete space-time symmetries. As Dashen has shown 

C211, this allows the possibility of parity doubling. 

4 Weak interaction CP violating perturbations, however, can change 0. 

5 
The chiral U(2) transformation 

0 U i(4,/2)y5 0 
e + 

d 

t 
0 

i($d/2h5 
e 

takes 
;((1+y5)/21u 

0 

0 
with 9 = 0 into 

;i{ (1+y5) /2)d / ' 

_ “9, 
ue 1 (1+Y5) /2 hl 

0 

0 

;ie 
i4d 

((l+y5)/21d 
; with 8 = @,+$,, this 

vacuum is CP and isospin invariant and spontaneously breaks chiral 

U(2) symmetry. I thank Sidney Coleman for a discussion of this point. 
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6 
This is because while <&/J> is even under both P and C, (iW5JI) 

is cdd under P and even under C; spontaneous CP violation arises 

from interference effects. This is to be compared to usual weak 

interaction (explicit) parity violation: $y,JI is even under P and 

odd under C, while $y y $ 
u5 

is odd under P and even under C. Interfer- 

ence effects are thus odd under both P and C and thus even under CP. 

7Q uestions associated with which vacuum state is picked out by a mass 

perturbation requires additional considerations. - Dashen's theorem 

C251 states that the correct vacuum state is the one that minimizes 

the energy of the symmetry breaking perturbation. For a real diagonal 
mu 0 

mass matrix, a= 
( ) 0 md 

, the vacuum state in footnote five with 

musin$u =mdsin$d and 8= $,+ $d minimizes the perturbation. For e#O, 

there is now CP violation due to a mismatch between the conserved CP 

of the chiral perturbation, and the conserved CP of the spontaneous 

chiral symmetry breaking vacuum. For 8= IT, however, there is CP 

invariance except when m =m u d' In that case there are two CP conjugate 

degenerate solutions of the minimum equations. This is an example of 

Dashen's mechanism C251 for spontaneous CP violation. (In this 

particular case with two flavors, it also happens that m2= 0 to 

first-order in mu=md# 0.) For further discussion of these points 

see, for example, Refs. C261. These remarks imply there are 

subtleties involved in taking the limit @ + 0 in Eq. (2.25). 

8 I thank Alan Guth for a crucial discussion on this subject. 
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' This 't Hooft from (singular gauge) can be obtained from the BPST Cl31 

form-by a local gauge transformation. See, for example, C321. 

10 For a discussion of these collective coordinates in singular gauge, 

see for example C331; at finite temperature see C141. 

11 This form for the 't Hooft term, without the color octet scalar 

fields, is also given by Mottola C341. 

12 I thank John Collins for an important discussion on this subject. 

13 A careful analysis cl41 shows that only A0 acquires a mass; that is, 

there is only electric screening to this order. 

14 The model given by the Lagrangian, Eq. (5.1), and potential, Eq. (5.4), 

but with the opposite sign for h, was considered by Mottola [341 to 

ellucidate many features of the chiral U(1) problem. 

15 I thank Helen Quinn for an important discussion of this point. 

16 
Thermodynamically, this is a very interesting situation; the lower 

temperature phase has more symmetry than the higher temperature phase. 

This is like the melting of crystalline He3 as the temperature is 

lowered further. The superfluid He3 has a lower entropy (more order) 

than the crystalized phase. 

17 
I thank Larry Yaffe for showing me this elegant graphical representa- 

tion for the product of determinants. 
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l8 See also C44l and C451. 

-cI 

19 I thank Fred Cooper and Dick Haymaker for stressing this point to me. 

20 The terms in Eq. (7.17), with svv replaced by the full Fvv 

(see below), 
tr FwFkluRe e 

ie 
det Q, and tr Fvv?vvIm e ie det a, can 

also be interpreted as mixing meson pairs and glueballs. 
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FIGURE CAPTIONS 

Fig. 1. Graphical expansion of tr Rn [is(A) - @(l+yS)/2 - Qt(l-y5)/21. 

The heavy solid line represents a quark propagating in a 

background color gauge field. The external dashed lines 

with crosses represent external scalar fields. 

Fig. 2. Two possible ways the chirality selection-rules can be 

satisfied for any configuration with v(A) = 1. The shaded 

circles represent a region of localized field strength in 

Euclidean space-time; the dashed lines with crosses at 

their ends represent sources that absorb the massless quarks. 

Fig. 3. A Euclidean space-time vacuum event consistent-with the 

chirality selection rules. A region of space-time with 

v(A) = +l creates quark pairs that are absorbed in a 

region with v(A) = -1. 

Fig. 4. Graphical representation of Eq. (3.7). The heavy solid lines 

represent quark propagators in the same background color gauge 

field configuration. 

Fig. 5. Graphical representation of Eq. (4.15). The solid circle 

represents an instanton or anti-instanton, the thin solid line 

represents a zero-mode wavefunction, and the heavy solid line 

represents a nonzero-mode quark propagator in the background 

field of the same instanton or anti-instanton; the dashed 

lines with crosses at the ends represent external scalar fields. 
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Fig. 6." Graphical example of a correction to Eq. (4.15) due to 

- external (nonconstant) scalar field induced mixing of 

zero- and nonzero-mode quark propagators. 

Fig. 7. Mixing of colored and flavored scalars. 

Fig. 8. Examples of graphs arising from the product of cycle 

expansions of the zero-mode determinants. Each line 

between Xi and Xj represents the matrix element H(Xi,Xj), 

Fig, 9. New graphs due to external scalar fields, depicted as a 

cross on the quark lines. In the second graph, the quark 

line connects two instantons or two anti-instantons. 

Fig. 10. Examples of graphs with scalar insertions that should not 

be included to this order of approximation. 

Fig. 11. (a) Quark vacuum graph in which quarks have a dynamical mass. 

(b) Composite meson vacuum graph in which the constituent 

quarks have a dynamical mass. 

Fig. 12. (a) n-point Green's function for interacting composite mesons. 

Dashed lines represent composite mesons, and the crosses 

represent external scalar fields. 

(b) Examples of meson radiative corrections to Fig. 12(a). 



-92- 

Fig. 13.' Examples of new vertices implied by the chirality selection 

rules and dipole moments of instantons. The wavy lines with 

crosses at their ends represent external $ fields. 
lJV 

Fig. 14. Graphs (a>, (b) and (c) represent the interaction with an 

external field 3 
W' 

represented by a wavy line with a cross; 

Graph (d) represents the interaction with an external field 

A 
u' 

represented by a curly line with a cross. 

Fig. 15. Graphs (a) and (b) represent dipole-dipole interactions between 

an instanton and anti-instanton, as well as quark exchange. 

Graph (c) represents a quark propagating in the dipole field 

of an instanton. Graph (d) represents gluon exchange between 

quarks. 

Fig. 16. Multiple insertions of instanton fields on quark propagation. 

Fig. 17, (a) Gluon (curly lines) interaction between quarks, with the 

gluon in a background instanton field; (b) is lowest approx- 

imation to (a). 
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