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ABSTRACT

Global symmetry realizations in QCD with two massless quark
flavors are studied by semiclassical methods at high temperature.
The response of QCD to external field theory probes gives an indi-
cation of symmetry realizations and their interdependence as the
temperature is lowered. The semiclassical approximation of QCD
is equivalent to the statistical mechanics problem of a quark and
gluon plasma in a background field of correlated instgnton fluctua-
tions, and is shown to be described by an effective field theory.
From the collective instanton effects with quarks some insight can
be gained into how the dielectric properties of the medium affect
chirality correlations responsible for the onset of the spontaneous
chiral SU(2) symmetry breaking phase transition, and alternatively,

how quarks affect the dielectric properties of the medium.
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I. INTRODUCTION

An understanding of the hadronic physics of ordinary matter is
expected to come from QCD with two massless quark flavors. In partic-
ular, the theory must explain the confinement of quarks into color
singlet hadrons, and the symmetries of the strong interactions. The
classical Lagrangian for this theory, besides being Lorentz, scale and
C, P and T invariant has a local color SU(3) gauge symmetry and a
global UL(Z) X UR(2) symmetry of the massless left- énd right-handed
quark fields. There are many possible realizations of these symmetries.
While the realization of some of the symmetries of the classical
Lagrangian are understood in the quantum theory-— for example, how the
classical scale invariance is broken by the renormalization anomalies
and how the chiral U(l) symmetry is broken by the axial -anomaly and
8-vacuum [1,2,3], other symmetry realizations are less well understood.
For the other global symmetries, from an analysis of effective poten-
tials for possible order parameters, built out of polynomials of color
SU(3) and chiral SU(2) invariants of bilinear quark fields, it is pos-
sible that the chiral SU(2), isospin, and P and CP symmetries could
all be spontaneously broken [4]. Also, the color gauge symmetry could
in principle be realized as a spontaneously broken symmetry as opposed
to either a confined or normal (Coulombic) symmetry [5].

We would like to better understand how QCD actually realizes its
chiral SU(2) symmetry as spontaneously broken, its isospin, P and CP
symmetries as manifest, and realizes its color SU(3) symmetry as a
confined symmetry. We would also like to understand how these realiza-

tions are interdependent. An example of an interdependence of symmetry
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realization comes from the fact that any dimensional order parameter
associated with spontaneous symmetry breaking can only exist because

of the breaking of the classical scale invariance by quantum renormal-
ization effects (spontaneous symmetry breaking cannot occur if all
couplings are at their fixed points) [6]. Also, without the axial
anomaly the realizations of chiral U(l) and chiral SU(2) symmetry are
linked;! with the anomaly the realization of the chiral U(l) symmetry
is linked to topological properties of color gauge field configurations
[1,2,3], and consequently the realization of chiral SU(2) symmetry may
also depend on topological properties of color gauge field configura-
tions. Since these configurations may furthermore have something to do
with the confinement realization [7,8], the color gauge symmetry reali-
zation and spontaneous chiral SU(2) symmetry breaking may also be linked.

In order to study symmetry realizations, and since>QCD presumably
has only a single phase, we consider the finite temperature theory
which can have many phases. (While the Wilson lattice gauge theory is
known to have only one phase for all values of its coupling, the finite
temperature theory has a phase transition [9,10].) We can imagine
heating the theory to a high temperature for which it is as symmetric
as possible, and then lowering the temperature to see various phase
transitions.

At moderately high temperature the theory can be analy%ed semi-
classically. Temperature serves as an infrared cutoff, and with it the
contribution of quantum effects with large coupling strength can be
controlled. It is reasonable to expect there to be an indication of

the resulting phase structure of the low temperature theory even in
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the high temperature phase, since the kinds of correlations responsible
for the phase transition begin to set in before the critical temperature.
One indication of the resulting phase structure can be obtained from

the high-temperature phase by coupling external fields to the order
parameters, and exploring how the free energy changes. If the strength
of an external field is increased, then the total free energy is

lowered because this increase in free energy is more than compensated

by the dynamics lowering its internal energy. The external field im-
poses order energetically preferred by the dynamics, but which is
opposed at high temperature by the randomizing thermal fluctuations.

We will consider external fields that can exist in the vacuum
because of spontaneous symmetry breaking of an external field theory.
If the QCD response increases the magnitude of this vacuum field, then
the internal energy of QCD is lowered by the imposed order parameter.
If, on the other hand, the external vacuum field is decreased by the
QCD response, then the QCD internal energy is raised by such an imposed
order parameter, and so will not tend to spontaneously break the
associated symmetry. It will also tend to restore the symmetry spon-~
taneously broken in the extermal field theory.

Even for those external vacuum fields that are increased by the
QCD response, though, there is no guarantee that the QCD dynamics will
actually be able to create a phase transition as the temperature is
lowered. For example, an external magnetic field will be increased
by a paramagnetic material as well as by the high-temperature phase
of a ferromagnetic material. However, in the fixed weak external

magnitude field, as the temperature is lowered, there will be a rapid



decrease in internal free energy of the potential ferromagnetic
materjal compared to that of the paramagnetic material. We would
therefore expect that those correlations responsible for the onset of
the phase transition turn on very rapidly as the temperature is lowered.

Now studies of lattice QCD without quarks at zero temperature show
that there is a very rapid transition from weak to strong coupling
behavior [11,12]. The B function that describes the change in effec~-
tive coupling strength for different scales changes almost discontinu-
ously from its weak coupling perturbative behavior to its strong
coupling confining behavior at a certain small value of the coupling.
This transition occurs over a range of couplings that are so small that
2-loop perturbative corrections are negligible. This indicates that
there are very important nonperturbative weak cqupling effects. Semi-
classical tunmneling fluctuations, instantons [13], are ;n example of
such effects. They also have the property that at finite temperature
their contribution turns on exponentially fast as the temperature is
lowered [14], and so we expect they give a good description of the onset
of the phase transition. We do not know if in fact the semiclassical
approximation is valid at the critical temperature for the spontaneous
chiral SU(2) symmetry breaking phase transition, but the methods we
will describe can in principle be extended to answer this question.

This paper is organized as follows: in the next section, ITA,
we review some of the symmetries of QCD with two massless flavor quarks.
In IIB we show how some of the implications of spontaneous symmetry
breaking follow from Goldstone-Ward identities. The consequences

follow from nonzero-order parameters; whether or not the dynamics
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chooses to have nonzero order parameters is determined from the minima
of the effective potential, which is discussed in §§§;i§n IIC. 1In
Section IID we show that QCD with massless quarks could potentially
spontaneously break P and CP as a consequence of the unusual way it
realizes its chiral U(l) symmetry. We also give a simple heuristic
explanation of how the realization of this chiral U(l) symmetry follows
from the 6-vacuum. In Section III we discuss 't Hooft’s chirality
selection rules [1] that govern the behavior of massless quarks in
background color gauge fields with nontrivial topology. These selection
rules are realized by way of zero-eigenvalues of the Dirac operator in
such background gauge fields. From the dependence of the determinant
of therDirac operator in both background gauge and scalar fields we
can simply understand the flavor structure of the 't Hooft interaction
[1], as well as corrections in higher powers of the exté%nal fields.
We can also simply understand the 6 transformation property under
chiral U(l) rotations of the quark fields [2]. In Section IVA we re-
view the instanton contribution to the Euclidean functional integral
[15]1, including higher order external scalar field dependence, and in
IVB discuss some of the corrections to this contribution when finite
temperature boundary conditions are included.

In Section V we consider QCD coupled to various scalar field
theories, analogous to scalar sectors of weak interaction madels.
The classical potentials for these scalar models are chosen to realize
global symmetries in various ways: (1) spontaneous chiral SU(2) and
isospin breaking, and (2) spontaneous chiral SU(2) and CP breaking.

We consider these models at finite temperature and heuristically show
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that tﬁe QCD corrections to the scalar effective potentials can induce
varioys phase transitions. The QCD corrections enhance the tendency
for spontaneous chiral SU(2) symmetry breaking in these models, and act
to restore isospin and CP symmetry.

In Section VI we analyze chirality correlations in the semiclassi-
cal approximation to QCD at finite temperature. These effects are
shown to be describable by an effective fermionic field theory, essen-
tially the finite temperature version of the quantum field theory of
't Hooft interaction [2]. We physically motivate a transformation of
this field theory to a form suggestive of a chiral SU(2) o-model, the
simplest approximation to which has a correspondence with previous
analysgs [7,16,17]. The QCD free energy in external scalar fields is
briefly discussed in this approximation.

In Section VII we consider additional corrections fé the semiclas-
sical approximation. The collective effects of dipolar correlations
of instantons and anti-instantons, represented as an effective field
theory by Jevicki [18], is here generalized to include the effects of
massless quarks. From an approximation to this field theory we show
how to compute the quark corrections to the Callan-Dashen-Gross
dielectric susceptibility [7,8]. Our final result is expressed as an
effective Lagrangian added to the usual QCD Lagrangian. Perturbative
evaluation of this field theory generates (besides the usuai perturba-
tive QCD graphs) an approximation to the effects of configurations
with nontrivial topological field fluctuations—— that is, a plasma of
instantons and anti-instantons interacting through dipolar and chirality

correlations, with quarks propagating in background instanton fields
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and interacting through gluons in background instanton fields. Finally,

Sectign VIII is a summary.

ITA. SYMMETRIES OF QCD

The Lagrangian for QCD with two massless flavor quarks is

g @ a)<im<A) 0 ><u> R S Fl () V@) . (2.

0 ipay/\d/ 242

The color SU(3) gauge covariant derivatives, D(A) = Bu4-iAu,
Au = AE(Xa/Z), act on the three component color spinors u and d, each
component of which is a four component Dirac spinor. The color curva-

ture is

F o8 = 34 - 3A - i[Au,Av:l ) (2.2)

This classical Lagrangian is invariant under local color gauge

transformations of the quarks and gauge fields,

<u(x)> R <9(x) 0 ><u<x)> (2.3a)
d(x) 0 )/ \d(x)

A6 > Q(X)Au(x)sz*(x) - iQ(x)auQ+(x) , (2.3b)

and

where Q(x) is an element of color SU(3) associated with the space-time
point x; associated with a path in space-time is a path on the SU(3)
manifold. It is also invariant under P, C, T and global UL(Z) x UR(Z)
transformations of the left- and right-handed quark flavor doublets:

defining y = (3), and the left- and right-handed projections



w(L =[a ¥ Y5)/21y, then £ is invariant under
<)

- . >
wL elE ela-I/Z 0 wL
>
in ing/Z ’
¢R 0 e e wR

(2.4)

that is, under independent U(2) transformations of the left- and right-
iE ¢
e

handed flavor spinors. The subgrou : is the U_(l) baryon
P 0 eif B

number subgroup, implying the conservation of the baryon number current

1%+7/2 0

$Yuw. The subgroup ( > is the SUI(Z) isospin subgroup,

0 GloT/2
implying the conservation of the isospin currents, Ji = wYu(Ta/2)¢-
Both of these symmetries are manifest symmetries of the strong inter-
actions. That is, the strongly interacting particles fit into families
associated with the group representations of these symmetries, and the
interactions of these paraticles are governed by selection rules which
follow from the local conservation of these currents. The transforma-

tions
L8 0
0 zi&

are the chiral U(l) transformations; they rotate all left-handed
fermion fields one way and all right-handed fermion fields in the
opposite direction by the same amount. Associated with this symmetry
is the classically conserved axial vector current @Yuysw. This chiral
U(l) symmetry is, however, neither a manifest symmetry of the strong

interactions, nor a spontaneously broken symmetry in the usual way.
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Finally, the transformations

> >
e1a'r/2 0

e
0 e-la T/2

are the chiral SU(2) transformations which rotate the left-handed up
and dL into a linear combination of one another, and the right-handed
up and dR into a linear combination of one another in the opposite
direction, and associated with this symmetry are the axial vector
isospin currents, J?u = wyuys(fa/Z)w. This chiral SU(2) symmetry seems

to be a spontaneously broken symmetry. The understanding of these

chiral symmetries must come from the quantum field theory.

ITB. GOLDSTONE-WARD IDENTITIES

Chiral SU(2) spontaneous symmetry breaking is studied by means of

the Ward identity

b b
u/.a G T _ a .z I _ _qab o
L 3 <]5u(x)1‘1’Y5-2"‘,‘{'>—<[Q5,1‘¥Y5 5 ‘i’]> = -8 <KY¥> . (2.5)

The last equality (which follows from the canonical anticommutation
relations of the fermion field operators) implies that if ¥V has a
nonvanishing wvacuum expectation value, then Q? does not annihilate the
vacuum state, but connects it to the same particle state as does the
isovector pseudoscalar operator i?YS(Tb/Z)W. The theorem of Goldstone,
Salam and Weinberg [19] applies here and implies that this contributing
state is that of a massless particle. This is manifest as a massless

pole in the term on the left of Eq. (2.5),
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. b q
igex/ a = T i ab
fx e <15u(x)1‘1’y5 % o 2 wyss?® . (2.6)

These three massless particles are identified with the pions [20].
Also, following from the Ward identity for the axial vector vertex

function embedded in Eq. (2.5),

b
f ke <§ ®)¥(0)vs 5 ¥(0),
X ¥
= b
—./; jz - Y5 %r G(O,Z)[aufi (z,z';x)} G(z',0)

’ u

T ’ -1 T 4
L L !
f f ' tr Y5 > G(0,2) |G (z,x)y5 5 § (x-z")

4 2 -
+ 8§ (z-x) 5 Y5 G

1
(x,Z')] G(z',0)

Gabftr elp) 2.7)
P

and from the consequent behavior of the vertex function implied by

Eq. (2.6),

q, a

a a
I's (s-p'39) v — | oL T T ooy | 6% omnt '
5, q>0 < G (yg 5 + 5 vs6 ()| § (p-pta) , (2.8)

The u and d quarks acquire the same dynamical mass proportional to
<WQ>, since Eqs. (2.7) and (2.8) imply a nonvanishing anticoﬁmutator of
G—l(p) and ..

Spontaneous isospin breaking is governed by a Ward identity similar

to Eq. (2.5) for spontaneous chiral SU(2) symmetry breaking,
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v

‘1; 8u<§?u(x)?1b€> = <1§a,ﬁrb ]:>== sabc<@TCW> . (2.9)

-

If we pick the direction of spontaneous isospin breaking to be in the

3-direction, then
(#) « G - @
Yr7¥) = (uud - <dd> # 0O (2.10)

would lead to different dynamical masses for the u and d quarks. The
generators Q1 and Q2 would be spontaneously broken and this would imply
the existence of massless charged scalar particles, the neutral partner
of which (created by §T3W) would not have to be massless. There
seems to be no evidence in the real world, though, for this dramatic

pattern of scalar particles [20].

IIC. EFFECTIVE POTENTIALSi

The question of whether or not <¥¥>, for example, is nonzero is a
dynamical one. It can be answered by computing the effective potential
V(<¥¥>)[6,21]. If V has a global minimum for <¥¥> nonzero, then the
ground state spontaneously breaks the chiral symmetry. In order to
study the possible spontaneous symmetry breaking of other global symme-
tries we will consider the effective potential for the more general
quark bilinear color singlet order parameter, <?i[(1+y5)/2]?j> .

The computation of the effective potential proceeds as-follows:

First a source term

-@Lopr + $R®+IPL) (2.11)

is added to the Lagrangian, Eq. (1.1). The 2x 2 flavor matrix scalar
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field & can be represented,

- S =oc+din e T+in+6 o 1 (2.12)

If ¢ is considered a dynamical field (as we will do later), this Yukawa
coupling is invariant under UL(Z) x UR(Z) transformation; under

SUL(Z) X SUR(Z), % transform as the (%,%) representation. This Yukawa
coupling represents the interaction energy of the external source
fields ¢4, with the quark fields @i[(1+y5)/2]¢j.

The ground state energy in the presence of the external source
fields Qij is proportional to W(®) = -i 2n Z(®), where Z(®) is the
vacuum-to-vacuum amplitude in the presence of ®. The computation of
W(®) can be formulated in terms of the determinant of the u and d quark

inverse propagators in the background ¢ field,

W@ o Lty 1oy
det [ ( > -0 -iii - —7;5-} (2.13)
0 iB(a)

The 2x 2 matrix of color covariant derivatives is diagonal in the u and
d flavor space, while the matrices ¢ and ¢+ are not, in general. Ex-
pressing the determinant as the exponential of the trace of the loga-
rithm, this logarithm can be expanded in powers of ¢ and @T, and
corresponds to the sum of all graphs, with arbitrary numbers of external
$ and @+ fields, of a single quark loop, with the quark proﬁagating in

a background color gauge field (see Fig. 1). Thus the & dependent part

of the determinant can then be expressed in the form

exp{%./'[z tr|3u®I2 - VA(Q)]} (2.14)
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where the kinetic energy term comes from the local contribution of the
vacuum polarization graph, and VA(Q) is a nonlocal polynomial in all
powers of @ and ¢+ and their derivatives, the coefficients of which
depend on A. The determinant is weighted by the amplitude for each

color gauge field configuration, exp{iS(A)}, where

s@) = [t F L@ V@ (2.15)

2g

and is summed over all possible configurations, giving for W(%),

. ipa) o 1+ 1-y
W(e) = -ign -jQEA eI op [( > - “7;2__ of _ng:]}
0 ip(a)
(2.16)

=-1ign <f92JA exp{i(S(A) -itr n lb(A))} exp{if[z tr|8u¢12 - VA(Q)]}>

The effect of coupling the scalar fields Qij to the quarks is almost
like coupling to QCD the scalar sector of a weak interaction model,
since QCD induces the dynamics for such a model, apart from infinite
renormalization. All that is needed is to make ¢ a dynamical degree of
freedom, partly just to carry out the renormalization. In order to

get an indication of the symmetry realizations in QCD, we could ask
what effects QCD has on the symmetry realizations of various weak
interaction models. W(?@) would contribute to the effective quantum
action of the weak interaction sector, and thus to its effective
potential. Models of this kind will be pursued in Section IV.

From W(®) a Legendre transformation is performed to obtain

/ 1+y5 _ 1+Y5 + l—ys )
F<<Yi —-—-2—- ‘PJ>> = W(d) - f<‘l"<¢ —"'2—— + & 5 v, , (2.17)
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where

- 1475 >_ . SW(3)
<\Pi “‘_2 WJ = 1 “@— . (2.18)

In performing this transformation the source dependence of
<?i[(1+y5)/2]wj> must be inverted; all the Qij dependence in W(®) must
be transformed to <Wi[(l+y5)/2]Yj> dependence. T is the generating
functional for all one-particle irreducible vertex functions with

<§i[(l+ys)/2]wj> vertices. It has the structure

. 4 1+‘Y5 / 1+Y5 2 4 1+’Y5
T ‘l’i—-z—‘yj>‘=f Z tr au ‘1’17“{’:> —V<Pi——2——"‘¥j> (2.19)

The kinetic energy comes from the local structure of all (?i[(1+Y5)/2]Wj>

vacuum polarization graphs; and V is, in general, a nonlocal polynomial
in allrpowers of <@i[(l+y5)/2]wj> and their deriyatives. I'is thus the
full quantum action for the <@i[(l+y5)/2]Wj> fields; thag is, it contains
the full QCD dynamics of these composite fields. In the long-wavelength
limit, it presumably reduces to the nonlinear o-model which contains

the content of current algebra chiral dynamics [23].

The ground state is characterized by constant <@i[(1+y5)/2]wj> in
which case all derivatives of <@i[(1+y5)/2]wj> vanish. V is then a
polynomial in all powers of the constant <?i[(l+y5)/2]wj> . It is the
quantum potential which has a minimum for the background field
<?i[(l+y5)/2]wj> of the vacuum. The ground state energy coﬁld be lowered
by such a background field due to the consequent spontaneous symmetry

breaking dynamical correlations.
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IID. VACUUM COSETS, 6-VACUUA, CHIRAL U(l) SYMMETRY AND CP VIOLATION

In our discussion of the Goldstone-Ward identities for spontaneous
chiral SU(2) symmetry breaking we had considered a particular frame.
In the massless theory there are an infinite number of possible degen-
erate vacuua, and <Y¥> is a choice of one of these directions (analogous
to choosing the direction of magnetization of a ferromagnet in, say,
the Z direction). The different possible directions are characterized
by the elements of the coset space? UL(Z) x UR(Z)/SUi(Z) x UB(I) x
Zz(chiral SU(Z))X Zz(chiral U(l)), where Zz(chiral U(l)) is the discrete
im 0
0 e-im

),1} and the Zz(chiral
. eim O . . .
SU(Z)) is 0 e-im ,1¢. SUI(Z) X UB(l) X Z2 X 22 is the invariance

subgroup of chiral U(l) rotations {(é
group of the vacuum apart from the usual space-time and gauge symmetries
(analogous to rotations about the axis of magnetization of a ferromag-
nteic); that is, <¥¥> is invariant under SUI(Z) X UB(l) X L, % 22.3
Different elements of the coset space are obtained from <¥¥)> by chiral

U(2) transformations,

10/4 i0-1/2 0
U] e e Y
L L
> > (2.20)
-i8/4 -io-t/2
wR 0 e e wR
, > > ] S
<TY> e16/2<wRe1°‘ T\1JL>+ e le/2<‘¥Le ia WR> . (2.21)

Under this transformation it appears that isospin symmetry is also

spontaneously broken; however, the isospin transformation must be
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conjugated
> > > > F . > >
elBﬂT/Z 0 Sl /2 0 e1§-T/2 0 o 1o /2 0
T > > > > > ’
0 1§ /2 0 1o /2 q e1§-1/2 0 et T/2
(2.22)

and this conjugated isospin is an invariance of the vacuum.

An important point about this chiral U(2) transformation is that
the functional integral not only transforms in the covariant way just
described, but has another change as well. Fujikawa [24] has shown
that the fermionic integrations measure is not invariant under chiral

U(1) rotations but transforms under exp'{i(G/A)YS}

iov(a)

DYDY DVDU e , (2.23)
where B
_ 1 ~uv
v(A) = P 5 f tr Fuv(A) F" 7 (A) (2.24)
m

and is nonzero for gauge field configurations with nontrivial topology.
This derivation effectively assumes there is no chiral U(l) massless
particle. There is thus an extra term induced in the color gauge field
action. This term is odd under P and T, and so it would appear that CP
is violated, but just as in the case of isospin there is a conjugated
CP operation under which the theory is invariant. Thus phygical
quantities cannot depend on 6.

Because no physical quantities depend on chiral U(l) rotations of
the quark fields, there is a chiral U(l) symmetry of the quantum theory.
Nevertheless, this chiral U(l) symmetry is not realized explicitly;

different 8 values correspond to different possible superselection



18—

*

sectors such that no QCDL+ perturbations can change 6 [2,3]. Thus there
are ap~infinite number of possible degenerate vacuua, related by chiral
U(l) rotations. The chiral U(l) symmetry is therefore spontaneously
broken. However, this situation is different from usual spontaneous
symmetry breaking in two respects. First, this spontaneous chiral U(1)
symmetry breaking is independent of the obvious order parameter— it
occurs whether or not chiral SU(2) symmetry is spontaneously broken by
<¥¥> # 0. Second, there is no associated massless particle. This
spontaneous chiral U(l) symmetry breaking is somewhat analogous to
spontaneous breaking of a gauge symmetry. There the gauge fields
define a frame at each space-time point which can be chosen so that
relative to this frame the phase of the order parameter does not
oscillate— the Nambu-Goldstone mode can be gauged away. Here
exp {i(e/l6ﬂ2)f trFuv(A)‘Fuv(A)}'is a topological phase shift of the
amplitude for a given gauge field configuration exp{iS(A)}—it is a
phase shift proportional to the topological charge of the configuration
A. This phase defines a frame. Under a chiral U(l) rotation of the
quark fields (or change of phase of the order parameter) 6 is trans-
formed; but for 6 constant throughout space-time the phase of the
order parameter cannot oscillate— it is locked to the constant
direction given by the topological phase, so the Nambu-Goldstone boson
cannot get excited.

As we have said, physical quantities cannot depend on which
element of the coset space is chosen to describe spontaneous chiral
SU(2) symmetry breaking; associated with any chiral U(2) rotation of

<¥¥> there is a conjugated isospin and CP invariance of the vacuum. >
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Neverthgless, these isospin and CP symmetries could in principle be
spontaneously broken. Spontaneous isospin breaking would be described
by (the conjugated version of) the order parameter <W13W>. As we will
now discuss, spontaneous CP violation is only in principle possible
because of the particular way the chiral U(l) symmetry is
spontaneously broken.

Spontaneous CP violation would arise if both <¥¥> and <iWY5W> were
nonzero in a 8 = 0 vacuum (or any chiral U(2) rotation of this situa-
tion).® If the theory had a chiral U(l) symmetry either explicitly
realized or spontaneously broken in the usual way, one could choose a
frame by making a chiral U(l) rotation so that <i§Y5W> would be zero.
Now, though, under a chiral U(l) rotation <i?Y5W> could still be rotated
away, but in that frame we would have spontaneous chiral SU(2) symmetry

breaking driven by <?W>e # 0, where this expectation value is defined by’

>0 0 iB(A) 2

-1

1-vy iB(A) 0 1+y 1-y

-@*—7—5-}& X[( )—@——2—2-5——2—-5—] X ),
0 iB(A)

. . ip(A) 0 1+y
<Fy>, = lim f@A IS(A) Ji6v(a) 4., [< > -9 >

(2.25)
with the explicit additional phase factor exp{ifSv(A)} accompanying the
functional integral over all color fields. This phase could now lead
to CP violation; it can only be rotated away by making <i?y5?> nonzero.
Thus from symmetry considerations, and from the link between chiral
U(1l) global transformations of quark fields and the color gauge field

topological phase, spontaneous CP violation as well as spontaneous
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isospiﬂ and chiral SU(2) symmetry breaking are possible. It is a ques-
tion of dynamics how these symmetries are in fact realized.

We comment that the dynamics that governs spontaneous global
symmetry breaking can be translated to a problem in gauge field corre-
lations. Both the determinant and tr GA in Eq. (2.25) can be expressed
in terms of gauge field invariants, as exemplified by Schwinger’s [27]
formulas for expressions of this kind (in QED, and for A]J that gives a
constant Fuv)' For example, for ¢ = M(l 0

01
weak field expansion of GA(M) is proportional to (1/M) tr F

) , the leading term in the

2

u\)(A).

Since this relation is an approximation to the trace anomaly [28],

implying a further relation between the breaking of scale symmetry and

spontaneous symmetry breaking, we expect an exact formula is possible.)

Alternatively, <¥¥> can be expressed in terms of topological fluctua-

“tions through Crewther’s formula [29],

<F¥>y = lim% f etd™¥ —1—2— erF (&) FU () —17 trF o () ?‘""B(A)>e
q>0 X 4 H 4

M0 (2.26)

When expressed in terms of a functional integral, this formula and

Eq. (2.25) imply an association

tr Ao %tr F L8 TV va) (2.27)

15(8) 18V(A) yorrip(ay-u) of

The averages (over all A weighted by e
both sides of this relation are equal to M » 0. For the right-hand
side, a mass dependence proportional to M must be induced from the

determinant by the topological factors. Crewther’s formula implies

that tr FF correlations, which are dominated by glueballs and chiral
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U(1) mesons [30]1, are important for QCD to spontaneously break its

chiral SU(2) symmetry.

-

ITITI. CHIRALITY SELECTION RULES

In order to explicitly demonstrate the kind of effects that follow
from color gauge field configurations with nontrivial topology, we
review "t Hooft’s chirality selection rules [1] which govern configura-
tions with v(A) # 0. These selection rules follow from the relation
between the anomaly in the U(l) axial vector current and v(A). 1In a
background field of any color gauge field configuration A, there must

be a chirality change for each massless quark flavor of

A<Q5>A = -2v(A) (3.1)

For two flavors the total chirality charge is -4v(A). This chirality
change can be expressed in terms of changes in the numbers of quarks
and antiquarks of a particular chirality,

MQs = A(NR + i\'IL - N - NR) . (3.2)

Thus the necessary chirality change in a background field with v(A) # 0
can be achieved by the creation or annihilation of massless quarks.

In the presence of a color gauge field configuration (in Euclidean
space-time) with v(A) = 1, there must be a chirality change of -2 for
each flavor. This can be achieved, for example, by the creation from
the vacuum (with zero-chirality) oflquark pairs, uL+-GR4-dR*-aL. If
there are sources present to absorb these quarks (and the chirality

changes), this Euclidean space-time event can be represented as in

Fig. 2. 1In this figure the sources that absorb the quarks can have
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color és well as flavor. Any field configuration with v(A) = -1 could
be a source of quarks of opposite chirality, or a sink for the quarks
created by a configuration with v(A) =41, as represented in Fig. 3.

For a configuration with many fluctuations, with relatively
localized fields with V(A) =+ 1, the chirality selection rules can be
satisfied by exchanging massless quarks between them in many possible
ways. When there are not enough regions with v(A) = -1 to absorb the
quarks created from regions with v(A) =+1, they must be absorbed
by sources.

The way these selection rules are explicitly asserted is that the
functional integral contains the factor det P(A); this determinant is
the product of eigenvalues obtained from

BA) v, = e

) (3.3)

nn

for each flavor. For any background field configurationm with |v(A)‘==N,
there are N zero eigenmodes for each flavor. Such a field configuration
can only contribute to Green’s functions with chirality 2N times the
number of massless quarks [1,2,3].

Now let us consider the Euclidean vacuum-to-vacuum amplitude in
the presence of the color singlet source fields & of Eq. (2.12), and
the analogous color octet fields ®, where ® = ™22 can be expressed

in terms of Hermitian fields analogous to Eq. (2.12) for &,
@ = Ea + iga- T+ ic? + pT e T (3.4)
We consider these fields, which couple to quarks like

1-y
a - .a 5 ta
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t

since chirality changes can be absorbed by scalars coupled to quarks
and antiquarks in either the color singlet or color octet channels

(since 3x 3 = 14+8). The vacuum amplitude can be expressed in terms of

a functional integral,

. B o0 1+y 1~y
Z(@,@) =fQZAe_S(A)ele\)(A)det [( >+(¢+®) _5_+(¢ + @f) 5j| .
0 P(A)

(3.6)
Consider the contribution of a color gauge field configuration with
V(A) =-1. From the chirality selection rules the first nonvanishing
term in the functional expansion of the determinant in powers of the

external source fields is the second-order term,

det|pa) + @+0) —=+ (o740 ) - det@@ + o) L4 tr|e+0)
* 2 m<A)+e}r[¢<A)+s 2 <‘D+®>J (3.7)

1+Y5 1 1+Y5 1
- tr |[(o+8) 5 ﬁ@)+e(®+@ 5 P e +

where ¢ is infinitesimal, and the trace is a functional space-time trace
as well as one over color, flavor and Dirac indices. This term is

rep¥esented graphically in Fig. 4.

-1
Expressing the space-time matrix element of the operator (B(A)+€)

in terms of eigenfunctions of B(A),

(=

1
BP(A) +¢

€ En

+ +
Vo (x") Y, x) v (x")V_(x)
X>=__Q_____.Q_.__+Z_r}____r_’___ , (3.8)
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'

with the zero-mode eigenfunctions being a consequence of |v(A)] =1,

the determinant becomes

.1.
1+y. /u (X)u () 0
det "B (A) f tr[(@(x)+®(x))-—§—5<o ° ) >]
X 0 do(x)do(x)

-f.
un(xDus(x") 0 1+y
% .f~ - [( 0 7o : )-—5—5 (@(x'>+-®<x'))}
X 0 dO(X')dO(x')

I+y u (x)uT(x') 0
- f tr[(@(x)+®(x)) —2—5- < 0 0 >
x,%x'

0 d,@ajE"

+
1+y u,(x"un(x) 0
x (@(x')+®(x'))TS ( Q i 0 e ')dﬁ-( ')>:|}’ (3.9)
X X
0 0 :

The 1/e2 from the zero-mode piece of the propagators canceling the €2

from det (P(A)+ €) due to the zero-modes. The prime on the determinant
refers to the product of nonzero eigenvalues, and u, and dO are the
zero-mode eigenfunctions of the Dirac operator in a background color
gauge field with v(A) = -1 and have positive chirality. Since the zero-
mode propagator is diagonal in flavor (but not in color), the flavor
traces for the external fields ¢ can be immediately done; they have

the flavor structure,

-% [(tr @)2 - tr @2] = det & . (3.10)

(For Nf flavors, this structure easily generalizes. For example, for
three flavors ¢ is a 3x 3 matrix; the leading term from a v(A) = -1

configuration will involve 3 scalar fields. Functionally expanding
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Eq. (3.7) to third order gives a flavor structure,

1
37 [(tr @)3 - 3tr @2 tr & + 2tr @3] = det ¢ .) (3.11)

For a gauge field configuration with v(A) = 1 the expression has the

+, ® - ®+. The zero-mode

replacements: (1+y5)/2-+(1—y5)/2, o > @
eigenfunctions of the Dirac operator now have negative chirality.

Again the flavor trace can be trivially done, giving for the ¢+ fields
% [(tr o1)? - tr(@*)z] = det o (3.12)

. i
For 8 # 0, each of these determinants has a phase factor e e; the sum
of these terms has a flavor structure proportional to

i t

Ve—iedet ® + e det & = 2 cosb (TTZ—CI)Z) - 4 sinf w e ¢ .y

(3.13)

where Wu = (o,%) and ¢u = (n,—g). This general structure follows
simply from the chirality selection rules and SUL(Z) x SUR(Z) x UB(l)
symmetry (as will be shown more explicitly later); therefore, the ®
terms must also have the same flavor structure. On the other hand,
the coefficients of the ¢ and ® terms will not be equal, in general.

Of course this is only the lowest approximation to the external
scalar field dependence of the determinants. In general there are
terms of all higher powers in the scalar fields. To see thié, we
consider another way of deriving the ¢ dependence of the determinants
which follows simply from linear algebra.8 For all configurations with

v(A) = -N, for each flavor there are N zero-mode eigenfunctions of PB(A)
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with poéitive chirality, and for v(A) = +N there are N zero-mode

eigenfunctions of negative chirality

-

by, 1oy, P V10 VTN
[m + <q> —5= + ¢ —2——> woi = ; (3.14)
® wOi , Vv=+N
where i = 1, ..., N. Also, since for all nonzero-eigenmodes,

B(rsvy) = ~eu(Ysty) (3.15)

it follows that

[125+<<1>——5+<1>Jr 5>] Sy = ¢ Sy 4o —2y (3.16a)

2 2 2

and

1+y 1-vy 1-v 1+y 1-v
5 + 5 5 _ 5 .. + 5
[125 + <(I> 5t 5 ﬂ 7 Y, =€ 5 ¥, +o —5= wn . (3.16b)

n n

For constant ¢, the determinant then becomes

N
o 14y 1-v (det @)
det[(m O> +-¢-——é-+ df———é] =
0p 2 2 (det QT)N

€ 0 )T
1 0 0
x ﬂ ( >® : , (3.17)
n 0 1 <€n O\ @T

0 tn/

L -

where the first terms in the curly brackets are determinants of the
2x 2 flavor matrices, the top term is for v(A) = -N, and the bottom
term for v(A) = +N; and where the product over n is a product of

determinants in the Dirac, flavor and color spaces— the direct product
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with the unit matrix is itself a direct product; the unit 2x 2 matrix

countg the particle and antiparticle modes, and 1 is a 3x 3 color unit

matrix. For each n,

® n
1 0\ 0 En
+ 6
det< ) ® =(e4—eztr<I>T<I>+det <I>+<I>>
0 1 0 noon

] (3.18)

Let us consider the first few terms in the expanrsion of the

determinant for weak ¢. We write

1

14y 1y
det' l:lb + 9 —?2—2-'- q>+ _.2._.5_} = exp {6 E : SLn(si—eitr <I>+<I> + det d>+<1>>}

n

1 1
= exp{6<§ ; wn ei>} exp{6 E : 2,n<1—i2— tr<I_>+tI>+L4bcllet @1-@)%

n n
En En

(3.19)

Expanding the second log, the first few terms give,

det'P exp { 6 2 : l:— tr o (I)-—i&- det <I>+<I> + — (tr ) @)2 :l }
2

1

=det'¢[1—6<z —1-2->tr @*@-3(2 %) (3.20)
) n

n €
n

[(er 67 - 2 cet %] + 18<Z %)2 (e q,u)zgf...}

Since

+

tr o 00 0 = (tr ® @) - 2det 9% , (3.21)
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and singe the nonzero-mode propagator is

o ¥y
_ cA) = :E:: 2o (3.22)

€
n n

the determinant, for A such that v(A) = + N, and for constant ¢, can

be expressed

p 0 I+y 1-y
det [< > + & —‘2—5 + (I>+ —22]
0 »

(det ¢)N 1+y5 I-YS -
= . det'D | 1+tr G(A)-—§—~ G(A)-—E——‘ tr o' ¢

(det o7) (3.23)

g 175 s 175 ot

- %—tr‘(G(A} —7?—-G(A) —7?—-G(A) —7?—~G(A) —7?—-> tr ¢ 09 ¢

1+y 1-y I+y 1-y
+ % tr <G(A) —2-—5 G(A) TS> tr <G(A) —5—5~ G(A) ——z——s—>(tr <1>+q>_)2+ :’ .

The terms in square brackets can be obtained from an expansion of

1+y 1-y
exp { tr 2n [1 + G(4) < & ——iji + ®+ ——Eji >}} (3.24)

If ® is considered a constant mass matrix that does not transform
under chiral U(l) rotations, then when ¥~ exp {iays}w, the mass terms

in the original Lagrangian is transformed to

Lo Ly -
70 o2ia —TTE' v+ ¢¢+ e

21 7Y
o3y, (3.25)

In the determinants there will then be extra phases,

det (eZia ®) = eAia det @ (3.26a)

det(é—Zia ®+> = e—4ildet ®+ (3.26b)
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Since a'configuration with v(A) is weighted by exp {i6v(A)}, the effect
of this chiral U(l) rotation of the quark fields is & - 6-4a. This
derivation of the 6 transformation property shows it remains valid for
arbitrary mass quarks [31]. (The Fujikawa [24] derivation of the trans-
formation of the fermionic measure of the functional integral is omnly
valid for massless quarks.) Of course the existence of the zero-modes
of the Dirac operator BP(A), which imply the {(det@)lv(A)l,(det®+)|v(A)!}
terms, requires the assumption of no chiral U(l) massless pole.

For nonconstant ¢, the product of eigenvalues in the function
space does not diagonalize; there are now nonzero matrix elements of the
form wEan and ¢;,®[(1+Y5)/2]¢n. For a background field with V(A) = -N
so that the zero-modes are labeled by i=1, ..., N, the determinant in

function, Dirac and flavor space becomes

— » T

+ +
Yoi © Yoj Yoi ® ¥y
det [ ]
l+y5 € 0 1+Y5
¢ 2 £ 2
Yo, &Y., ] ® 1
n' OJ n' o l € O l—Y 1"‘Y n
n 5 + 5
—_—— @ ————
(0 €n> 2 2
! i I
(3.27)

The eigenfunctions are flavor doublets of four component Dirac spinors,
with matrix elements in flavor space implied; also implied_are the
diagonal color contractions.

The new matrix elements of the form w;,éwn do not produce new

structure, they only imply the ¢’s cannot be pulled out of the integrals
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in Eq. (3.23) and so the traces over the G(A)’s do not simply contract
to sums of products of inverse eigenvalues. Further discussion of the
structure of these determinants, including the mixing of zero and nonzero

models, will be discussed for a particular background gauge field in the

next section.

IVA. INSTANTON CONTRIBUTION

Let us review the contribution to the Euclidean functional integral
of the instanton and anti-instanton configurations [15], first without
the periodic boundary conditions; later the effect of these boundary
conditions will be included. The instanton and anti-instanton configura-
tions are the first of a class of nontrivial minima of the Euclidean
action with all integer values of v(A) and S(A) = [(SWZ)/gzjlv(A)l.

The action is expanded in fluctuations about these configurations,

1 -1
S(A + 8A) =~ S(A) + 5 tr sAu @uv (8) 8A, (4.1)

where EZ;i(A) is the inverse gluon propagator in the background field
A. The fluctuation fields are expanded in eigenfunctions of the

fluctuation operator,

GAu(x) = j;: a, Anu(x) , (4.2)
where
-1 .
SZuv(A) AnvC%) = An Anu(x) . (4.3)

The contribution to the functional integral Z($,®) is given by a sum
of the weights of these eigenstates. However, the operator QD;i(A)

has zero eigenvalues due to fluctuations associated with transformations
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of A that leave the action invariant. For the instanton background
field,?

A, G =-ﬁivnl;a+av 2n<1 + ——92—7> , (4.4)

(x-X)

the action does not depend on p, Xu or Q. The po;ition and scale
parameters are due to translation and scale invariance of the classical
action, while the global gauge rotation is due to a mixing of color and
Lorentz properties. In Euclidean space~time the Lorentz group is
0(4) =~ 8U(2) x SU(2). Acting on Dirac spinors, the Lorentz generators
are cuv[(lfy5)/2] = ;;ieuvaecas[(ltYS)/ZJ; that is, the left- and right-
handed spinors are Lorentz rotated by self-dual and antiself-dual
SU(2) subgroups of the spacial O(4). On the other hand, A\? associates
with pairs of Dirac spinors in the fundamental representation of color
SU(3), a color SU(2) vector. This color SU(2) index and the spacial
SU(2) vector index are to be contracted, but the color and spacial SU(2)
vectors can have an arbitrary relative orientation. The integration
over Q averages over all these relative orientations, as well as over
all embeddings of this color SU(2) subgroup within color SU(3). The
sums over the weights of these modes are converted to collective coordin-
ate integrations over Euclidean space-time positions, scale sizes and

global gauge orientations.l® The result is
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2
6 2,2 det -~ D°(A)
_ d4x 4o 40 2<2n> 87 /8 0
1 anti-instanton P g

Zl ingtanton + B 5 2 ]
\/iiet ) v (A)

14y 1-vy
X { det[y)(A) + (2+0) ———5— + (®++®+) —2—51]
(4.5)

1+Y5

1~y
+ det[]b(A) + (9+®) ————+ (<I> +0 ) TS_J}

The prime on det' refers to the product of nonzero eigenvalues, and the
term det-Di(A) is the Faddeev-Popov gauge fixing determinant.

The fermionic determinants have been discussed formally in the last
section. The zero-mode matrix elements can now be evaluated with the

explicit eigenfunctions [171],

% 3 ' -
wo(x-—X) = -(81T2) 0’ €x-X) ¥ , (4.6)
where
gx) = E 4.7)
0°\?
<1 + —2—>
x
and where
1 x
G(x) = —-——i (4.8)

(XZ)
is the Euclidean free massless fermion propagator, and x is-a constant
color and Dirac spinor (for each flavor) of definite chirality;

YsX = +y for an instanton (anti-instanton), with the property

+
1—Y5

t_
trolorXX ~ 2 : (4.9)
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This singular-gauge zero-mode wave function is obtained from 't Hooft’s
regular gauge result [15] by a color gauge transformation with

Qx) = (Xuxu)/ng; where Au = (l,ika), a=1,2,3, and by using the fact

that the zero-mode wave function has definite chirality and zero angular

momentum,
a ' a Aa)
= + S = ]
J wo (S 2 wo 0 s (4.10)
. . a .. _&a . -2 i —
where the spin is S~ = 1nuvcuv for instantons or %n vcuv for anti

instantons. The zero angular momentum condition implies a color rotation
has the same effect on right- (left-) handed spinors as Lorentz rotations;
this implies Auxu and YUXU have the same action on right- (left-) handed
spinors.

The evaluation of the nonzero-mode determinants has been performed
by 't Hooft [15], and has the essential effect éf renorﬁélizing the
action. This is heuristically seen by expressing the nonzero-mode

determinants in Eq. (4.5)

exp{—% tr' in @;i(A) + tr ln—Dﬁ(A) + tr'in ﬁ(A)} (4.11)

and functionally expanding the terms in the exponent in powers of A.
This gives all one-loop graphs with external A fields; there is a

local contribution with the structure ftrFﬁv(A) to renorma;ize the
classical action. Defining the coupling A(p) (essentially the partition

function for a single instanton),

=S (A) det - Di (A)

12 e
Ap) = — (/‘s@) (4.12)

(4m)

] 7 -1
det EZU\) a)
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it therefore has the form
2 6

2,2
- A(p) = const. <:éﬁL——> e"81T /8" (ou) . (4.13)
g (pu)

where éz(pu) is the usual one-loop effective gauge coupling, for scale
size p, and subtracted at the momentum scale yu.
The instanton and anti-instanton contribution to Z($,8) becomes

4, dp i6 +
Z1 instanton + f d X 5 da >\(p)<|: det j}; tpfo(X—x)

1 anti-instanton e
'I'(q;(x) + ®(x)) Q lpf, (x-X) + e det fw;o(X—x)
X
(4.14)

1':"Y
x 2 (0" + o' w) 520 IPf,O(x—X):I exp tr zn{ 1 + G(A) [(q>+ 0)

l+y5

x.—i—— + (¢+ + ®+)

1=y
-—Eii] } + mixing of zero-and nonzero—modes> .

The zero-mode determinant is in the 2x 2 flavor space. The integration
over all global color gauge transformation Q will not affect the 9
terms but will give a different coefficient to the ® zero-mode terms.

The result is

2
B .2) 4
Z1 instanton + = (811’ fd Xpdp A(p) f ' tr ¥X—x) ¥ x-X)

. . X,X
1 anti-instanton ’

x tr @X—=x') ¥(x'-X) 2Re e—-ie{[(o(x) + in(x)) (U(X') + in(X'))
(3 + 7)) (3D + )] - & (7@ + 12w)

x (2" + 122G&")) -(32@) + 1)) - (FPen + i§a<x'>)]}



-35-

lT"Y 5
2

I+y
x <1 + f tr GA(x—X,x'—X) ——2—5 GA(x'—X,x—X)

N

x {[o<x)c(x'> + ) - T(x") F nEn') + 3 -?E(x')]

+ [&a(x)aa(x') + B2« Bx") + 223" + 33 (x) . 3a<xv)]} + >

(4.15)

The nonzero-model propagators GA are those of Brown, Carlitz, Creamer
and Lee [32]. These terms are shown graphically in Fig. 5., The first
term is the 't Hooft term!! [1,15], and the second term has nonzero-
mode propagators in the same background instanton or anti-instanton
of the first term.

The structure of the remaining terms not shown in Eq. (4.14) can
be simply expressed graphically (Fig. 6). 1In thé first term of Fig. 6,
the instanton serves as a quark source; these quarks interact with the
external scalar fields, and between scatterings propagate in the back-
ground field of the instanton. The second term represents a quark loop
(in general there are many such loops), interacting with external
scalar fields and propagating in the same background instanton field of
the first term.

In the constant external scalar field limit, the terms involving
the mixing of zero-and nonzero-modes vanish by orthogonality. The
flavor and color contractions of the zero-mode terms can also be

expressed in the form
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(e det o + 1% det ot) - f%—(e‘ledet 0® + 1% qer ™)

-,

-{ 2000 [(2+77) - (P+3)] + ¢ stns (on-7-3)} 4.16)
- % {2 cos 8 [(Ea2+~éaZ) _ (ca2+ gaZ)] + 4 sind (Eaca_—éa.ga)} ‘

Thé color and flavor contractions of the nonleading terms multiply

the first term by a polynomial in all powers of invariants of the form

tr ®+®, tr ®+®®+¢, tr @+®,

tr oteo’o, tr o7 o0'0, tr oTos'e, tr 07 o0Ts,

and for color SU(3),

T
tr oloo’e | and tr 96000 .

Consider the leading term in the external fields. For fixed o

for that part of the position integrations for which (x—X)2 >> p2 and

x'-0)? »> o

, the effective propagators € are essentially free
fermion propagators, and our amplitude is essentially that of lowest
order perturbation theory from a four-fermi interaction. For short

distances, however, the extra factors of [l+p2/(x—X)2]3/2

in ¥ act to
dramatically soften the short distance behavior of the effective four-
fermi vertex.

In our expression for Z, we must also integrate over all scale
sizes p. For large p the gauge coupling éz(pu)/8n2 in the effective
coupling A(p) gets large, invalidating the semiclassical approximation.

On the other hand, if we consider the theory at finite temperature,

for high enough temperature the thermal fluctuations will surpress the
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contribution of the large-scale strong quantum fluctuations. This is
bgcaussxany quantum fluctuation with energy that is small compared to
the temperature is washed out by thermal fluctuations, independent of
whether the low-energy quantum fluctuations have large coupling.

Correspondingly, any quantum fluctuation with large energy relative to
the temperature is unaffected by thermal fluctuations, so temperature

serves as essentially just an infrared cutoff.

IVB. EFFECT OF FINITE TEMPERATURE

We will now consider the theory at finite temperature and show
how the leading high-temperature effect of thermal fluctuations is
to exponentially cut off the contributions of large instantons with
strong coupling.12 Tﬁe result valid for all temperatures has been given
by Gross, Pisarski and Yaffe [14].

Finite temperature gauge fields are obtained from the Euclidean
fields by requiring them to be periodic in their time variables with
period B (inverse temperature). The Harrington-Shepard [35] finite
temperature instanton corresponds to a multi-instanton configuration
with the infinite set of instantons spaced in time with the interval 8,
but at the same position in space and with the same scale size. For

the 't Hooft form of the multi-instanton configuration it is

[+ <]

-a 2
-n vavln 1+ o

i
e (t-T-ng)2 + (*-%)°

->
A% (t,%)

(4.17)

2 2 sinh Z¥ [Z-X]|
TP B

Blz—ilz cosh %g-lg-il + cos %g-(t—T)

-a
- nuva\)ﬁn 1+
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Althouéh this configuration is made up on an infinite number of instantons,
it still has v(A) =1 because the time integration goes only from 0 to B.

As the temperature goes to zero, this reduces to a single instanton in
singular gauge.

The thermal fluctuations about the finite temperature instanton are
obtained along with the quantum fluctuations by imposing periodic boundary
conditions in the Euclidean fields and propagators in the calculation of
Feymman graphs for the quantum fluctuations. On the other hand, the
thermal and quantum fluctuation effects can be separated in these graphs
by transforming back to a Minkowski space-time description where the
free propagators can be split into temperature independent and

dependent terms, as for example [36], this massive scalar propagator,

1 2mi 6(k2-m2)
5 7 - RE (4.18)
k™ -m e" -1
where E = ﬁz + m2 . The effects of these fluctuations can be described

by an effective action. The leading high-temperature contributions to
this effective action are determined by the graphs, most divergent by
power counting [37], that arise in the functional background field
expansion of terms like % tr' &n gz;i(A). This is because, in the
temperature dependent terms, the high energy contributions to the graphs
are cutoff by Boltzmann factors, exp {-BE}, essentially replacing the
ultraviolet cutoff in the temperature independent terms by 1/8. The
seagull graph is quadratically divergent; it contributes to the
effective action a term proportional to

i .
f dt fd3x 1 A2 (4.19)
0 32 U
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While in the temperature independent piece, this quadratic divergence
in the seagull term is cancelled by a Schwinger term; this temperature
dependent mass term is not cancelled!? because of the lack of manifest
Lorentz invariance of the temperature dependent terms. This term is
similar to the photon mass term in a plasma. The integration over the
finite temperature instanton is proportional to p2, and so this correc-
tion to the classical action of 87r2/g2 is proportional to 92/82. The
thermal fluctuations therefore cutoff the effects of large scale sizes
like exp {-comnst. p2/82}. The constant, evaluated by Gross, Pisarski
and Yaffe [141], isZn2/3 times the number of colors.

Finite temperature quark fields are obtained from the Euclidean

fields by making them antiperiodic in their time wvariables,

P(t+n,x) = (<D 9,3 . (4.20)

These boundary conditions must be imposed on the eigenfﬁﬁctions of
the Dirac operator in Eq. (3.3). Similar to the gluon fluctuations
just considered, there is a thermal correction to the instanton density
coming from the quark contribution to the action, -tr' #n B(A). The
leading term at high-temperature comes from the most divergent graph,
the vacuum polarization graph with external thermal instanton fields.
Again, in the temperature dependent terms the seagull and Schwinger
terms do not cancel, the quadratic divergence (photon mass) being
replaced by 1/82. Integrating over the instanton fields, the quarks
thus contribute to the constant in the exponential suppression of
large scale sizes in the instanton density; the constant is n2/3

times the number of flavors [141].
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The zero-mode eigenfunction of the Dirac operator in a background
instanton field must also be corrected to include the antiperiodic

boundary conditions. wO is now an antiperiodic solution of

(2 + 84()) vy =0 (4.21)

where Au is a finite temperature instanton. It can be obtained from
Grossman’s [38] analysis of the zero-mode eigenfunctions in a background

multi-instanton configuration, and has the form

_ 1 5 + [ 9(x)
Yo = - . 3 (x) ’5<n(x)>x (4.22)
277 p
where
2
n(x) = 1 +——‘°—2 , (4.23a)
(x-X)
and where -
2
¢ (x) = C(-D® & . (4.23b)
Z (t-T+nB) 2 + (3-%)2

n=-—w

As 1/B -+ 0, this reduces for the singular gauge zero-mode wavefunction,

Eq. (4.6).

V. MODELS OF PHASES

In order to get an indication of the symmetry realizations in QCD
we will couple to QCD various scalar field theories, analogous to
scalar sectors of weak interaction models. We choose the parameters
of the potentials for these scalar models so that different combinations
of symmetries are spontaneously broken, and then study the effect of QCD
corrections on their effective potentials, and thus on their symmetry

realizations. We consider these theories at high temperature, and



41—

b

lower temperature to explore phases. Two scalar models will be discussed
with t&e following spontaneously broken symmetries: (A) both spontaneous
chiral SU(2) symmetry breaking and spontaneous isospin.breaking; (B)
both spontaneous chiral SU(2) symmetry breaking and spontaneous P and
CP violation. These models of flavor symmetry breaking are described

by the Lagrangian

L @3 /i@ 0 \ (u
¥ = - 7 tr F© (A) + ( (
2g e 0 iB(A) d

Y DR e 1-y u
—f(_ud)l:cb 25 +¢+——2—5—]<>
d

tr‘a q>| - V(3) (5.1)

-l-\ll--

A,
In the first model we consider V(%) to be invariant under
UL(Z) X UR(Z). The potential is chosen to be a quartic polynomial

of the two possible U (2) x U (2) invariants,

L (c +1r2) (n +$2) 'n +¢ (5.2)

and

2
er ofoste = (tr 0Te)? - 2[(1r2 - %) + 4 ¢)2] , (5.3)

> >
where again Wu = (o,m) and ¢u = (n,-¢). Under chiral U(l) transforma-
tions these four-vectors transform into linear combinations of ome

>
another, and under chiral SU(2) transformations the components of (o,m)

. 2 =2 . . .

are transformed into one another so that ¢  +7 1s invariant, and
similarly for (n,-¢).

We choose V to bel®

2

V(3) = - —%— tr @ d + — (tr ) @) — tr sTo0te (5.4)
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Let us first classically analyze the scalar sector at zero temperature.
For A = h > 0 this potential is bounded from below. The tachyonic mass
term creates an instability of the symmetric phase, leading to spontaneous
symmetry breaking. Because h is chosen positive, the potential can be
minimized for <ﬂu>2 = <¢u>2 # 0 and for <wu><¢u> = 0. Of the infinite
number of minima, we can choose the frame for which <o># 0 and <¢3>= -<{g>
corresponding to both spontaneous chiral SU(2) symmetry breaking and

spontaneous isospin breaking. Because the magnitudes of <¢> and <¢3>

are equal, the u quark remains massless:

- - _ 3. 3 (wd)yo 0\ u
£3, <odp + £3.< vy = £5(<o> + <4730 )y = < (5.5)
R R L
0 my d
where my = 2f<0>. Therefore there remains an unbroken chiral U(1)

symmetry
ioye 1+t

u e u | = i—5—ay
R ety . (5.6)
d d

There are three pseudoscalar pion-like massless particles associated
with the spontaneous chiral SU(2) symmetry breaking that gives the same
mass to the u and d quarks, and two massless charged scalar particles
associated with the spontaneous isospin breaking that splits the masses
of the u and d quarks.

Now let us consider the complete model in order to comﬁute quantum
corrections to this potential. The Euclidean functional integral for

this theory is

f@@ @’ W) (5.7a)
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where
@) eXp{_'/‘[% tr|au®|2 N V(Q)]} f@A -S(8) 16v(A)
I+y 1~y
x det [ID(A) +f <<1> —~2-—-5— + ot 7‘5‘>] (5.7b)

The semiclassical effective potential can be obtained from the semiclas—
sical effective quantum action, W(®) - tr ¢n ZZ-I(Q), where 53—1(@) is
the inverse scalar propagator in a background scalar field. W(¢) is
calculated by approximating the QCD functional integral semiclassically,

expanding about the approximate minima of S(A). This gives

2
det (_3 ) 14y 1-y
W@ L det <2§ + 0 5 4+ of ———2>

1 2 2
\/det QD UV(O)

_gn’
82 2
X 1 + _1 d collective e det - Du(A)
z(0) coordinates .
Y, o
\[det @uV(A)
. B 1+y 1-vy B i Ly
x {eledet E(A)+<1>___.25+q>'|' 25]+eledet[]6(A)+q>__§__5_

1=y, 7
+ b} 1 2
+ 9 —2—-} + ...) exp{—f[z tr‘auél +V(<I))]} s (5.8)

where Z(0) is the first term on the right-hand side. These expressions
are to be evaluated with finite temperature boundary conditions. The
constant ¢ dependence of the fermion determinants in background

instanton fields is [from Eq. (3.23)],



-

. . 2
fz(e“le det & + e+1e det ®+) 1 +-%r tr ¢+¢
x (tr 6(A) G(A) - tr G(0) G(O)) + ... (5.9)

In the dilute instanton gas limit, these single instanton terms

exponentiate; the scalar potential V(8) is corrected from these

instanton effects by the terms,

v(o) + £2c? (e719 det o + ™0 ger ¢+)<1 + Z—f; tr @*@) (5.10)
K
where
= fd—g A (5.11)
p
and where
e = f% A(0) (tr 6(A) G(A) - tr 6(0) G(O)) .  (5.12)

p

The effects of finite temperature boundary conditions on the instanton
contribution, as were previously discussed, essentially just cut off the

instanton density with the factor exp {-const. pz/Bz}. The temperature

1+y 1-y >:|
2 5 + Y5
_4det(~3u)det[ﬁ+f<®—§—+® —2—

\[det' @;i(O) det @—1@)

dependence of

(5.13)

gives exp {-B (free energy of quark, gluon and scalar gases)}. The

leading high temperature terms in the free energy go like [36,37]

- const. T4 + const. T2 tr @TQ (5.14)
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The temperature independent terms from the quark and scalar determinants

..l-

will renormalize tr ¢ ® and tr ®+¢®+¢, as well as give terms of all

higher powers of these invariants. Because of the explicit mass scale,
though, all powers higher than quartic will be neglected.

Therefore, up to quartic terms, the & dependence of the potential

is of the form

V(e) = (const. Tz—uz).% tr¢+®'+f%-(tr cp+¢)2 - %% e oteste
. K2 2 'e _.e ‘f‘ fz +
21

To analyze the symmetry realizations from this potential, let us first
briefly consider 6 = 0; we will return to the 6 dependence. Then the
most important modification of the original potential comes from-the

mass terms, which are now
2
%—(const. T2— uz— KZ(T))'rr2 + %-(const. T2-u24-K2(T))¢ (5.16)

From these terms we see that the instanton contribution increases the
tachyonic mass term for the o and T fields, increasing the tendency
for spontaﬁeous chiral symmetry breaking, while on the other hand it is
trying with the thermal fluctuations to stabilize the mass term for
the n and $ fields.

To study the symmetry realizations for 6 # 0, we can in general

choose a basis for & so it is diagonal,

» = ; (5.17)



Then the potential becomes

=1 2_ 2\ 2 2\, A(2 2\2 h(4 4
V—iimeT—u)@wmd+Z %+%) —Z@4mﬁ

KZ 2 € 2 2 2
-5 £ ommy cos(e—-¢u-f¢d) [l - ;E-f (nh-kmd 5] (5.18)

For a range of parameters and temperatures, this potential has a
global minimum for m # mys and ¢u + ¢d = 6. The lattér equation is
the condition for no CP violation; it is a consequence of the chiral
U(l) symmetry of the scalar sector as explained by Peccei and Quinn [39].
The elimination of strong CP violation is accompanied by an axion [40],
but is corresponds to a state most naturally identified with n° rather
than n.!® Spontaneous chiral symmetry breaking would create massless
7° and n states; spontaneous isospin breaking then mixes these states.
The massless state no-n could be identified as the neutral partner of
ﬂi, while the massive state wo4-n could be identified with the
"isosinglet' state, The instanton effect gives mass to the ordinary n
state, and so the neutral "isotriplet" particle acquires a small mass;
the "isosinglet" pseudoscalar mass is slightly shifted. Also, the u
quark which had been massless before including instanton effects now
acquires a small mass.

n =~ —KE _ (5.19)

Y imy

Of course there is still a charged pair of massless pseudoscalars and

scalars, as well as two neutral scalars, one the partner of the massless

pair, and the other the o.



As 'the temperature is lowered further Kz rapidly increases; there

could then occur a phase transition to a phase with restored isospin

-

symmetry.l6

The massless charged scalars will now acquire the same
mass as their neutral partner; the quark masses will also become equal.
Furthermore, the massive n will become light— it will correspond to
the axion [34], and there will again be an isotriplet of massless
pseudoscalar ;’s

As the temperature is lowered still further, corrections to the
dilute gas approximation become important; these will be discussed
in Sections VI and VII. Already, from this very simple model, we see
that QCD effects tend to restore the isospin symmetry and spontaneously
break the chiral symmetry of this scalar model. This is an indication
that the dynamics of QCD will choose this combination of symmetry

realizations as the temperature goes to zero.

B.

In this model of spontaneous CP violation we choose the potential
in Eq. (5.1) to be invariant under SUL(Z) X SUR(Z) [as well as UB(l)],

and of the form,

2 2
u u 2
Vi) = - 2w -2 22 (24 4?)
h 2
2 - : .
B e op oy o

This potential has a minimum for spontaneous symmetry breaking such
that <ﬂu> and <¢u> are both nonzero (from the h term), are parallel
(from the h2 term), and are unequal in magnitude (from the h, term).

We choose the frame so that <¢> # 0 and <n> # 0. This potential
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therefore implies the spontaneous breaking of chiral SU(2) symmetry
and P and CP; because there is no chiral U(l) symmetry of this

potential, this CP violation cannot be rotated away. The spontaneous

CP violation shows up as a phase in the quark mass term,

n

B, <oy + $R<¢*>wL B, (<o> + Lnd)g + T (<o> = i<md)oy

\/<c>2 + <n>2 <el‘S ELwR + 18 ERwL) , (5.21)

where § = tan—l(<n>/<0>). Transforming this phase out of the quark
mass term by a chiral U(l) rotation makes it show up in the scalar
self-couplings and in etr'Fuvﬁuv, thus this weak interaction CP
violation induces strong interaction CP violation.

At very high temperature this model is in its symmetric phase,
and as the temperature is lowered it undergoes a-phase transition to
a phase with spontaneous chiral SU(2) and P and CP symmetry breaking.
As the temperature is lowered further instanton effects sharply turn on.

The effective mass term becomes

.%—(const. f2T2-u§-K2)n2 + %~(Fonst. f2T2-u§ + K2>¢2 (5.22)
Once again the instanton effects reinforce the tendency of the scalar
theory to spontaneously break chiral SU(2) symmetry, but they also
tend to restore the CP invariance (they tend to reverse the‘tachyonic
sign of u%).

This effect should be contrasted with the Pecci-Quinn [39] effect
where a chiral U(l) symmetry of the weak interactions prevents weak

interaction CP violation from inducing strong interaction CP violation.
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Here there is no weak interaction chiral U(l) symmetry; the dynamics of
the strong interactions tends to restore weak interaction CP violation.
if in 1he real world weak interaction CP violation is spontaneous, the
tendency of the strong interactions to restore this symmetry may be a
clue to why CP violation is so small. As a consequence we would expect
that at high energy, CP violating effects get larger.

We have seen that the effect of QCD instanton corrections on weak
interaction symmetry realizations has been to enhance the tendency for
spontaneous chiral SU(2) symmetry breaking, and suppress the tendency
for spontaneous isospin and CP breaking. Further, these same instanton
effects give mass to the weak interaction chiral U(l) massless particle
(axion) [34]. Therefore, they have the tendency to create the same
combination of symmetry realizations in the weak interactions that are
presumed to occur in the strong interactions; that is, QCD wants to
lock the weak interaction symmetry realizations to its own. When we
later include the instanton chirality correlations, these tendencies
will be further enhanced.

The reason for the restoration of CP symmetry has the same origin
as the reason for the restoration of isospin— the opposite sign of the

2 472 and n? + 3%, Chiral su(2)

instanton induced mass terms for o
symmetry links n and $ just as it links o and ;, therefore the realiza-
tions of isospin and CP are linked simply by chiral SU(2) symmetry.

It is the instanton induced (spontaneous) chiral U(l) breaking that
produces this interrelation of symmetry realizations in which the

tendency for spontaneous chiral SU(2) symmetry breaking is linked to

the tendency for isospin and CP symmetries to be manifest. The reason
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the instanton effect tends to produce this combination of symmetry
realizations is completely a consequence of the chirality selection
rules.

The relative minus sign between 02 + ;2 and n2 + 32 is a reflection
of instanton induced attractive interactions between quarks in $w and
i@ys?, channels versus repulsive interactions in the i$¥5w and @?¢
channels. The positive mass contribution to the n, for example, is
due to the instanton induced repulsive interaction between quarks in
the flavor singlet pseudoscalar channel. This repulsion must be
contrasted, though, with the confinement dielectric effects, the onset
of which are associated with the large dipole moments of the same
instantons. There will certainly be confinement independent of flavor
channel; the difference between the T and n, though, is that T can be
a vacuum (phase oscillation) state before (at a higher fémperature)
becoming a confined state as well, while the n is not a vacuum state.

Instantons also induce interactions between quarks and antiquarks
in color octet channels, as seen from Eq. (4.15). In general we should
consider models with color octet scalar fields, ®, which have
UL(2) x UR(Z) quantum numbers. Expectation values for these fields
would simultaneously spontaneocusly break both the color gauge symmetry
and the flavor symmetry. However, the instanton induced forces between
quarks in these channels are much weaker than in the color éinglet
channels, so spontaneous symmetry breaking of this kind will not be
considered.

On the other hand, spontaneous color gauge symmetry breaking could

in principle occur, and without directly also breaking the flavor
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symmetr?. This would require colored scalar glueball states. (It is
difficult to see how this could happen, though, since gluon exchange
gives repulsive forces between gluons in color octet scalar channels.
These colored glueball channels would couple to colored scalars, Gi,
but not directly to quarks. Induced nonlocal couplings with quarks
would exist, though, and these would induce mixing terms in the
effective potential between these colored scalars and the ¢’s (see

Fig. 7). This kind of mixing implies that in principle the realization

of the color gauge symmetry and the flavor symmetry are interdependent.

VI, EFFECTIVE FIELD THEORY FOR CHIRALITY CORRELATIONS

In this section we will include the effects of chirality correla-
tions between instantons and anti-instantons. It will be shown that
the contribution of these correlations can be apﬁroximatéd by the
effective quantum field theory [2] of the 't Hooft Lagrangian [1,15].

At moderately high temperature the semiclassical approximation
is assumed to be valid; the functional integral will therefore be
dominated by configurations close to the minima of the classical gauge
field action [7, 41]. While the exact minima of the Euclidean gauge
field action are multi~ (anti-) instanton configurations with all
integer values of v(A), the volume in field configuration space for
these minima is very small [7]. On the other hand, there are many more
configurations close to the minima than there are minima. The configu~-
rations close to the minima with large volume in field configuration
space correspond to a plasma of well separated instantons and anti-

instantons with v(A) = *1. The instantons do not interact with one
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another'classically in the sense that the action for an exact multi-
instanton configuration equals the sum of actions of individual instan-
gons EZZJ. Instantons and anti-instantons do interact classically,
though, like 4-D color magnetic dipoles [7]. (Actually, the action for
a configuration with a sum of instantons does not equal the sum of
actions for separate instantons, but this interaction is weak relative
to that between instantons and anti-instantons [43].) The instantons
and anti-instantons also have additional quantum mechanical interactions,
the most important of which arise because of the chirality selection
rules for massless quarks; they interact by the exchange of chirality
in all possible ways consistent with these selection rules [2].

The semiclassical computation of the QCD free energy is equivalent
to computing the corrections to the perturbation theory free energy
due to the external field from a plasma of thermal instantons and anti-
instantons. The effect of finite temperature can be implemented by
imposing (anti) periodic boundary conditions on the Euclidean theory;
we will first consider the contribution to the Euclidean functional
integral without the periodic boundary conditions, and later mention
the effect of these boundary conditions. In the following discussion
we will also neglect the dipolar interactions compared to the chirality

correlations, and will later show how to include these corrections.

The QCD Fuclidean functional integral is approximated by

collecti e-S(A)eiev(A)desz(A)
7 ~ E fd( olle 1"e) M et P(A)
coordinates 1
configurations \/det' @uv (a)

close to minima
(6.1)
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For A tﬂe field of a gas of instantons and anti-instantons, the
eyaluaE?on of these determinants is analogous to the evaluation of the
determinant of the Hamiltonian of a molecule. The eigenvalue problem
is approximated by perturbatively expanding the molecular wavefunctions
about a basis of atomic wavefunctions. In the lowest approximation,
corresponding to large instanton separations, the determinants factorize
into a product of determinants for separate instantons and anti-
instantons. The collective coordinates are then those for separate
instantons and anti-instanton This contribution to the functional
integral vanishes, however; the operator E(Ai), for Ai an instanton

or anti-instanton, has a zero eigenvalue due to the violation of the
chirality selection rules. (When we previously considered QCD coupled
to external fields, the external fields absorbed the required chirality
changes. The approximation for QCD previously cdnsidered.in our dis-
cussion of QCD coupled to weak interaction models was just this lowest
order approximation.)

The correlations between instantons and anti-instantons necessary
for consistency with the charality selection rules arise from the first
order correction to the zero eigenvalues. Degenerate perturbation
theory, in the basis of the zero-mode eigenfunctions of the Dirac
operator in separate instantons and anti-instantons, is used to

calculate the corrected eigenvalues:

[
o

(6.2)

+
det [.]; wO(Xi—x) P(A) wO(X—Xj> - Eaij]
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is an Nth order equation for €, the N roots being the corrected eigen-
values. We need only the product of these eigenvalues, though, and this

producg\is just
+ -
det [.j; wo(xi-x) B(A) wo(x-xj)] = det H(X,,X,) (6.3)

The lowest nonvanishing contribution to the QCD Euclidean functional
integral from this gas of instantons and anti-instantons, then takes
the form of a grand partition function:

- N HN_

1 ( b 16(N,-N_)
N,=0 h i=0

The matrix elements H(Xi,Xj) are evaluated with the explicit zero-
mode eigenfunctions of the Dirac operator in a singular gauge instanton
or anti-instanton. These matrix elements are nonzero only if wo(x—Xi)
and wo(x—Xj) have opposite chirality [2]; that is, if one is from a
background instanton and the other from an anti-instanton. This is

because

fx bh(%;m%) B Yabo(x-X;) = - fx [YSwo(x-xi)]*wA)[vswo(x—Xj)].
(6.5)
The H(Xi,Xj) describe the space-time dependence of the exchange of
chirality between instantons and anti-instantons. For (Xi-;Xj)2>> pipj,
this space~time correlation approaches that of a free massless fermion

propagator. This can be seen by approximately evaluating the matrix

elements [2].
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J, #5(5s) 9® w(ex3)

fx wg(xi-x)[s - A (xKy) = e - A/<X_XN++N_)] o(x53)

f}‘c wg(xi—x){[— 3 —Az(x—xi)] + [75 —P[(x—Xj)]
+3- Y H(xK) }wo(x—xj)

k#1i, ]

f};wg(xi—x) 3 - Z A((X—Xk) wo(x—xj) (6.6)

k#i,

The first term in the last expression can be rewritten

." 4 1] \
L,x'wO(Xi—x) 6 (=) 4 ‘po(x _XJ) .
(6.7)

= j};’x' wg(xi—x) ¢ lix-x") bo(x'-X,)

and with Eq. (4.7) gives the stated result. The second term in the
last expression of Eq. (6.6) is a small contribution of the overlap
of three distantly separated wavefunctions; we will ignore it in the
following discussion, but will discuss its effects in the next section.

We will now show that the space-time correlations between the
instantons and anti-instantons can be described by a fermionic quantum
field theory. The determinant of H(Xi,Xj) is expanded in a cycle

expansion
N

det H(X;,X,) = E € H(X X )H(X , X
( i J) My eee By 1 Hy N My , (6.8)

Ui=
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where N = N+ + N_. This is the sum of all possible closed loops, with
appropriate exchange minus signs. There is actually a product of

determinants for each quark flavor since

‘];TEu 0
det< f w*ﬁw) = det
0 _/ atpa

Some examples of terms for N, = 3, N = 3, and 2 flavors follow: the

det<fu+]bu>det < fd+16d> . (6.9

simplest term occurs when, for each flavor, uy = 2, Ho = 3, ... Uy = 1,
as illustrated gréphically17 in Fig. 8(a). Another kind of product of
the two largest cycles comes from a different ordering of the vertices
for the two flavors, as in Fig. 8(b). A term with the same structure
as the first we considered in Fig. 8(a) comes from a product of smaller
cycles, TFig. 8(c). Disconnected graphs are aléo generated, Fig. 8(d),
as well as products of cycles of different sizes, Fig. 8(e). Other
permutations give all possible combinations. Each vertex Xi is multi-
plied by a factor A(pi)eiie, and integrations are performed over oy Qi
and Xi'

This grand partition function therefore corresponds to an infinite
number of graphs;18 these‘graphs are exactly all the graphs of an
effective quantum field theory. Therefore expression (6.4) for Z is

approximated by

_ _ T d) u
f@u@u Dd Dd  exp —f 3 < >+ g’eff (6.10)
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where

Lor e = fﬁ%“ﬂ) fdﬂ {eie Z,(2,%,0) + e y_(Q,X,o)} (6.11a)

where

2= [ [senete senipen ¢ oyhueh ]
X,x'

b

]
Y,y (6.11b)

x -/' (36 ") ape-naf @w ¢ amuae ]
z,z'
w,w'

The only difference between the instanton contribution, :Ql, and anti-
instanton contribution, &£, is the chirality of the constant spinors X
in the zero-mode wavefunctions, Eq. (4.6). Performing the integration
over all global color gauge transformations gives contractions of the
color indices of the X spinors in different ways; the color contractions
of these spinors give, from Eq. (4.9) chirality projection operators,

consequently implying contractions of Dirac indices. The result is
Gd) 1-y. /u 2 (u d) I-y. /u 2
2 .= [odor(p) | ™ R q—1 S IS l
eff 2 2
d d
@aH 1 2 r@a -y, fu\]°
3 v a Ys(Y wd) oy 1775
- 16 I 5 ~ IA T 5
d d

. 1-vy 1+y )
+e-16< 25 > 25> . (6.12)

> . . . . a
where T are the ordinary 2x 2 flavor isospin matrices, A~ are the color

matrices, and where the implied space-time structure in, for example,
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the color matrix current

(u d) 1+y u
- I a? =2 ( >
2 \a4
is
(u d) u
f (x) I(x-X,x'-X; ) A2 ( )(X") s (6.13)
x,x' d
where

feiP'(x—X) h(pP) f XD hopy L (6.14a)
P - P!

I(x-X,x'-X;p)

and where h(pP) is the Fourier transform of the space-time dependence
of the singular gauge zero mode Dirac eigenfunction, Eq. (4.7),with a

factor of 1/P taken out [171],

> 2
2 s : .
h(pP) = {——- .I~ ds ——— J,(pPs) . (6.14b)
ﬂz 0 (1+s2)3/2 ?

The complicated looking expression for ‘g%ff is simply the analytic

realization of e16 times a AQ5= -4 operator that couples quarks (without

regard for different color contractions), like

uRuLdeL - uRdeRuL , (6.15)
and e_16 times a AQ5=-+4 term which couples quarks like
uLuRdeR - uLdeLuR (6.16)

Note that if we perform a chiral U(l) rotation of the quark fields by
o, Y -+ e s ¢, then 6 » 8- 4a, consistent with the transformation

law implied by the chiral U(l) Ward identity. This expression has a b
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periodicity of 27 as expected from the fact that the contributing config-
uratiops had locally v(A) = #1.

While the current structure in Eq. (6.12) for 'Qfo simply illus-
trates the chirality properties, for purposes of studying possible

spontaneous symmetry breaking it is best to reexpress the current

structure as
Locg = fpdp A(p) { [eie det 6(v,9) + e 0 det <I>+(tb,15):l
- 136 [eie det 8%(4,%) + e det @”(w,@)}} (6.17)
where the 2x 2 flavor matrices ¢ and ® are defined

-

ul 1?5 u ul 1—-215- d
2(v,9) = | ; (6.18)
dz 1?5 u dI IZYS d
and _ . 7
a1 A2 1—2$ u a1 A2 —1-——;3 d
®a(w’$) = . (6.19)
ar A2 1;Y5 u ar 2? }:;5— d

These composite fields can be decomposed exactly as in Eqs. (2.12) and

(3.4) for the scalar fields, where now

o(6.3) = [(Fm) + 1 (sF1vg70) 7]

+ i (1vge ) - i (vt ) - 7]

(6.20)
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and where
. 0.T) = [(I0) + 1 (v Dy - 7) ]
+il:(it_pIy5>\a‘P) -1 (Y - T)] (6.21)

This effective field theory of quarks represents the leading semiclassi-
cal approximation to QCD. The nonlocal quark dynamics results from
chirality correlations of gluon topological fluctuations, and is not
the result of semiclassically integrating out the gluon degrees of
freedom keeping the quark fields fixed. The later effective nonlocal
field theory of quark degrees of freedom would be an appropriate
approximation for heavy quark dynamics [46].

Finite temperature boundary conditions on the original QCD function-
al integral have the effect on this effective field theory of including
the modifications discussed previously for a thefmal inééanton contri-
bution to finite temperature QCD: the coupling A(p) is exponentially
suppressed for large p, and the form factors in I (from the zero-mode
wavefunctions) must be corrected to be conmsistent with the antiperiodic
boundary conditions. Also, the fermonic functional integral here must
be over antiperiodic fields.

We must still approximate the effective field theory in order to
obtain the instanton contribution to the QCD free energy in the
temperature range for which éz(ﬁu)/8w2<< 1. From this free-energy we
can explore for phase structure in QCD in this temperature range; if
the free energy becomes complex as the temperature is lowered to a
critical value, this signals an instability, and thus a phase transition.

In order to explore for phase structure in QCD, we can consider the
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phase structure of the effective field theory. The characteristic
feature of the onset of a second-order phase transition is a buildup of
1ong—r;;ge correlations in the associated order parameter. We can
therefore obtain the behavior of the free energy near a phase transition
by finding an approximation to the effective field theory that empha-

sizes long-range correlations of the relevant order parameter.

Now in the effective field theory the nonrenormalizable dimensions
of the operator in (ngf implies the dominant importance of short dis-
tances, although the very short distance behavior is tempered here by
the form factors that reflect the asymptotic freedom of QCD. Correspond-
ingly, the dimensions of this operator suggests the unimportance of long
distances. How, then could such an interaction lead to long-distance
correlations: This can happen if composite order parameter fields can
create massless bound states; these could form for strong: enough attrac-
tive forces between quarks at moderately short distances [20]. The long-
distance behavior of these composite states would then be that of a
weakly coupled (IR free) effective renormalizable field theory [47,481.

We therefore first attempt to convert the effective field theory
to a representation that emphasizes the interactions of composite
fields closely related to the order parameters. Now at first sight
it seems natural to introduce auxiliary fields ¢ and ® of the same form
as the external fields, Eqs. (2.12) and (3.4). These auxiliary fields
can be introduced so that their field equations equate them with the

composite fields [49,50],

1
]

(4,9 (6.22a)

@
I

= @(q,,a) (6.22b)
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The functional integral would then become

- 7 = f@@ 20t @9 @ET V(O (6.23a)

where

oW (2,0) _ fgwga exp{-f[fvﬁw + Qeff(w,ﬁ)]}
X exp {_ _/-A tr|<c4-i?- ?)'+ i(n—-ig- ?) - ¢(w’$)l2}
X exp {_ 136— f)\ tr’(ga+ i_éa.?) + i(;a_iZa. ?) - ®(w,$)]2}

(6.23b)

Introducing the auxiliary fields in this way leads to certain

simplifications. For example, for fields such as o,
A \2 A - \2
exp{[7(wlw)}f@o exp{— fj(c—d)llb)}
2 _ ) .-
= f@c exp{— f)\ (%— - xphpc)} (6.24)

where the four-quark field terms have cancelled. On the other hand,

for composite fields such as n, for example, we have
A /.- 2 - 2
eXp{" f? (¥1v59) }f@” exP{' f%’ (n-19Ty59) }
- 2 2 _
= exp {- fk(id)I*{Sw) }f@” exp {- fx 12— - iPTIygun (6.25)

with no cancellation of the four-quark field terms. The mathematical
reason why some terms cancel and others do not is relative minus signs.
Physically, these signs represent attractive versus repulsive inter-
actions between quarks in the different channels, as we have seen to

some extent from our discussion in Section V. It is therefore best
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not to &ntroduce auxiliary fields for those composite fields associated
With EPannels which have repulsive forces between quarks. Also, even
for the color octet channels with attractive forces, since these forces
are much weaker than for the color singlet channels, it is not appro-
priate to introduce auxilliary fields. This is because there could be
no phase transition driven by massless bound states in these channels
until a much lower temperature (where this effective field theory is
certainly not a valid approximation) than for the color singlet channels.
We will therefore deal with the repulsive n and ¢ channels and the color
octet channels one way, and the attractive ¢ and T channels another.

We introduce ¢ and T auxiliary fields, and sources for the quark
fields. With the help of thése quark sources the functional integral

for the effective field theory can be reexpressed.

Z = z(fﬁ,-§%> e—w(n’a) (6.26)
where
e—W(n,ﬁ) = f@o D exp - f% (02'*'—1?2) + tr in @“1 (O’,—T?).-l' nG (0,?) n
(6.27)
where

<XIG'"1(0,?)’xi> 54(x—x')$ +J[;dpk(p) ~I; I(x—X,x'—X:p)

X [G(X,p) +iy5}?(x,p)-?] , - (6.28)
and where

8 8\ o _fz(bz s 8
Z<6ns6_>— P 2 u (Sns(s

n
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where éh and @ are of the same form as the fields in Eqs. (6.20)
and (6.21), but with ¢y replaced by §/6n and ¢ replaced by 6&/8n.

;he remaining functional integral is an order parameter field
theory. The instanton contribution to the free energy of QCD in this
moderately high temperature range is approximately equal to the free
energy of this order parameter field theory. It is not unreasonable,
because of universality, that QCD should be well approximated by an
order parameter field theory in the neighborhood of a second-order
phase transition. It is therefore suggestive that the semiclassical
approximation to QCD reasonably well describes the onset of correlations
approaching the spontaneous chiral SU(2) symmetry breaking phase
transition.

For an effective infrared free-order parameter field theory, the
dominant long-distance correlations arise from the semiclassical
approximation. At the same time, for a phase transition ﬁo occur, the
composite order parameter fields must propagate like massless particles,
and this can only happen if there are strong enough attractive forces
between quarks at short distances. The forces between quarks get
stronger as the effective coupling A gets larger, and A gets larger very
rapidly as the temperature is decreased. Thus a mixing of long- and
short-distance effects, from the moderately short-distance behavior of
the most infrared important graphs, is necessary to produce the correla-
tions responsible for a phase transition. We will therefore approximate
the functional integral in our effective field theory semiclassically,

and treat the effects generated by z perturbatively.
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Thus, in the lowest approximation we have

-5 .(o,m
- . exp 00T }
oML (6.30)

\/det Agl(c,?) \/det A;l(o,?)

where (with the fermi sources turned off),

_ A f 2 2 -1
Seff(o,?r)) = 5 (c + T )— tr ¢n G (c,?) (6.31)

and where the inverse ¢ and T propagators are defined by

-1 s Seff
Nl ! =
AO’ (X,p’x s P ) = 60’(X,D) (SU(X',O') (6.32&)
and
-1 2
§° S
Aib(X,o;X',p') eff (6.32b)

GWa(X,p) wa(X',p')

These functions are to be evaluated at the minimum of Seff’ and thus

at the solution to the equations

8 Seff -0 8 Seff
8o ‘ ’ a
kil

= 0 . (6.33)

By a chiral SU(2) rotation the direction of the minimum can be chosen

in the o direction, and so the minimum condition implies

o(X,p) = ~/~ tr IT(x-X,x'-X;p) <x'l4;(c)lx> (6.34)
x,x"

3

which is independent of X by tramslation invariance of the ground state.

On expressing the integral in terms of Fourier transforms, this equation
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becomes

_ 2 1
- o(p) = tr —/};h (pP) m (6.35)

where

M(P) sfp'dp' A(e") h2(o"P) olo") (6.36)

This equation for o(p) can be reexpressed in the form

2 2 ’
M@ = 8 [ oo 2 ELQIED yp (6.37)
P P” + M7 (P)

Essentially this equation, but without the effects of the finite
temperature boundary conditions, has been discussed by several
authors [7,16,17,51].

In the temperature range for which the instanton density is small,
this equation (probably) has only a trivial solution. To this
approximation, then, the semiclassical correction to the QCD free
energy from a gas of gluons and quarks is % tr in A_l, the free energy
of a gas of composite ¢ and ; particles. (Even for couplings too weak
to form a massless ?, there are weakly bound o and ; resonances. !?

With scalar fields coupled to the quarks, as in the models
previously considered, the effective field theory must be modified.
While it seems the scalars should just couple to the quarks in the
effective field theory like ¥{% + @ [(1+Y5)/2] + ¢+ [(1~Y5)/2]}¢, this
is only approximately correct. In the presence of the external scalar
fields there are two new kinds of graphs in the effective field theory,

Fig. 9, to this order of approximation. In one a quark can propagate



from an instanton, interact with a scalar field and be reabsorbed by the
’same instanton. 1In the other a quark can be exchanged between two
instantons or two anti-instantons, interacting with a scalar field in
between. Instanton graphs with two or more scalar field insertions on
a quark line should not be included to this order of approximation (see
Fig. 10). (As was shown in Fig. 6, these graphs should have quarks
propagating in background instanton fields between scatterings.)

In the presence of external scalar fields, we can consider
corrections to the free energy W(®) of Section V. Now the minimum

equations (6.33) are nontrivial. Including the first-order effects

generated by the operator z, we now have

2

W(o) = - KT (Re det & - tr @Jré) +f % (02(¢)+?r)2(®))

(6.38)
— trin G"l(c(cp),?(cp),cbﬁ%tr an A—1<0(<I>) ,7(2)) + const. 72 tr 010
where

14y 1~y
&1, 7,0) = B+ [AI G+ 1T T)+ @] ——2—-5— + [Al(c-i?r\-?)+ ¢+:’Ts_
(6.39)

If the second and third terms are approximated perturbatively in A,
in first-order they will produce a term (—K2/4)(Re det & + tr ®+©) which,
combined with the first term, reproduces our previous result.

Without making this approximation, though, the third and fourth
terms of Eq. (6.38) can be interpreted two ways. First, they represent
fhe free energy of free quarks and composite mesons but for which the
quarks have acquired a dynamical mass due to the external scalar fields.

(See Fig. 11.). Alternatively, the second and third terms, when expanded
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N

. +
in powers of & and ¢ represent the lowest approximation to the sum of
I I + 3
n-poigt Green’s functions for composite ¢ and 7 mesons. (See Fig. 12a.)
The fourth term of Eq. (6.38) contributes meson radiative corrections to

the external meson propagators and to the n~point vertex. (See Fig. 12b.)

VII. EFFECTIVE FIELD THEORY FOR SEMICLASSICAL QCD

We have shown how, at moderately high temperature, the semiclassical
approximation to QCD is approximately described by a finite temperature
effective chiral SU(2) o-model like field theory. As the temperature
is lowered, the contribution of larger instanton-scale sizes becomes
important as §2/81r2 gets larger. The larger instantons have a higher
density, and so interactions between them, apart from those required
by therchirality selection rules, become more important. We therefore
discuss some of the corrections to this picture.

The classical gauge field configurations we have expanded about
correspond to the sum of fields from separated instantons and anti-
instantons. The instanton field can be interpreted as the vector

potential for a 4-D color magnetic dipole [7], for (x-X)2 >> pz,

) GOy (7.1)
A =M — 7.1
u uv (x—x)"
with the dipole moment

‘ _ 2 -a Ai_ +

Mw = 2p v @5 e . (7.2)

’ . . . -a a
The dipole moment for an anti-instanton has an replaced by nuv. The

corrections we consider correspond to the interaction of these dipoles,
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and to the propagation of the quarks in these dipole fields. These
effects are corrections as the instanton density increases. It will
turn out that it is natural to also consider higher-loop corrections

to the semiclassical approximation at the same time. These are effects
associated with gluons propagating in background instanton fields.

We first consider the interaction of these dipoles. Because the
gauge field configurations of separated instantons and anti~instantons
are not exact minima of the classical gauge field action, the difference
between the action for these configurations and the sum of actions for
separate instantons and anti-instantons represents an interaction-action.
The dominant interaction-action corresponds to the 4~D Abelian magnetic
field energy of the superposition of fields minus the field energy of

separate dipoles; for & = 3 A - 3 A

v T Sty T
1
V(%K) = 2 oz fx & (%x) & () (7.3)

For an instanton and anti-instanton, this takes the form
i =3
M X.-X.} My (X.-X.
Au ( i J)u AV( i J)v

V(X Kg) = (2g_ﬂ)2 tr (xi— X.>6

J

(7.4)

which is the result of Callan, Dashen and Gross [7]. For two instantons
or two anti-instantons, though, this interaction is smaller by an extra
power of p2/(Xi—Xj)2, as shown by Bernard [43]. The interactions
between pairs of instantons or pairs of anti-instantons will be neglected

in the following; there are other interaction terms of the same order

(see below).
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The QCD functional integral is approximated by the grand partition
function describing this 4-D instanton dipole plasma with chirality

correlations; from Eq. (6.1) with

S(Z Ai> S say) + DoVERE) (7.5)

i i i#]i

we have
® 1 , N AN . do, |
ZQE:N—;"N___'[ [T "% 49, —5 A(ey)
N,=0 i=1 P1
+ (7.6)
1O (N-N) exp { - E ‘v(x.—x. det H(X,,X.
i J) (1 J)

i#j

The effective coupling A(pi) again arises from exp {—S(Ai)} times the
factorized nonzero-mode determinants and zero-mode Jacobians. We should
also include the correction to the factorized nonzero-mode determinants
and zero-mode Jacobians that renormalize V. However, this correction
remains to be done; the only corrections to factorization have been
computed for exact multi-instanton configurations [43,52] which give
higher order instanton interactions that we neglect in the following
discussion. These interaction terms are d?[ozl(xi—Xj)6] just as the
dipolar interactions between pairs of instantons or pairs of anti-
instantons. Also, H is again the matrix of zero-mode matrii elements
of the Dirac operator in the backgroqnd field from the instanton gas,
Eq. (6.3). When these matrix elements were previously considered the

terms

fx kbg(Xi—-x) 4 (=X,) bo(xX,) (7.7)
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were neélected. Since the zero-mode wavefunctions are effective quark
propagators, these terms simply represent the lowest approximation to
quarks porpagating between Xi and Xj in the external dipole field of
an instanton at Xk‘ They will be included below.

This grand partition function can again be represented by an effec-
tive quantum field theory. Without the quarks, Jevicki [18] has given
the generalization, appropriate to a dipole plasma, of Polyakov’s [41]
effective field theory for the monopole plasma in 2+1 dimensional
compact QED. We will generalize Jevicki’s effective field theory to
include the chirality correlations between instantons and anti-instantons

due to the massless quarks. Defining the dipole field

Ny

Z Miv e‘*(x-xi) (7.8)

=1

Muv(X)

and the corresponding field ﬁuv(x), which is the sum over all anti-
-a .
instantons with the n in M replaced by na , we consider the
uv TRV Hv

functional integral formula,

-/-, 1 2) 471'2 -
DA expl - ;—2— ftr Au(—a Au - ——g—z— tr(Muv+Mu\)) (BuAv— BvAu)

21r4

1 exp ¢~ — % ftr MMJ au ...1_2_ 3\) 171\»\
2 3 8
\/det (TB 8 )
HV
X.-X X,-X,
2 . ( i j) ( i J) s
1 _ 4w E : tr M1 Y v J

R

§
|

M
Al 6 Av
2 g- (X—X>
\/det (fa Suv) i#j i’]

(7.9
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This formula is derived by completing the square in the Gaussian
functignal integral. It is only approximate since we neglect the
dipolar interaction between pairs of instantons or pairs of anti-
instantons. The functional integral is over a color matrix of vector
potentials, Au = Ai (Aa/Z) and can be made to look more electromagnetic-
like with a gauge constraint.
1 2 4n2 - ,
f@A G(BUA]J) exp {— ;g—2~ ftr g_uv(A) - g—z tr Mu\)+Mu\)) .?uv(A)
(7.10)
This represents the interaction of a color matrix of Fuclidean electro-
magnetic fields with 4-D color magnetic dipole fields. Inserting this
relation into the grand partition function, Eq. (7.6), gives

[+ ]

, f@A S(BUAM) exp <— —12. ftr g‘ﬁ\)(A)) Z ﬁi—' N—l'-

28 N, =0
Ny dp, ) 2
x.]~ I] d4Xi ;;%- e, A(pi) ,ele exp <i§f‘tr Muv(pi’ﬂi) SVMV(Xi))
i=1 i
- 4, 9Py ~i9 b’ o
xf ﬂ d Xj ?l de x(pj) e 77 exp (—g—z— tr Mw(pj,nj) ,grw(xj)>
j=1 j
x det H(Xi,pi,gi;xj,pj,gj) (7.11)

where we have made explicit the p and Q dependence of the dipole moments.

The expression in curly brackets is the same as Eq. (6.4), but with
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modified couplings

i6 i 4w
A oe —r e  exp { ;;?- tr Muv ighv} (7.12)

and analogously for the anti-instanton term. Therefore the effective

Lagrangian, Eq. (6.11), is modified to

. 2

4’

x Q+(Q,X,D) +e?i9 exp < gz tr ﬁuv(p,ﬂ) gw(x)> Y_(Q,X,p) (7.13)

where 5%_ are the same expressions as Eq. (6.11b).
The grand partition function describing the plasma of instantons

and anti-instantons interacting through both dipolar interactions and

chirality correlations is therefore described by the field theory

1 2 -W(A)
f@A exp{— 2g2 f tr ,;Z'uv(A)} S(BUAU) e (7.14)

where

e—W(A)

Hi

f@w 29 exp{— [[u‘m(m + Lo (050 91“,)]}

(7.15)
W(A) is the free energy of an instanton plasma interacting only through
chirality correlations but in an external field. (In this expression
we have included a gauge interactiqn with the fermions which we have

not yet explained; we will do so later.)
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In order to begin to discuss the physical content of this effective
field theory we must consider the gauge averaging integration in Sfeff.
The gauge averaging gives contractions of color indices in all possible
color singlet ways. In general it will mix terms from the instanton’s
dipole moment interaction with the interaction of fermions. There will
be terms, though, for which the gauge averaging associated with the
quark interactions and the dipole interactions factorize; these we
will consider first, and then consider the terms for which they mix.

One of the factorized terms in S?eff is proportional to

4w2
“/;Q exp < —— tr M (R) 51“ i

g2 uv e’ det @(w,a)

2
4 = !
+ exp 5 tr Muv(Q) e?hv e-;e

. det of(p,@) (7.15)

Expanding the exponentials to perform the gauge averaging, just as for

the theory without quarks, gives the leading term

2 24 F - F 2 .
87 T 0 Hv uv i8 -
1+ % L tr <~—————2 ) e det 9 (w,w)
g
2 24 F o+ F
8m TP Uv uv -i8 + -
+ 1 + ._4 A tr< D) > e det & (\P,w)
4 4
=11+ —-—1—2— t'r(.i'z\)g1T zp Re e16 det & - —— tr (g' v \)>
2g Wi 16w o
(2ﬂ)6 4 i0
T Im e det 9 (7.17)
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The first term has the effect of increasing the instanton density,

that is

- 2 24
_8_1T2__ T i g’ﬁv (7.18)
g 2g

A() = ) |1+

This is the modification of the instanton density in an external field
found by Callan, Dashen and Gross [7]. The external field is now,
however, a quantum field that must be integrated. Alternatively?20
this term can (formally) be seen to modify the dielectric properties of

the vector field,

1 2 2 82 16 _
= [t F" |11 [ edo Z-r(o)Re e det o(y,T) (7.19)
2 uv 2
2g g

The fermions modify the Callan, Dashen and Gross susceptibility [73
[apart from the usual coupling renormalization effects in A(p)]
space~time dependent det 9(y,¥) terms which must be integrated over the
fermion fields, Other quark contributions to this susceptibility

arise from additional interaction vertices generated by the gauge
averaging, which we now schematically discuss.

The linear terms in the expansion of the exponential of the dipole

interaction in (Q;ff, Eq. (7.13), for example,
fdﬂ tr Muv(Q’p) J;N(x) Q+(Q,X,p) s . (7.20)

will lead to a vertex involving a color nonsinglet quark current
interacting with the field 3$v through the dipole moment (and analo-
gously for the anti-instanton terms). This vertex is depicted

graphically in Fig. 13(a). The quadratic term in the expansion of the



~76-

exponenfial requires the gauge averaging integral,

- 2
faa(erw 0 5,00) 2,@x0 (7.21)

There will result a factorized term, previously discussed, as well as
new vertices coupling two dipole moments with two quark currents,
depicted in Fig. 13(b). The physics of these new vertices is exemplified
by treating ézeff perturbatively in Eq. (7.15) for W(A). In second-
order (1l instanton and 1 anti-instanton contribution)bwe have the graphs
of Fig. 14. A1l of these graphs are proportional to tr Jrﬁv, and there-
fore give a contribution to the susceptibility.

If we further integrate over A,}J in Eq. (7.14) perturbatively, we
can check that this field theory generates all the effects of the semi-
classical approximation to QCD included in Egs. (7.6) and (7.7). The
graphs in Fig. 15 show that the field theory generates instantons and
anti-instantons interacting through both dipolar interactions and quark
exchange, with quarks propagating in the background dipole fields of
the instantons, and interacting through gluon exchange. The graph in
Fig. 15(c) will actually be canceled by a corresponding graph with the
quark interacting with the dipole field of the other (anti) instanton;
this is because of the zero-modes (see Eq. (6.6)). Quarks do propagate,
though, in the background dipole fields of instantons that are not
their sources. Besides the semiclassical effects of Eq. (7.6), this
effective field theory generates additional corrections not yet discussed.
First, there are multiple insertions of the background instanton fields
on quark propagation, as depicted in Fig. 16. These multiple insertions

on the quark lines sum to give nonzero-mode quark propagators in
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backgrdund instanton fields. These effects can be derived either from
the degenerate perturbation theory expansion of the determinant of the
‘Dirac‘gperator in a background field from an instanton gas, as in
Section VI, but for the nonzero-modes, or by expanding exp {tr 2n B(A)}
in powers of A, as was done by Mottola [44] and Levine and Yaffe [451].
Finally, this effective field theory also generates gluon exchange
between quarks. Now in higher order in the semiclassical approximation
(in B), gluon corrections are generated, but these gluons are propagating
in background instanton fields. This is depicted in Fig. 17. Our effec-
tive field theory generates only the lowest approximation to the graph

in Fig. 17(a), depicted in Fig. 17(b). However, the graph in Fig. 17(a)
could be generated by the full non-Abelian version of our vector field
theory!

Therefore, semiclassically integrating out fhe instanton gauge
degrees of freedom in QCD should reproduce another non-Abelian effective
gauge field theory, but with more complicated quark interactions. This
is what one might expect from renormalization group ideas. This

effective field theory is

7 = f@AQ’d} Dy exp - iz— ftr sz(A)
2g ¥

+ fw(A)w + fsgeff(w,@, Fw) - (7.22)

where

A 2
T fodp A (p) fdn 1P exp{(zg—"> tr M (,8) F ()

. 2 ~ :
x Sf+(9,p,X) + o 18 exp ’(%?) tr Muv(p,ﬂ) Fuv(A) .gz(Q,p,X)} (7.23)
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The boundary conditions on this field theory, besides those of finite
temperature, must exclude integration over instanton degrees of freedom,
and require the constraint of singular gauge. The perturbative analysis

of this field theory then reproduces the instanton effects.

VIII. SUMMARY

In this paper we have considered QCD at finite temperature in order
to begin to study phase structure. Since temperature serves to define
an energy scale, the high temperature behavior of the theory is calcula-
ble because of the asymptotic freedom. As the temperature is lowered,
nonperturbative effects must be included, not only because the effective
coupling is getting large, but because some quantities in QCD are
dominated by nonperturbative effects even for perturbatively weak
coupling. Instanton contributions are the nonpefturbatiVé effects we
have studied here; these are the weak coupling effects that seen to be
responsible for the onset of the rapid transition from weak to strong
coupling behavior in the theory. Their effects can be qualitatively
compared and contrasted with the perturbative effects., Perturbative
effects have UL(Z) x UR(Z) symmetry. They are weak for short distance
scales and get stronger slowly as the scale increases. They produce
equally attractive forces in all color singlet channels. Instanton
effects, on the other hand, effectively have SUL(Z) x SUR(Z) x UB(l)
symmetry. They are exponentially small at very short distances and
correspondingly turn on suddenly at relatively weak coupling. They

effect the vacuum in two ways. First, they contribute to the dielectric
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function of the QCD vacuum (just as perturbative effects do) which leads
to atEFactive forces in all color singlet channels. However, the
chirality correlations that also follow from the instantons give rise

to additional attractive forces between massless quarks in the ¢ and T
channels, but repulsive forces in the n and 3 channels. The forces
between quarks due to these chirality correlations in the color octet
channel also depend on flavor, but they are much weaker than the forces
in the color singlet channels.

In the high temperafure phase, the theory can be probed with
external fields. TIts response to these fields offers an indication of
the kinds of symmetry fealizations to expect from the theory at low
temperature. At high temperature, but approaching the critical tempera-
ture,rthe QCD response to external scalar field theory probes indicates
an interrelation of symmetry realizations. The éhiralif& selection
rules associated with color gauge field configurations with nontrivial
topological fluctuations, that prevent the chiral U(l) phase oscillation,
lead to operators with AQ5 = +4 and with SUL(Z) x SUR(Z) X UB(l) symmetry
that tend to induce spontaneous chiral SU(2) symmetry breaking and
restore isospin and CP symmetry in these models. These configurations
with instanton and anti-instanton fluctuations, which are near minima
of the classical action and therefore dominate semiclassically, further-
more give large contributions to the dielectric susceptibility, and thus
are also important for the onset of confinement.

Probing the response of QCD to external scalar fields may give a
reasonable indication of the symmetry realizations that will result

when the temperature is lowered, but is of course no replacement for a
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computation of the free energy as the temperature approaches the critical
tempexature for phase tramnsitions. 1In this direction we have considered
the contribution of an instanton plasma to the QCD free energy. The
usual high temperature plasma of quarks and gluons feels a background
field m correlated topological field fluctuations. At very high
temperature these topological fluctuations give no contribution to the
free energy due to the violation of chirality selection rules. This is
manifest in the vanishing of the determinant of the Dirac operator in

the extreme dilute limit. The leading contribution from these instanton
fluctuations comes from corrections to the zero-eigenvalues of the Dirac
operator that preserve consistency with the chirality selection rules.

The grand partition function for this instanton plasma was shown to be
equal to the functional integral for a fermiinic field theory, the field
Vtheory of the finite temperature version of the 't Hooft effective
Lagrangian. This field theory was transformed to an order parameter

field theory, the dominant approximation to which adds to the quark and
gluon gas contribution to the QCD free energy that of a gas of excitations
with o and T quantum numbers.

At still lower temperatures these instanton and anti-instanton gauge
field fluctuations are correlated both due to chirality selection rules
and due to 4-D magnetic dipole-dipole interactions. The grand partition
function for this complicated statistical mechanics model was shown to
be equivalent to the functional integral for an effective gauge field

theory,

f@A Dy DY exp{ - [SQCD + f‘geff(w"_p’ Fuv)]} (8.1)
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where the functional integral over Au does not include instanton
configmrations; their contribution is contained in the graphs of this
effective field theory. One of the important instanton effects arises
from the term in ‘ggff proportional to tr Fﬁv. This term gives a
temperature dependent coupling renormalizatiom, g2—+ gzu. We have shown
how to compute the effect of quarks on the Callan, Dashen and Gross
susceptibility. (This evaluation will be considered elsewhere.)
Because the statistical mechanics system that arises from the
semiclassical approximation to QCD is so physical, a 4-D color magnetic
dipole plasma with quarks interacting through chirality correlations
and propagating in the dipole fields, we expect an understanding of its
properties is possible. Instanton interactions with anti-instantons
will align the dipoles, and quarks propagating in this vacuum will
feel attractive forces in color singlet channels. Combined with the
effects of the chirality correlations, this additional attractive

interaction, associated with the onset of confinement, may perhaps be

enough to induce the spontaneous chiral SU(2) symmetry breaking

phase transition.
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FOOTNOTES

{YyY>=spontaneously breaks both chiral SU(2) and chiral U(l) symmetry.

A coset G/H is a set of elements of G that are considered to be
equivalent if they differ only by multiplication (from the right)
by an element of the subgroup H. A particular spontaneous symmetry
breaking vacuum is actually a set of vacuua that differ only by

a transformation by an element of the unbroken subgroup. The set

of such vacuum cosets is a coset-space.

Particles fall into representations of the vacuum symmetry.

For chiral SU(N) symmetry breaking for N 2 3, there are nontrivial
representations of the discrete subgroup of vacuum global symmetries
combined with discrete space-time symmetries. As Dashen has shown

[21], this allows the possibility of parity doubling.

Weak interaction CP violating perturbations, however, can change 6.

u i(¢u/2)Y5 0 u
> The chiral U(2) transformation (\ )-+ € i(¢d/2)Y5 < )
C e d

d
<<G{(1+y5)/2}u 0 >>
takes with 8 = O dinto
_ b,
de “{(1+vg)/2}u 0
i¢d s with 8 = ¢u+-¢d, this
0 de {(+yg)/23d

vacuum is CP and isospin invariant and spontaneously breaks chiral

U(2) symmetry. I thank Sidney Coleman for a discussion of this point.
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1,
3

This is because while <$w> is even under both P and C, <iwysw>

is 6dd under P and even under C; spontaneous CP violation arises

from interference effects. This is to be compared to usual weak
interaction (explicit) parity violation: Eyuw is even under P and
odd under C, while @yuysw is odd under P and even under C. Interfer-

ence effects are thus odd under both P and C and thus even under CP.

Questions associated with which vacuum state is picked out by a mass
perturbation requires additional considerations. - Dashen’s theorem
[25] states that the correct vacuum state is the one that minimizes
the energy of the symmetry breaking perturbatioﬁ. ?or a real diagonal

0

mus1n¢u==md31n¢d and 6= ¢u+-¢d minimizes the perturbag}on. For 6+# 0,

m, 0
mass matrix, o = ( my s the vacuum state in footnote five with

there is now CP violation due to a mismatch between the conserved CP

of the chiral perturbation, and the conserved CP of the spontaneous
chiral symmetry breaking vacuum. For 6= m, however, there is CP
invariance except when m =my. In that case there are two CP conjugate
degenerate solutions of the minimum equations. This is an example of
Dashen’s mechanism [25] for spontaneous CP violation. (In this
particular case with two flavors, it also happens that m2= 0 to
first-order in mu==md# 0.) For further discussion of these points

see, for example, Refs. [26]. These remarks imply there are

subtleties involved in taking the limit ¢ - 0 in Eq. (2.25).

I thank Alan Guth for a crucial discussion on this subject.



10

11

12

13

14

15

16

17

-85-

This 't Hooft from (singular gauge) can be obtained from the BPST [13]

formmby a local gauge transformation. See, for example, [32].

For a discussion of these collective coordinates in singular gauge,

see for example [33]; at finite temperature see [14].

This form for the ’t Hooft term, without the color octet scalar

fields, is also given by Mottola [34].
I thank John Collins for an important discussion on this subject.

A careful analysis [14] shows that only AO acquires a mass; that is,

there is only electric screening to this order.

The model given by the Lagrangian, Eq. (5.1), and potential, Eq. (5.4),
but with the opposite sign for h, was considered by Mottola [34] to

ellucidate many features of the chiral U(l) problem.
I thank Helen Quinn for an important discussion of this point.

Thermodynamically, this is a very interesting situation; the lower
temperature phase has more symmetry than the higher temperature phase.
This is like the melting of crystalline He3 as the temperature is
lowered further. The superfluid He3 has a lower entropy (more order)

than the crystalized phase.

I thank Larry Yaffe for showing me this elegant graphical representa-

tion for the .product of determinants.
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i

18 See also [44] and [45]7.

-

19 I thank Fred Cooper and Dick Haymaker for stressing this point to me.

20 The terms in Eq. (7.17), with ‘ghv replaced by the full Fuv

(see below), tr F. F Re ele det ® and tr F F Im ele det &, can
HV pv LTRVAR TRV

also be interpreted as mixing meson pairs and glueballs.
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FIGURE CAPTIONS

Fig. 1. Graphical expansion of tr fn [iP(A) - @(1+y5)/2 - @T(l—YS)/2].

The heavy solid line represents a quark propagating in a
background color gauge field. The external dashed lines

with crosses represent external scalar fields.

Fig. 2. Two possible ways the chirality selection rules can be
satisfied for any configuration with v(A) = 1. The shaded
circles represent a region of localized field strength in
Euclidean space-~time; the dashed lines with crosses at

their ends represent sources that absorb the massless quarks.

Fig. 3. A Euclidean space~-time vacuum event consistent-with the
chirality selection rules. A region of space-time with
v(A) = +1 creates quark pairs that are absorbed in a

region with v(A) = -1.

Fig. 4. Graphical representation of Eq. (3.7). The heavy solid lines
represent quark propagators in the same background color gauge

field configuration.

Fig. 5. Graphical representation of Eq. (4.15). The soli& circle
represents an instanton or anti-instanton, the thin solid line
represents a zero-mode wavefunction, and the heavy solid line
represents a nonzero-mode quark propagator in the background
field of the same instanton or anti-instanton; the dashed

lines with crosses at the ends represent external scalar fields.
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Fig. 6. Graphical example of a correction to Eq. (4.15) due to
- external (nonconstant) scalar field induced mixing of

zero- and nonzero-mode quark propagators.
Fig. 7. Mixing of colored and flavored scalars.

Fig. 8. Examples of graphs arising from the product of cycle
expansions of the zero-mode determinants. Each line

between Xi and Xj represents the matrix element H(Xi’Xj)‘

Fig. 9. New graphs due to external scalar fields, depicted as a
cross on the quark lines. In the second graph, the quark

line connects two instantons or two anti-instantons.

Fig. 10, Examples of graphs with scalar insertions that should not

be included to this order of approximation.

Fig. 11, (a) Quark vacuum graph in which quarks have a dynamical mass.
(b) Composite meson vacuum graph in which the constituent

quarks have a dynamical mass.

Fig. 12. (a) n-point Green’s function for interacting composite mesons.
Dashed lines represent composite mesons, and the crosses
represent external scalar fields.

(b) Examples of meson radiative corrections to Fig. 12(a).



Fig, 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17,
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Examples of new vertices implied by the chirality selection
rules and dipole moments of instantons. The wavy lines with

crosses at their ends represent extermal gruv fields.

Graphs (a), (b) and (c) represent the interaction with an
external field 3Tuv, represented by a wavy line with a cross;
Graph (d) represents the interaction with an external field

Au’ represented by a curly line with a cross.

Graphs (a) and (b) represent dipole-dipole interactions between
an instanton and anti-instanton, as well as quark exchange.
Graph (c) represents a quark propagating in the dipole field

of an instanton. Graph (d) represents gluon exchange between

quarks.

Multiple insertions of instanton fields on quark propagation.

(a) Gluon (curly lines) dinteraction between quarks, with the
gluon in a background instanton field; (b) is lowest approx-

imation to (a).
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