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ABSTRACT 

An exact derivation of the anomalous Ward-Takahashi 

identities on a finite lattice is given. It is shown in a 

general way that the contribution from the fermion-degeneracy 

regularization in the limit leads to the continuum form of 

the anomaly term. Thus the interconnection is established 

independently of perturbation theory. 
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1. INTRODUCTION AND SUMMARY 

ForS‘the nonperturbative analysis of gauge fields, the introduction 

of a lattice1 turned out to be most promising. A better understanding 

of the fermion-degeneracy problem,z-5 however, is important for the 

inclusion of fermions in the numerical calculations6 of fundamental 

features of QCD, and a prerequisite for the extension of lattice methods 

to electro-weak theories. The latter is desirable because dynamical 

symmetry breaking,7 as an alternative to the difficulties with elementary 

scalars,8 basically requires nonperturbative methods. Recently Karsten 

and Smitg'10 showed in weak-coupling perturbation theory at the one-loop 

level that Wilson's fermion-degeneracy regularization2 gives rise to the 

triangle anomaly.ll This suggests to investigate if such an interconnec- 

tion can be established independently of perturbation theory, which would . 

be a step forward with respect to the nonperturbative analysis. 

In the present paper I give an exact derivation of the anomalous 

Ward-Takahashi identities on a finite lattice. Then I show in a general 

way that the contribution from Wilson's degeneracy regularization2 in the 

limit leads to the continuum form of the anomaly term. Further I point 

out that the alternative regularization of Osterwalder and Seiler5 gives 

the same limit. The interconnection of interest is thus established 

independently .of perturbation theory. 

The crucial property of degeneracy regularizations so far was to 

ensure the correct limit for fermion loops in perturbation theory. 

A nonperturbative criterion is now that they must give the anomaly term 

correctly. 
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The limit of the exact identity derived here can be considered as 

the pr@er definition of the corresponding path integral relations in 

continuum theory. Then one has a well-defined formulation with a 

y5-invariant measure of the integrals, the anomaly arising from the 

degeneracy regularization. This appears to be more satisfactory than 

the alternative approach of Fujikawa12 who starts from an ill-defined 

theory and then regulates the measure to get the desired result. 

The anomaly term in the following emerges in a form which may be 

viewed as a generalization of the representation u tr(y G 5c > of Schwinger13 

and of Brown, Carlitz and Lee,l' in which Gc is the continuum fermion 

propagator and u its mass. The r&e of 1-1 is in the present context 

taken by the degeneracy regularization. 

In Section II, after defining the formulation, the anomalous 

Ward-Takahashi identities are derived. Section III is devoted to 

the investigation of the continuum limit. 

II. ANOMALOUS WAKD-TAKAHASHI IDENTITIES 

The finite lattice to be used here has JI/= 16 N1N2N3N4 sites in 

4-dimensional Euclidean space. Periodicity for nX + nX + 2Nh in the 

numbering of the variables is imposed as "boundary condition". The 

action is 

s = V c 3,~ (p"- W + M)n,n qn + sG , (2.1) 

n',n 

where S G is the pure gauge field part, v = ala2a3a4 and Mn,n=m6n,n. 

@ = CA yhDh and W = CA WA are given by 

D = An'n ( 'L3'G,'+h n , - UAnSn',n+l)/ (2aA) ' (2.2) 
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W = Xn'n + 'Xn6n' n+X - 26n1n (2.3) 
, 

-5- 

where U Xn = exp {igaAAXn}, with AXn= & T'Afn in the nonAbelian case. 

W in (2.1) is the degeneracy regularization term introduced by 

Wilson2 to overcome the problems related to the doubling of the fermion 

spectrum on the lattice. In particular, it guarantees the correct 

continuum limit of perturbation theory. Classically W vanishes in the 

limit. Osterwalder and Seiler5 use R = -iy5W instead of W, which enables 

them to construct a Hilbert space with positive metric. 

A general correlation function has the form le -'Q /Ie-', where l 

mean.5 JJ+, with I 
4.J 

standing for the Grassmann-variable integrations 

nn 3 fd+nB dGnf3 , 
and I, similarly for the invariant integrations over 

the gauge group. The appropriate gauge fixing factors are to be included 

in Q to have correspondence to usual continuum forms. In the following 

it suffices to consider J+e -sP , which can be obviously supplemented to 

leDs Q / lees at any stage. A simple example for a choice of P is 

$ - n'i3 '+nB' 

After the transformation to variables $i= exp {iany I$, and 

$A=qn exp {iunysI inl$e 
-s P, it follows that 

- < L,e-'P = i,e-' (c P - e) = 0 . (2.4) 

Performing the derivatives, and then going back to the variables $n,vn, 

(2.4) can readily be cast into the form 

J-" [(F (JZn-JZ,n-A)/a,- 2mTniy5+n)p + $ zB(- e(6,'niy5'n)f3 

+ 3;iy6 ( > ap 
n 5nn'B G 13 +'n= 0 , (2.5) 
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where left derivatives with respect to the Grassmann variables are 

understood and the abbreviations 

5 1 
JAn = ? ( ~niY~Y5U:n~n+h+$n+~iY~Y5UhnJin) , (2.6) 

- * xn = 
/ 

e-’ CC Gn’w~n’n iY5*n++nlY5WXnn~ no G lp , (2.7) 

9 n',X 

have been introduced. To proceed further, by exploiting the general 

property J$a/a$nB Q= 0 of J+ for the case Q= e -s 
$nrg,P, the relation 

-s 
e 4~ n’ B’ 5 n”B” P ( @- W+ M ) n,tB,tnB 

(2.8) 

is derived. It is to be noted that from P only even Grassmann elements 

contribute to the integrals in (2.8). With G = (a-W+M) -1 one obtains 

from (2.8) 

/ 
e-’ Gneqnr B,P = - $ GnvBtnB e-s p 

4J / + 
1 -- ems aGap Gnt,B,,nB~n~ By . (2.9) V 

n"B" 

It is understood here that G-l either has no zero modes or that they 

are appropriately handled to keep G well-defined. Using (2.9) and an 

analogous relation involving a/aqng, (2.7) can be written 
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Xn = - $ tr(y5(,+WG)_) /e-'F' 

4J (2.10) 

/ 

ap 
+ 

e-s 1 
v =( 

-- 
n',B "nlB 

n1niy5+Il +('niy5(WG)nnr)B $) 
VJ 

where tr refers to y-matrices as well as to internal symmetry indices, 

while Tr (to be used below) applies only to the latter. 

Now (2.5) combined with (2.10) gives the exact anomalous Ward- 

Takahashi identities on the finite lattice. The current (2.6) is 

associated to the link from n to n+A, thus having a structure remin- 

iscent of the pointsplitting forms of continuum theory.13'15 

III. CONTINUUM LIMIT 

From (2.5) with (2.10) it becomes obvious that the usual continuum 

result is obtained if in the limit 

-$ tr(Y5(GW + WG)nn)-+& Tr c ~~uhpF,$d FXp(x) , (3.1) 

VVhP 

$ (6n,n + (GW,,,,) -t 64(x’ - x) . (3.2) 

This will be shown in the following. 

For the evaluation of the 1.h.s. of (3.1), the expansion 

G=(#+W-M)(%-%V%++V%Vgi...) (3.3) 

with Ce = ( D2- (W-M)2)-1 and V = C + I' is used, where 

C = (i/2) CA, h aA,AIDX,,DXI and r = CA, A yA,CDA,,W,l with 
, , 
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["X1'DA]nln = - ( ig F:'A,n'Gn'+h'+h,n 
II 

+ FX'A,n'-hSn'+A1-h,n (3.4) 

III IV 
+ FAIA,nf-A'Gn'-X'+A,n + Fh'A,n'-A1-A6n'-X'-h,n )/ 

4 

and CD,, ,Whlntn differing from (3.4) only by having minus signs in front 

of F1' and F1'. In (3.4) one has 

F1 A'X,n 
= 

( 
u+ u+ 

An )i',n+h - ':'n': , j/C n+X' igaXlaA 9 ) 

F 
II 

( 
t 

X'X,n = lJ A',n+A'A,n+A' - UAnU~J/(igapA) , 
(3.5) 

FIII 

( 

t t 
h'X,n = 'A'nUAn - Uh,n+X'UX',n+A )/ (ig,:l.A1 aA) , 

FIV h'A,n 
= u 

( A,n+A'UA'n 
- u h',n+\"Anj/CigaA1aA) l 

._ 

The F1 - F*' are related to the four plaquettes having the point n in 

common, and in the limit all give F ,I,b> l 
In the strict mathematical 

sense it is to be assumed that either (3.3) converges or that the formal 

expansion already suffices for the present purpose. When inserting (3.3) 

into (3.1) only terms of third and higher order in % contribute. If 

the higher order ones as well as those with I' vanish in the limit, as 

will turn out later, the relevant contribution to tr(y5(GW)nn) is 

Tr c 
(3.6) 

PVb 

Now, commuting CD,,, DA1 with s as well as replacing 9 by 9, without 

gauge fields amounts to omitting higher orders. Similarly, the commuta- 

tion with W and the replacement of W by W. corresponds to the omission 
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of terms, which will be seen to vanish in the limit. Thus 

h 

(3.7) 

may be considered instead of the matrix element in (3.6). 

Inserting (3.4) into (3.7) one gets sixteen terms; for example, 

(3.8) 

By using the transformation&-' exp {-ni c r n /N ), for the matrix x AX A 

element in (3.8) the representation 

((WO-M)s~WO)n+~+v,n-i+p = d-l C 4(O) 
r 

is obtained, where for later convenience the abbreviation 

4 (a) = _ --(W-2a-m)(w-a)2 3 5 
r 5 rp 

(c 
( 

') 

exp iT 

i, ( 

I\T + $ + r - N ,(3. 
s +,w-a-m 

x h - 
P v h P II 

(3.9) 

10) 

with s x = sin(TrA/NA)/aA and w = Ch(COs(~rh/NA)-l)/aX, has been intro- 

duced. So far the summation over rA in (3.9) is from -NA+l+nA to 

Nh+rlA, where qA is some integer. By an appropriate choice of '7X and a 

shift of the summation indices in one half of the intervals by NA, 
1 

'r 
can be replaced by c, for which the summations are restricted to 

-NA/2 -c rh 6 NA/2. This gives 

c LgO) = c’ 
r r 

(sr(O)- C $-?A)+ C $(mA’ +mA) 
x h'>A 

(3.11) 

- C zi$(mArl+mAl+mA)+ @j(ml+m2+m3+m4 )) 9 
X”>A’ >A 
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where mh= 2cos(nrX/NX)/ah. The crucial point is now that for c:, in 

which kr=rrX/(ahNX) and sA = sin(khaX)/aX are uniquely related, the 

continuum limit can safely be obtained. Thereby (&v> -l 

vanishes while 

to (3.11) with 

for 

% 

4 

the seven positive and eight negative contributions 

depending on the mh, for Nh + 03 and ah small, 

tends versus 

d4k a2(k2+a2)-3 , (3.12) 

where a is a constant of order l/aX. Since the integral (3.12) independ- 

2 -1 
ently of a equals (32~r > , this gives the limit. A further consequence 

of the a-independence of (3.12) is that a replacement of W by CW in (2.1), 

where c is a finite constant, does not change the result. Because with 

2 3+v 
a denominator (k2 -t a ) the integral is proportional to l/a 

2v , the 

higher orders vanish indeed. The r-terms involving CD,,,W,l, those with 

1. Wo,[DA,, ] DA1 arising from the interchange, and the ones with W-W0 from 

omitting gauge fields do not contribute because (due to forming commuta- 

tors respectively a difference) they have one driving factor less in the 

numerator. 

It can now be seen that the matrix elements of (Wo-M) $$Wo of the 

2 -1 
sixteen terms in (3.7) all become (32~ ) , and thus with (3.6) one gets 

in fact (3.1). One has, however, to realize that FIIV(x) and Fhp(x) arise 

as the limits of 
( 
F1 +FII +F1'* +F1' 

w,n ~v,n-v uv ,n-l-l )I 
‘4 and uv,n-p-v 

, 
n x - - ,+F:i n 

, - 
A+F:iln 

, - 
c+F:z .)/4, respectively (with xA= aXnA). 

, 

While for classical gauge fields the interpretation of these limits would 

be the naive one, in the full quantum case one has to note that the 

F1- F1' are functions of the gauge variables. 
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To show (3.2) one proceeds similarly as for (3.1). The 2.h.s. of 

(3.21, zmitting gauge fields, can be represented as 

(aV)-l C exp{ni C rA n'iIA i[l+ X?r(l,O)] , (3.13) 
r x 

where 

i (c hX~YX~SX~ 

,(h,a) = - " 

c 
2 2 , 

5 + w-a-m ( > 
A 

with h defined such that hA = +_l in an appropriate way. When turning 

over to in addition to Cl+ Xr(l,O> 1 terms of type 

C-1) n~-nhil+~~rch(~),m,l), (-l)n'-nA+nb-nu{l+ &'[h(X,o),mA+mol}, etc., 

occur. In the limit the 1 of the first term gives s4(x'- x) in Fourier 

representation, while Xr(l,O) vanishes. The other terms.; because of 
n'-n 

(-1) A A= exp {i(a/aA)(xi- x,)1 are oscillated away (also without the 

2q * In addition, the ,Xr depending on the mA tend to -1. The terms 

arising from the omission of gauge fields are seen to vanish a fortiori. 

Finally the alternative regularization of Osterwalder and Seiler is 

considered, which is obtained by replacing W by R = -iy5W. The only 

essential change in the presented derivation is that instead of (3.3) 

the expansion 

(3.15) 

2 -1 with sr= (D2+R2-M ) and V5= C- iy51' is to be used. From (3.15) one 

then obtains 

tr (Y5GR) = tr(u,(@- R- M)(sRV5 %,V, gR 7 . . . ) R) , (3.16) 

which shows that one gets the same limit as before. 
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