# AXIAL-VECTOR ANOMALY IN LATTICE GAUGE THEORY* <br> Werner Kerler ${ }^{\dagger}$ <br> Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 


#### Abstract

An exact derivation of the anomalous Ward-Takahashi identities on a finite lattice is given. It is shown in a general way that the contribution from the fermion-degeneracy regularization in the limit leads to the continuum form of the anomaly term. Thus the interconnection is established independently of perturbation theory.


To Appear in Physical Review D

[^0]
## I. INTRODUCTION AND SUMMARY

For the nonperturbative analysis of gauge fields, the introduction of a lattice ${ }^{1}$ turned out to be most promising. A better understanding of the fermion-degeneracy problem, ${ }^{2-5}$ however, is important for the inclusion of fermions in the numerical calculations ${ }^{6}$ of fundamental features of $Q C D$, and a prerequisite for the extension of lattice methods to electro-weak theories. The latter is desirable because dynamical symmetry breaking, ${ }^{7}$ as an alternative to the difficulties with elementary scalars, ${ }^{8}$ basically requires nonperturbative methods. Recently Karsten and Smit ${ }^{9,10}$ showed in weak-coupling perturbation theory at the one-loop level that Wilson's fermion-degeneracy regularization ${ }^{2}$ gives rise to the triangle anomaly. ${ }^{11}$ This suggests to investigate if such an interconnection can be established independently of perturbation theory, which would be a step forward with respect to the nonperturbative analysis.

In the present paper I give an exact derivation of the anomalous Ward-Takahashi identities on a finite lattice. Then I show in a general way that the contribution from Wilson's degeneracy regularization ${ }^{2}$ in the limit leads to the continuum form of the anomaly term. Further I point out that the alternative regularization of Osterwalder and Seiler ${ }^{5}$ gives the same limit. The interconnection of interest is thus established independently of perturbation theory.

The crucial property of degeneracy regularizations so far was to ensure the correct limit for fermion loops in perturbation theory. A nonperturbative criterion is now that they must give the anomaly term correctly.

The limit of the exact identity derived here can be considered as the proper definition of the corresponding path integral relations in continuum theory. Then one has a well-defined formulation with a $\gamma_{5}$-invariant measure of the integrals, the anomaly arising from the degeneracy regularization. This appears to be more satisfactory than the alternative approach of Fujikawa ${ }^{12}$ who starts from an ill-defined theory and then regulates the measure to get the desired result.

The anomaly term in the following emerges in a form which may be viewed as a generalization of the representation $\mu \operatorname{tr}\left(\gamma_{5} G_{c}\right)$ of Schwinger ${ }^{13}$ and of Brown, Carlitz and Lee, 14 in which $G_{c}$ is the continuum fermion propagator and $\mu$ its mass. The rôle of $\mu$ is in the present context taken by the degeneracy regularization.

In Section II, after defining the formulation, the anomalous Ward-Takahashi identities are derived. Section III is devoted to the investigation of the continuum 1imit.

## II. ANOMALOUS WARD-TAKAHASHI IDENTITIES

The finite lattice to be used here has $\mathscr{A}=16 \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4}$ sites in 4-dimensional Euclidean space. Periodicity for $n_{\lambda} \rightarrow n_{\lambda}+2 N_{\lambda}$ in the numbering of the variables is imposed as "boundary condition". The action is

$$
\begin{equation*}
S=v \sum_{n^{\prime}, n} \bar{\psi}_{n^{\prime}}(\not D-W+M)_{n^{\prime} n} \psi_{n}+S_{G} \tag{2.1}
\end{equation*}
$$

where $S_{G}$ is the pure gauge field part, $v=a_{1} a_{2} a_{3} a_{4}$ and $M_{n}{ }^{\prime} n=m \delta_{n} n^{\prime} n^{\prime}$ $\phi=\sum_{\lambda} \gamma_{\lambda} D_{\lambda}$ and $W=\sum_{\lambda} W_{\lambda}$ are given by

$$
\begin{equation*}
D_{\lambda n^{\prime} n}=\left(U_{\lambda n^{\prime}}^{\dagger} \delta_{n^{\prime}+\lambda, n}-U_{\lambda n^{\prime}} \delta_{n^{\prime}, n+\lambda}\right) /\left(2 a_{\lambda}\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
W_{\lambda_{n^{\prime}} n}=\left(U_{\lambda_{n} \prime^{\prime}}^{\dagger} \delta_{n^{\prime}+\lambda, n}+U_{\lambda n^{\prime}} \delta_{n^{\prime}, n+\lambda}-2 \delta_{n^{\prime} n}\right) /\left(2 a_{\lambda}\right) \tag{2.3}
\end{equation*}
$$

where $U_{\lambda n}=\exp \left\{\operatorname{iga}_{\lambda^{A} A_{\lambda n}}\right\}$, with $A_{\lambda n}=\sum_{\ell} T^{\ell} A_{\lambda n}^{\ell}$ in the nonAbelian case.
$W$ in (2.1) is the degeneracy regularization term introduced by Wilson ${ }^{2}$ to overcome the problems related to the doubling of the fermion spectrum on the lattice. In particular, it guarantees the correct continuum limit of perturbation theory. Classically $W$ vanishes in the linit. Osterwalder and Seiler ${ }^{5}$ use $\mathrm{R}=-\mathrm{i} \gamma_{5} \mathrm{~W}$ instead of W , which enables them to construct a Hilbert space with positive metric.

A general correlation function has the form $\int e^{-S} Q / \int e^{-S}$, where $\int$ means $\int_{U} \int_{\psi}$, with $\int_{\psi}$ standing for the Grassmann-variable integrations $\Pi_{\mathrm{n}, \beta} \int \mathrm{d} \psi_{\mathrm{n} \beta} \mathrm{d} \bar{\psi}_{\mathrm{n} \beta}$ and $\int_{\mathrm{U}}$ similarly for the invariant integrations over the gauge group. The appropriate gauge fixing factors are to be included in $Q$ to have correspondence to usual continuum forms. In the following it suffices to consider $\int_{\psi} e^{-S} P$, which can be obviously supplemented to $\int e^{-S} Q / \int e^{-S}$ at any stage. A simple example for a choice of $P$ is $\psi_{n}{ }^{\prime} \beta^{\prime} \bar{\psi}_{n \beta}$.

After the transformation to variables $\psi_{n}^{\prime}=\exp \left\{i \alpha_{n} \gamma_{5}\right\} \psi_{n}$ and $\bar{\psi}_{\mathrm{n}}^{\prime}=\bar{\psi}_{\mathrm{n}} \exp \left\{\mathbf{i} \alpha_{\mathrm{n}} \gamma_{5}\right\}$ in $\int_{\psi} \mathrm{e}^{-\mathrm{S}} \mathrm{P}$, it follows that

$$
\begin{equation*}
-\frac{\partial}{\partial \alpha_{n}} \int_{\psi^{\prime}} e^{-S} P=\int_{\psi^{\prime}} e^{-S}\left(\frac{\partial S}{\partial \alpha_{n}} P-\frac{\partial P}{\partial \alpha_{n}}\right)=0 . \tag{2.4}
\end{equation*}
$$

Performing the derivatives, and then going back to the variables $\psi_{\mathrm{n}}, \bar{\psi}_{\mathrm{n}}$, (2.4) can readily be cast into the form

$$
\begin{gather*}
\int_{\psi} e^{-s}\left[\left(\sum_{\lambda}\left(J_{\lambda n}^{5}-J_{\lambda, n-\lambda}^{5}\right) / a_{\lambda}-2 m \bar{\psi}_{n} i \gamma_{5} \psi_{n}\right) P+\frac{1}{v} \sum_{n^{\prime}, \beta}\left(-\frac{\partial P}{\partial \psi_{n^{\prime} \beta}}\left(\delta_{n^{\prime} n^{i} \gamma_{5} \psi_{n}}\right)_{\beta}\right.\right. \\
\left.\left.+\left(\bar{\psi}_{n} i \gamma_{5} \delta_{n n^{\prime}}\right)_{\beta} \frac{\partial P}{\partial \bar{\psi}_{n^{\prime} \beta}}\right)\right]+x_{n}=0 \tag{2.5}
\end{gather*}
$$

where left derivatives with respect to the Grassmann variables are understood and the abbreviations

$$
\begin{align*}
& J_{\lambda n}^{5}=\frac{1}{2}\left(\bar{\psi}_{n} i \gamma_{\lambda} \gamma_{5} U_{\lambda n}^{\dagger} \psi_{n+\lambda}+\bar{\psi}_{n+\lambda} i \gamma_{\lambda} \gamma_{5} U_{\lambda n} \psi_{n}\right)  \tag{2.6}\\
& X_{n}=\int_{\psi} e^{-S} \sum_{n}{ }_{n}\left(\bar{\psi}_{n}, W_{\lambda n}{ }_{n} i \gamma_{5} \psi_{n}+\bar{\psi}_{n} i \gamma_{5} W_{\lambda n n}, \psi_{n},\right) P \tag{2.7}
\end{align*}
$$

have been introduced. To proceed further, by exploiting the general property $\int_{\psi} \partial / \partial \psi_{n \beta} Q=0$ of $\int_{\psi}$ for the case $Q=e^{-S} \psi_{n^{\prime} \beta^{\prime}}, P$, the relation

$$
\begin{align*}
& \sum_{n^{\prime \prime}, \beta^{\prime \prime}} \int_{\psi} e^{-S} \psi_{n^{\prime} \beta^{\prime}} \bar{\psi}_{n^{\prime \prime} \beta^{\prime \prime}} P(\not D-W+M)_{n^{\prime \prime} \beta^{\prime \prime} n \beta} \\
& =\frac{1}{v} \delta_{n^{\prime} n^{\prime} \beta^{\prime} \beta} \int_{\psi} e^{-S} P-\frac{1}{v} \int_{\psi} e^{-S} \psi_{n^{\prime} \beta^{\prime}} \frac{\partial P}{\partial \psi_{n \beta}} \tag{2.8}
\end{align*}
$$

is derived. It is to be noted that from $P$ only even Grassmann elements contribute to the integrals in (2.8). With $G=(\not D-W+M)^{-1}$ one obtains from (2.8)

$$
\begin{align*}
\int_{\psi} e^{-S} \bar{\psi}_{n \beta^{\prime}} \psi_{n} \beta^{\prime} P= & -\frac{1}{v} G_{n^{\prime} \beta^{\prime} n \beta} \int_{\psi} e^{-S} P \\
& -\frac{1}{v} \sum_{n^{\prime \prime}, \beta^{\prime \prime}} \int_{\psi} e^{-S} \frac{\partial P}{\partial \psi_{n^{\prime \prime} \beta^{\prime \prime}}} G_{n^{\prime \prime} \beta^{\prime \prime} n \beta^{\prime} \psi^{\prime} \beta^{\prime}} \tag{2.9}
\end{align*}
$$

It is understood here that $G^{-1}$ either has no zero modes or that they are appropriately handled to keep $G$ well-defined. Using (2.9) and an analogous relation involving $\partial / \partial \bar{\psi}_{n \beta}$, (2.7) can be written

$$
\begin{align*}
x_{n}= & -\frac{i}{v} \operatorname{tr}\left(\gamma_{5}(G W+W G)_{n n}\right) \int_{\psi} e^{-S} P  \tag{2.10}\\
& +\int_{\psi} e^{-S} \frac{1}{v} \sum_{n^{\prime}, \beta}\left(-\frac{\partial P}{\partial \psi_{n^{\prime} \beta}}\left((G W)_{n} n^{i} \gamma_{5} \psi_{n}\right)_{\beta}+\left(\bar{\psi}_{n} i \gamma_{5}(W G)_{n n^{\prime}}\right)_{\beta} \frac{\partial P}{\partial \psi_{n^{\prime} \beta}}\right)
\end{align*}
$$

where tr refers to $\gamma$-matrices as well as to internal symmetry indices, while $\operatorname{Tr}$ (to be used below) applies only to the latter.

Now (2.5) combined with (2.10) gives the exact anomalous WardTakahashi identities on the finite lattice. The current (2.6) is associated to the link from $n$ to $n+\lambda$, thus having a structure reminiscent of the pointsplitting forms of continuum theory. ${ }^{13,15}$
III. CONTINUUM LIMIT

From (2.5) with (2.10) it becomes obvious that the usual continuum result is obtained if in the limit

$$
\begin{align*}
& \frac{1}{\mathrm{~V}} \operatorname{tr}\left(\gamma_{5}(G W+W G)_{\mathrm{nn}}\right) \rightarrow \frac{g^{2}}{16 \pi^{2}} \operatorname{Tr} \sum_{\mu \nu \lambda \rho} \varepsilon_{\mu \nu \lambda \rho} F_{\mu \nu}(\mathrm{x}) \mathrm{F}_{\lambda \rho}(\mathrm{x})  \tag{3.1}\\
& \frac{1}{\mathrm{~V}}\left(\delta_{\mathrm{n}^{\prime} \mathrm{n}}+(G W)_{n^{\prime} \mathrm{n}}\right) \rightarrow \delta^{4}\left(\mathrm{x}^{\prime}-\mathrm{x}\right) \tag{3.2}
\end{align*}
$$

This will be shown in the following.
For the evaluation of the l.h.s. of (3.1), the expansion

$$
\begin{equation*}
G=(\not \emptyset+\mathrm{W}-\mathrm{M})(\mathscr{G}-\mathscr{G} \vee \mathscr{G}+\mathscr{G} \vee \mathscr{C} \vee \mathscr{C} \overline{+} \ldots) \tag{3.3}
\end{equation*}
$$

with $\mathscr{G}=\left(\mathrm{D}^{2}-(\mathrm{W}-\mathrm{M})^{2}\right)^{-1}$ and $V=\Sigma+\Gamma$ is used, where
$\Sigma_{1}=(i / 2) \quad \sum_{\lambda^{\prime}, \lambda} \sigma_{\lambda^{\prime} \lambda^{\prime}}\left[D_{\lambda^{\prime}}, D_{\lambda}\right]$ and $\Gamma=\sum_{\lambda^{\prime}, \lambda} \gamma_{\lambda},\left[D_{\lambda},{ }^{\prime} W_{\lambda}\right]$ with

$$
\begin{align*}
{\left[D_{\lambda^{\prime}, D} D_{\lambda}\right]_{n^{\prime} n}=} & -i g\left(F_{\lambda^{\prime} \lambda, n^{\prime}}^{I} \delta_{n^{\prime}+\lambda^{\prime}+\lambda, n}+F_{\lambda^{\prime} \lambda, n^{\prime}-\lambda_{n^{\prime}+\lambda^{\prime}-\lambda, n}^{I I}}^{\delta_{n}}\right.  \tag{3.4}\\
& +F_{\left.\lambda^{\prime} \lambda, n^{\prime}-\lambda^{\prime} \delta_{n^{\prime}-\lambda^{\prime}+\lambda, n}^{I I I}+F_{\lambda^{\prime} \lambda, n^{\prime}-\lambda^{\prime}-\lambda^{\prime} \delta^{\prime}-\lambda^{\prime}-\lambda, n}^{I V}\right) / 4}
\end{align*}
$$

and $\left[D_{\lambda}, W_{\lambda}\right]_{n}{ }_{n}$ differing from (3.4) only by having minus signs in front of $\mathrm{F}^{\mathrm{II}}$ and $\mathrm{F}^{\mathrm{IV}}$. In (3.4) one has

$$
\begin{align*}
& F_{\lambda^{\prime} \lambda, n}^{I}=\left(U_{\lambda n^{\prime}}^{\dagger} U_{\lambda^{\prime}, n+\lambda}^{\dagger}-U_{\lambda^{\prime} n^{\prime}}^{\dagger} U_{\lambda, n+\lambda^{\prime}}^{\dagger}\right) /\left(i g a_{\lambda^{\prime}} a_{\lambda}\right) \quad, \\
& F_{\lambda^{\prime} \lambda, n}^{I I}=\left(U_{\lambda^{\prime}, n+\lambda^{\prime}}^{\dagger} U_{\lambda, n+\lambda^{\prime}}-U_{\lambda n} U_{\lambda^{\prime} n}^{\dagger}\right) /\left(\text { iga }_{\lambda^{\prime}} a_{\lambda}\right) \quad \text {, } \tag{3.5}
\end{align*}
$$

$$
\begin{aligned}
& F_{\lambda^{\prime} \lambda, n}^{I V}=\left(U_{\lambda, n+\lambda^{\prime}} U_{\lambda^{\prime} n}-U_{\lambda^{\prime}, n+\lambda^{\prime}} U_{\lambda n}\right) /\left(\text { iga }_{\lambda^{\prime}} a_{\lambda}\right) \quad .
\end{aligned}
$$

The $F^{I}-F^{\text {IV }}$ are related to the four plaquettes having the point $n$ in common, and in the limit all give $F_{\lambda^{\prime} \lambda}(x)$. In the strict mathematical sense it is to be assumed that either (3.3) converges or that the formal expansion already suffices for the present purpose. When inserting (3.3) into (3.1) only terms of third and higher order in $\mathscr{G}$ contribute. If the higher order ones as well as those with $\Gamma$ vanish in the limit, as will turn out later, the relevant contribution to $\operatorname{tr}\left(\gamma_{5}(\mathrm{GW})_{n n}\right)$ is

$$
\begin{equation*}
\operatorname{Tr} \sum_{\mu \nu \lambda \rho} \varepsilon_{\mu \nu \lambda \rho}\left((\mathrm{W}-\mathrm{M}) \mathscr{G}\left[\mathrm{D}_{\mu}, \mathrm{D}_{\nu}\right] \mathscr{G}\left[\mathrm{D}_{\lambda}, \mathrm{D}_{\rho}\right] \mathscr{G} \mathrm{W}\right)_{\mathrm{nn}} \tag{3.6}
\end{equation*}
$$

Now, commuting $\left[D_{\lambda^{\prime}}, D_{\lambda}\right]$ with $\mathscr{G}$ as well as replacing $\mathscr{G}$ by $\mathscr{G}_{0}$ without gauge fields amounts to omitting higher orders. Similarly, the commutation with $W$ and the replacement of $W$ by $W_{0}$ corresponds to the omission
of terms, which will be seen to vanish in the limit. Thus

$$
\begin{equation*}
\left(\left[\mathrm{D}_{\mu}, \mathrm{D}_{\nu}\right]\left(\mathrm{W}_{0}-\mathrm{M}\right) \mathscr{G}_{0}^{3} \mathrm{~W}_{0}\left[\mathrm{D}_{\lambda}, \mathrm{D}_{\rho}\right]\right)_{\mathrm{nn}} \tag{3.7}
\end{equation*}
$$

may be considered instead of the matrix element in (3.6).
Inserting (3.4) into (3.7) one gets sixteen terms; for example,

$$
\begin{equation*}
-\mathrm{g}^{2} \mathrm{~F}_{\mu \nu, \mathrm{n}}^{\mathrm{I}}\left(\left(\mathrm{~W}_{0}-\mathrm{M}\right) \mathscr{G}_{0}^{3} \mathrm{~W}_{0}\right)_{\mathrm{n}+\mu+\nu, \mathrm{n}-\lambda+\rho} \mathrm{F}_{\lambda \rho, \mathrm{n}-\rho}^{\mathrm{II}} / 16 \tag{3.8}
\end{equation*}
$$

By using the transformation $\mathscr{N}^{-\frac{1}{2}} \exp \left\{-\pi i \quad \sum_{\lambda} r_{\lambda} n_{\lambda} / N_{\lambda}\right\}$, for the matrix element in (3.8) the representation

$$
\begin{equation*}
\left(\left(\mathrm{W}_{0}-\mathrm{M}\right) \mathscr{G}_{0}^{3} \mathrm{~W}_{0}\right)_{\mathrm{n}+\mu+\nu, \mathrm{n}-\lambda+\rho}=\mathscr{N}^{-1} \sum_{\mathrm{r}} \mathscr{I}_{\mathrm{r}}(0) \tag{3,9}
\end{equation*}
$$

is obtaincd, where for later convenience the abbreviation

$$
\mathscr{I}_{r}(\alpha)=-\frac{(w-\alpha-m)(w-\alpha)}{\left(\sum_{\lambda} s_{\lambda}^{2}+(w-\alpha-m)^{2}\right)^{3}} \exp \left\{i \pi\left(\frac{r_{\mu}}{N_{\mu}}+\frac{r_{v}}{N_{v}}+\frac{r_{\lambda}}{N_{\lambda}}-\frac{r_{\rho}}{N_{\rho}}\right)\right\},(3.10)
$$

with $s_{\lambda}=\sin \left(\pi r_{\lambda} / N_{\lambda}\right) / a_{\lambda}$ and $w=\sum_{\lambda}\left(\cos \left(\pi r_{\lambda} / N_{\lambda}\right)-1\right) / a_{\lambda}$, has been introduced. So far the summation over $r_{\lambda}$ in (3.9) is from $-N_{\lambda}+1+n_{\lambda}$ to $N_{\lambda}+n_{\lambda}$, where $n_{\lambda}$ is some integer. By an appropriate choice of $n_{\lambda}$ and a shift of the summation indices in one half of the intervals by $N_{\lambda}$, $\sum_{\mathrm{r}}$ can be replaced by $\sum_{\mathrm{r}}^{\prime}$ for which the summations are restricted to $-N_{\lambda} / 2<r_{\lambda} \leqq N_{\lambda} / 2$. This gives

$$
\begin{align*}
\sum_{r} \mathscr{I}_{r}(0)= & \sum_{r}\left(\mathscr{I}_{r}(0)-\sum_{\lambda} \mathscr{I}_{r}\left(m_{\lambda}\right)+\sum_{\lambda^{\prime}>\lambda} \mathscr{I}_{r}\left(m_{\lambda^{\prime}}+m_{\lambda}\right)\right.  \tag{3.11}\\
& \left.-\sum_{\lambda^{\prime \prime}>\lambda^{\prime}>\lambda} \mathscr{I}_{r}\left(m_{\lambda^{\prime \prime}}+m_{\lambda^{\prime}}+m_{\lambda}\right)+\mathscr{I}_{r}\left(m_{1}+m_{2}+m_{3}+m_{4}\right)\right),
\end{align*}
$$

where $m_{\lambda}=2 \cos \left(\pi r_{\lambda} / N_{\lambda}\right) / a_{\lambda}$. The crucial point is now that for $\sum_{r}^{\prime}$, in which $k_{\lambda}=\pi r_{\lambda} /\left(a_{\lambda} N_{\lambda}\right)$ and $s_{\lambda}=\sin \left(k_{\lambda} a_{\lambda}\right) / a_{\lambda}$ are uniquely related, the continum limit can safely be obtained. Thereby ( $\mathscr{N}$ v) ${ }^{-1} \sum_{r}^{\prime} \mathscr{F}_{\mathrm{r}}(0)$ vanishes while for the seven positive and eight negative contributions to (3.11) with $\mathscr{I}_{r}$ depending on the $m_{\lambda}$, for $N_{\lambda} \rightarrow \infty$ and $a_{\lambda}$ small, $-(\mathscr{A} v)^{-1} \sum_{r}^{\prime} \mathscr{I}_{r}$ tends versus

$$
\begin{equation*}
(2 \pi)^{-4} \int d^{4} k \alpha^{2}\left(k^{2}+\alpha^{2}\right)^{-3} \tag{3.12}
\end{equation*}
$$

where $\alpha$ is a constant of order $1 / a_{\lambda}$. Since the integral (3.12) independently of $\alpha$ equals $\left(32 \pi^{2}\right)^{-1}$, this gives the limit. A further consequence of the $\alpha$-independence of (3.12) is that a replacement of $W$ by cW in (2.1), where $c$ is a finite constant, does not change the result. Because with a denominator $\left(k^{2}+\alpha^{2}\right)^{3+\nu}$ the integral is proportional to $1 / \alpha^{2 \nu}$, the higher orders vanish indeed. The $\Gamma$-terms involving $\left[D_{\lambda},,_{\bar{W}}^{\lambda}\right]$, those with $\left[W_{\sigma},\left[D_{\lambda},, D_{\lambda}\right]\right]$ arising from the interchange, and the ones with $W-W_{0}$ from omitting gauge fields do not contribute because (due to forming commutators respectively a difference) they have one driving factor less in the numerator.

It can now be seen that the matrix elements of $\left(W_{0}-M\right) \mathscr{G}_{0}^{3} W_{0}$ of the sixteen terms in (3.7) all become $\left(32 \pi^{2}\right)^{-1}$, and thus with (3.6) one gets in fact (3.1). One has, however, to realize that $F_{\mu \nu}(x)$ and $F_{\lambda \rho}(x)$ arise as the limits of $\left(F_{\mu \nu, n}^{I}+F_{\mu \nu, n-\nu}^{I I}+F_{\mu \nu, n-\mu}^{I I I}+F_{\mu \nu, n-\mu-\nu}^{I V}\right) / 4$ and $\left(F_{\lambda \rho, \mathrm{n}-\lambda-\rho}^{I}+\mathrm{F}_{\lambda \rho, \mathrm{n}-\lambda}^{I I}+\mathrm{F}_{\lambda \rho, \mathrm{n}-\rho}^{I I I}+\mathrm{F}_{\lambda \rho, \mathrm{n}}^{I V}\right) / 4$, respectively (with $\mathrm{x}_{\lambda}=\mathrm{a}_{\lambda} \mathrm{n}_{\lambda}$ ).
While for classical gauge fields the interpretation of these limits would be the naive one, in the full quantum case one has to note that the $F^{I}-F^{I V}$ are functions of the gauge variables.

To show (3.2) one proceeds similarly as for (3.1). The l.h.s. of (3.2), omitting gauge fields, can be represented as

$$
\begin{equation*}
(\mathscr{N} v)^{-1} \sum_{\mathrm{r}} \exp \left\{\pi i \sum_{\lambda} r_{\lambda} \frac{\mathrm{n}_{\lambda}^{\prime}-\mathrm{n}_{\lambda}}{\mathrm{N}_{\lambda}}\right\}\left[1+\mathscr{H}_{\mathrm{r}}(1,0)\right] \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{H}_{\mathrm{r}}(\mathrm{~h}, \alpha)=-\frac{\left(\mathrm{i} \sum_{\lambda^{\prime}}{ }_{h_{\lambda^{\prime}}} \gamma_{\lambda^{\prime}} s_{\lambda^{\prime}}+w-\alpha-m\right)(w-\alpha)}{\sum_{\lambda} s_{\lambda}^{2}+(w-\alpha-m)^{2}} \tag{3.14}
\end{equation*}
$$

with $h$ defined such that $h_{\lambda}= \pm 1$ in an appropriate way. When turning over to $\sum_{r}^{\prime}$, in addition to $\left[1+\mathscr{H}_{\mathbf{r}}(1,0)\right]$ terms of type
 occur. In the limit the 1 of the first term gives $\delta^{4}\left(x^{\prime}-x\right)$ in Fourier representation, while $\mathscr{H}_{\mathbf{r}}(1,0)$ vanishes. The other terms; because of $(-1)^{n_{\lambda}^{\prime}-n_{\lambda}}=\exp \left\{i\left(\pi / a_{\lambda}\right)\left(x_{\lambda}^{\prime}-x_{\lambda}\right)\right\}$ are oscillated away (also without the $\mathscr{H}_{\mathrm{r}}$ ). In addition, the $\mathscr{H}_{\mathrm{r}}$ depending on the $\mathrm{m}_{\lambda}$ tend to -1 . The terms arising from the omission of gauge fields are seen to vanish a fortiori.

Finally the alternative regularization of Osterwalder and Seiler is considered, which is obtained by replacing $W$ by $R=-i \gamma_{5} W$. The only essential change in the presented derivation is that instead of (3.3) the expansion

$$
\begin{equation*}
\mathrm{G}=(\not D-\mathrm{R}-\mathrm{M})\left(\mathscr{G}_{\mathrm{R}}-\mathscr{G}_{\mathrm{R}} \mathrm{~V}_{5} \mathscr{\mathscr { R }}_{\mathrm{R}}+\mathscr{G}_{\mathrm{R}} \mathrm{~V}_{5} \mathscr{B}_{\mathrm{R}} \mathrm{~V}_{5} \mathscr{\mathscr { G }}_{\mathrm{R}} \bar{\mp} \ldots\right) \tag{3.15}
\end{equation*}
$$

with $\mathscr{G}_{r}=\left(D^{2}+R^{2}-M^{2}\right)^{-1}$ and $V_{5}=\Sigma-i \gamma_{5} \Gamma$ is to be used. From (3.15) one then obtains

$$
\begin{equation*}
\operatorname{tr}\left(\gamma_{5} G R\right)=\operatorname{tr}\left(\gamma_{5}(\not D-\mathrm{R}-\mathrm{M})\left(\mathscr{S}_{\mathrm{R}} \mathrm{~V}_{5} \mathscr{S}_{\mathrm{R}} \mathrm{~V}_{5} \mathscr{B}_{\mathrm{R}} \mp \ldots\right) \mathrm{R}\right) \tag{3.16}
\end{equation*}
$$

which shows that one gets the same limit as before.

## ACKNOWLEDGMENTS

I wish to thank S. Drell and the SLAC Theoretical Physics Group for the kind hospitality. I gratefully acknowledge many stimulating conversations with colleagues here. I thank H. Quinn and N. Snyderman for drawing my attention to Ref. 14, and L. Karsten and J. Smit for telling me about Ref. 10 prior to its appearance. This work was supported in part by the Deutsche Forschungsgemeinschaft and in part by the Department of Energy, contract DE-AC03-76SF00515.

## REFERENCES

1. K. G. Wilson, Phys. Rev. D10, 2445 (1974).
2. K. G. Wilson, in Proc. of the Intern. School, Erice, 1975, ed. A. Zichichi (Plenum, New York, N.Y., 1977), part A, p. 69.
3. J. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).
4. S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D14, 1627 (1976).
5. K. Osterwalder and E. Seiler, Ann. Phys. (N.Y.) 110, 440 (1978).
6. M. Creutz, Phys. Rev. Lett. 45, 313 (1980); Phys. Rev. D21, 2308 (1980) ; and references cited therein.
7. For a recent survey see: H. Pagels, Phys. Lett. 87B, 222 (1979).
8. L. Susskind, Phys. Rev. D20, 2619 (1979).
9. L. H. Karsten, Ph.D. thesis, Amsterdam 1979.
10. L. H. Karsten and J. Smit, Stanford University preprint, ITP-677 (1980).
11. S. L. Adler, Phys. Rev. 177, 2426 (1969); J. S. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969).
12. K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979); Phys. Rev. D21, 2848 (1980).
13. J. Schwinger, Phys. Rev. 82, 664 (1951).
14. L. S. Brown, R. D. Carlitz and C. Lee, Phys. Rev. D16, 417 (1977).
15. K. Johnson, Nucl. Phys. 25, 431 (1961).

[^0]:    Work supported in part by the Deutsche Forschungsgemeinschaft and in part by the Department of Energy, contract DE-AC03-76SF00515.
    ${ }^{\dagger}$ On sabbatical leave from Fachbereich Physik, Universität Marburg, D3550 Marburg, Fed. Rep. of Germany.

