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1. INTRODUCTION 

In these two lectures I will review and bring up to date our 

picture of nucleon structure as seen in the context of deep in- 

elastic scattering. From the very early days of inelastic scatter- 

ing to the present, this subject has been continually reviewed by 

many persons. As the data have expanded over wider kinematic terri- 

tory, and as the theoretical framework has expanded and improved, 
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the questions we are asking have changed as well. The lectures 

be& with consideration of the quark-parton model. The model forms 

the basis of our understanding of lepton-nucleon inelastic scattering. 

This model is weak on formal, theoretical justification, but very 

strong on intuitive understanding of the processes. As improved 

data in lepton-nucleon scattering at high energies became available, 

the quark-parton model failed to explain some crucial features of 

these data. At approximately the same time a candidate theory of 

strong interactions based on a SU(3) gauge theory of color was being 

discussed in the literature, and new ideas on the explanation of 

inelastic scattering data became popular. A new theory of strong 

interactions, now called quantum chromodynamics provides a new 

framework for understanding the data, with a much stronger theore- 

tical foundation, and seems to explain well the features of the 

data. Although there are many problems yet to be resolved, both in 

the data and in the QCD calculations, one is impressed at the quali- 

tative level by the QCD-like features seen in the data taken as a 

whole. The lectures will conclude with a look at some recent exper- 

iments which provide new data at very high energies. These lectures 

are concerned primarily with charged lepton inelastic scattering and 

to a lesser extent with neutrino results. Furthermore, due to time 

and space limitations, topics such as final state hadron studies, 

and multi-muon production are omitted here. The lectures concentrate 

on the more central issues: the quark-parton model and concepts of 

scaling, scale breaking and the ideas of quantum chromodynamics, 

the Q2 dependence of structure function, moments, and the important 

parameter R. 

II. THE QUARK-PARTON MODEL AND SCALING 

Figure 1 shows the basic process under consideration. An inci- 

dent lepton R scatters at a laboratory angle 0 from a stationary 

nucleon. The nucleon fragments into a recoiling state X, of invari- 

ant mass W, not specifically identified. 
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Fig. 1. Dynamics and kinematic variables in 
lepton-nucleon scattering. 

Figure 1 shows the dynamical picture; for charged lepton 

scattering a single virtual photon transmits the force from lepton 

to hadrons. For neutrino interactions, the photon is replaced by 

Wt or Z". Kinematic parameters are important in any discussion of 

features of the data. Definition of the commonly used variables are: 

Q2 = -(av-kh)2 = 4EOE' sin2-$ 

where Q2 is the invariant four momentum transfer-squared, E. is 

the incident lepton energy, and E' is the outgoing lepton energy. 

W2 E M2 = 
X 

(Pu+q!J2 = M2+ 2M(EO- El)- Q2 (2) 

is the invariant mass squared of the final state hadrons. 



v = Eo-E' (3) 

is the energy lost by the lepton and transferred to the hadrons. 

Q2 
x = 2Mv and y=$ (4) 

0 

are scaling variables with special meaning in the quark-parton 

model. For elastic scattering, W2=M2, which by equation (2) gives 

2Mv=Q2, and x=1. These relations for elastic scattering will be 

important. 

The quark-parton model was introduced in 1969 by Richard 

Feynmanl as an intuitive explanation of scaling predicted by J. D. 

Bjorken2 and exhibited by the early inelastic electron scattering 

data from SLAC.3 The picture Feynman introduced is shown in Fig. 2 

where a virtual photon scatters off a quasi-free constitutent which 

carries a fraction 5 of the target particle momentum P. Target 

mass effects, constituent mass effects, interactions between the ._ 
constituents, and transverse momentum of the constituents are 

ignored. Elastic scattering from such a quasi-free constituent of 

mass m carrying a fraction 5 of the nucleon's momentum gives 

(SPY + 9,>' = m2 (5) 

or 

cM2+ 2Mvc- Q2 2 =m . 

Solving for the fraction 5 gives 

P 

IO-79 
3705A3 

Fig. 2. Virtual photon 
scattering from a 
nucleon constituent 

For vL z=> Q' >> mL, we find a simple form for 5, first introduced 

by Bjorken (the Bjorken scaling limit) 



92 h 5 = 2-c = ZMv (7) 

The relation x = Q 2 /2Mv has interesting physical consequences. 

The ratio Q2/2Mv determines the fraction of the total momentum 

carried by parton involved in the scattering event. It can be 

obtained solely from the scattering kinematics of the leptonic 

side of the reaction. Suppose the nucleon consisted of only two 

partons which carried fractional momentum x1 and x2. Then the 

scattering of leptons would occur only for two values of Q2/2Mv, 

namely x1 and x2, although Q 2 and v would vary. This is the con- 

straint imposed by elastic scattering from each of the massless 

partons. If the nucleon consisted of a distribution of partons 

of momenta x i, then scattering of leptons would be seen for a 

distribution of values of Q2/2Mv = x.. The distribution in x of 1 
inelastic scattering events, corrected for kinematic factors, can 

be related to the probability of finding a parton of fractional ._ 
momentum x contributing to the scattering. 

Elastic scattering can be considered an example of parton scat- 

tering where only one constituent exists. Equation (2), with W set 

to M, gives QL/2Mv= 1, agreeing with the picture that a single con- 

stituent of the nucleon must carry the total momentum. Cross 

section formulae for elastic scattering from nucleons are expressed 

in terms of form factors, which depend on a single kinematic varia- 

ble, Q2. In the case of inelastic scattering, similar form factors 

exist, called "structure functions", but in general these form fac- 

tors are functions of two variables, Q2 and v. In the parton model 

the inelastic scattering arises from elastic scattering -from point 

particles and these structure functions will depend only on a single 

variable, x. This simplification in the form of the hadronic part 

of the cross section carries the name "scaling", and represents 

simply a kinematic constraint resulting from elastic scattering 



frZm quasi-free constituents. 

Another variable of considerable importance to inelastic scat- 

tering phenomenology is the parameter y. In Fig. 3, the scattering 

from a constituent quark is shown in the CMS system and in the lab. 

Boosting from the CMS to the lab gives for the outgoing lepton 

energy, neglecting masses, 

E' = y(E*+ BE" co&*) 

EO N --j- (1+cose*) 

or 
E' - = $(1+cose*) . 
EO 

Since Eo-E' 

Y= 
EO 

(l-y) = %(l+co&*) 

Lorentz 
Boost 
E >> m 

Fig. 3. Lepton-quark scattering 

(8) 
in two frames. 

(9) 

We observe that y is related to the CMS scattering angle of the 

lepton in the lepton-quark system. The parameter y is readily meas- 

ured in high energy experiments, and the factor (1-y) will take on 

special significance in quark-parton model descriptions of the scat- 

tering process, as will be described later. 

The choice of an appropriate scaling variable for describing 

the data has been a subject of discussion from the early days of 
n 

scaling. The original scaling variable of Bjorken's, x= QL/2Mv, 

applied to asymptotic energies, and no guidance was given regarding 

use of x to test scaling at low energies and for targets of finite 

mass. 

Figure 4 shows the behavior of one of the two nucleon structure 

functions, FFp(x,Q2), plotted in the variable x. The data are from 

SLAG/MIT data sets and include a broad range of Q2, from 2 GeV2 to 
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Fig. 4. Proton structure function 
F2 derived from electron- 
proton scattering. 

18 GeV2. Scaling of the data 

implies that F;' at fixed x 

will be independent of Q2. 

Figure 4 shows quite clearly 

the scaling nature of the data. 

All data fall into a narrow 

range whose value depends on 

x, but appears to be nearly 

independent of Q2. The fact 

that the scaling nature sets 

in early at low energies, well 

below the Bjorken limit, led to 

the phrase "precocious scaling" 

associated with these data. 

Scaling in these data is only 

approximate, as indicated by the band of data points which appears 

to be wider than the errors permit. Even in the early days of in- 

elastic scattering data, deviations from exact scaling were evident. 

One explanation of the small deviations from exact scaling was that 

mass effects were neglected in the choice of scaling variables. New 

scaling variables were introduced, for example 

X ' = Q2 

( 2Mv + M2 ) 

by G. Miller4 and 

5 = (l +gzi$) 

(10) 

(11) 

by Breidenbach and Kuti and later Nachtmann.5 The variable < in- 

corporated target mass terms and was shown to improve the scaling 

behavior of the low energy data when substituted for X. 

In deep inelastic scattering, the hadronic part of the inter- 

action is decomposed into two pieces, representing a particular 



choice of the two inelastic form factors called "structure functions". 

These two structure functions are now mostcommonly denoted Fl eN (x,Q2) 
and FyN(x,Q2), where the superscript eN refers to the reaction in 

which they occur. Structure functions for PN inelastic scattering 

and vN inelastic scattering are expected to be closely related to 

those for eN. 

The cross section for eN+eX, in terms of the kinematic para- 

meters and F 1 and F2 is given by 

-+- = $ [( lBy -T) F;A(IyQ2’ + $ 2F;N(x,Q2)] (12) 

dQ dx Q 

which serves, for the purpose of these lectures, to define the 

nucleon structure functions F1 and F2. One can show for elastic 

scattering from point-like spin-S targets of charge Zi, 

which suggests (in the limit E. >> m) 

2xFl(x,Q2) = F2(x,Q2> 

(13) 

(14) 

This relation, known as the Callan-Gross relation6 is closely related 

to a parameter R, predicted to be zero in the Bjorken limit, which 

will be discussed in some detail in the next lecture. The Callan- 

Gross relation is almost exact in eN inelastic scattering and in 

vn inelastic scattering. Small deviations are observed in eN data, 

and in the most recent vN data small deviations from exact Callan- 

Gross behavior also appear to occur. The Callan-Gross relation is 

important because it is nearly satisfied by the data and indicates 

the spin-5 nature of the constituents, but also because it can be 

used to eliminate one of the structure functions (usually Fl) in the 

phenomenological analysis of the data. The Callan-Gross relation is 

often assumed because of the simplification of form it brings. 



Inelastic scattering of neutrinos off nucleons has a somewhat 

moie complicated structure than eN or UN scattering. The weak in- 

teractions couple through both vector couplings (V) and axial-vector 

couplings (A), which lead to a third structure function F3. The com- 

plete form of the cross section for inelastic neutrino scattering is d20v,’ G2 

dxdy = 7 mO FiN(x,Q2)++y (15) 

which serves to define phenomenologically Fl vN(x,Q2),FiN(x,Q2) and 

F;N(~,Q2). The +(-) sign in the F3 term refers to v(S) cross 

section. 

The charged current neutrino interactions are helicity dependent 

due to the V-A nature of the vertices. Only neutrinos and quarks of 

negative helicity interact, while for anti-neutrinos and anti-quarks, 

the charged weak currents pick 

lustrates the contributions to 

(a) 

(b) 

- 
uP T 
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Fig. 5. Helicity restric- 
tions in neutrino 
scattering from 
spin-% particles. 

out positive helicity. Figure 5 il- 

the cross sections. Consider a target 

nucleon consisting of a mixture of 

quarks and anti-quarks, Neutrino 

scattering off quarks proceeds by the 

Js= 0 component of the weak current. 

The center-of-mass angular distribu- 

tion for Jz= 0 currents is a constant, 

and the corresponding y-distribution 

is flat. For neutrinos interacting 

on anti-quarks, the interaction pro- 

ceeds through a Js= -1 component, 

resulting in a (l+ COS~*)~ angular 

distribution and y-distribution of 

the form (l-~)~ from equation (9). 

If one defines a quark distribu- 

tion q(x) to represent the probabil- 

ity of finding a quark q with a 
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fraction of momentum x, and q(x) to represent the probability of 

fiBding an anti-quark 4 with a fraction of momentum x, then the 

neutrino cross section has the form 

d20v 2 
-= 
dxdy ymo 4(x) + Cl- Y12 4(x) ) 

and the anti-neutrino cross section has the form 

(16a) 

i(x) + (l- y>2 (16b) 

Assuming that the Callan-Gross relation is valid and using it to 

eliminate 2xF 1, equations (15) and (16) give 

FiN(x,Q2)= 2x {q(x,Q2) + i(x,Q2)) 

and 

xFiN(x,Q2)= 2x {,(x,Q') - &Q2)) . ._ 

(17) 

(18) 

The quantity xq(x,Q2) is the momentum carried by quarks of fractional 

momentum x, and integrals of F2 represent the total momentum carried 

by quarks and anti-quarks. Ina model of the nucleon where anti- 

quarks come from quark- anti-quark pairs out of a "sea", in analogy 

to virtual electron-positron pairs found in the vicinity of a Coulomb 

field, then xF3/2x represents the excess of quarks over-anti-quarks 

in the nucleon. The integral of xF3/2x is expected to equal 3 for a 

nucleon consisting of 3 valence quarks plus a quark- anti-quark 

symmetric sea. 

The y-distributions in v and 3 inelastic scattering reveal the 

quark and anti-quark content of the nucleon. Figure 6 shows cross 

section data for v and $ beams. The y-distributions are fit to a 

constant and a (l- Y>~ term coming from the smaller anti-quark 

content. The anti-neutrino cross section on the other hand has a 

large (1- y)2term in agreement with the large quark content of 
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Fig. 6. y-distributions for 
neutrino and anti- 
neutrino nucleon 
scattering. 

the nucleon. These data show 

quite clearly the presence of 

both quarks and anti-quarks 

in the nucleon. 

Suppose the nucleon con- 

sists of u, d, s and c quarks 

and their corresponding anti- 

quarks G, d, i and c. Then 

FiN(x) = 2x{u(x)+;(x)+d(x) 

+ d(x) + . ..I (19) 

where q(x,Q2) has been expanded 

into its various flavor compo- 

nents, and Q 2 has been dropped 

for simplicity, but in principle 

still belongs in-these 

functions. 

The corresponding form of equation (19) for eN or LIN scattering 

must contain the charge-weighted distributions 

F;yx) =&; x(qp + ii(X)) 

Expanding this for the proton and neutron 

F;'(x) = x 

Fy(x) = x ~(un(x)+;,cx)) + $(dn(x)+;in(x)) + . . . 
> 

* (20) 

Using isospin rotation, which takes n f-t p and u f-f d, we have 

u,(x) = dp(x) and d,(x) = u,(x) . 
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F;"(x) = x $ 
{( 

dp(x)+zg(x)) + $(up(x)+;p(x)) + . ..} 

Averaging over ep and en for an isoscalar target, and neglecting 

heavy quarks gives 

FgN(x) = + F;IN . (22) 

This approximate relation is often used to compare eN or UN and vN 

data. This relation seems to be closely satisfied by the data, 

and therefore lends strong support for the quark-parton picture of 

nucleon structure. 

A quantity similar to xFy ep of equation 18, is F2 -F2 en from 

inelastic electron scattering. In the quark-parton model, the qi 

sea terms are the same for the proton and neutron, while valence 

qua-rk contributions are different. Thus the difference FFP-Fy 

picks out the valence quark contributions. Figure 7 shows two 

I I I I I 

l Elastic ep Scattering 
en 

x F;‘- F2 Inelastic Structure Function 

W>2GeV; 2GeV2 <02<8GeV2 

L 

0 0.4 0.8 1.2 
10-n X 110115 

Fig. 7. Examples of elastic and 
inelastic electron- 
nucleon scattering. 

examples of scattering from 

nucleon constituents. The first 

trivial example shows elastic 

ep scattering, which occurs at 

x= 1, broadened by experimental 

resolution and radiative proces- 

ses. The second example is more 

interesting. It shows FFP-F; 

distributions in x, but with 

arbitrary normalization. The 

distribution peaks a-t x-1/3, 

corresponding to a most probable 

momentum for the valence quarks 

of l/3 of the total. This is 

evidence that there are three 

valence quarks in the nucleon. 



13 

No discussion of scaling and nucleon structure is complete with- 

out some mention of sum rules. Sum rules have provided a great deal 

of important conclusions about the validity of the quark-parton model. 

It can be shown that for incoherent scattering off free constituents, 

s 

' Fep(x> 2 dx = c 
2 

Z. 
0 x i 1 (23) 

This is known as the Gottfried sum rule. For a proton of two u 

quarks and one d quark, czz= 1. The experimental value, measured 

in ep data is 

dx = 1.05? .09 (24) 

The integral is sensitive to the form of F2(x) at small x, so the 

interpretation of the experimental value could be challenged, but 

at first glance, it is consistent with a simple valence quark model 

of the nucleon. Another sum rule is 1 
xF3 (x> 

dx =2 
X 

qi(x> - ii <x>) dx . (25) 

This integral is the Gross-Llewellyn-Smith sum rule, and is expected 

to have a value of six for three valence quarks. The measured value 

is 6.4? 1 from CDHS neutrino data. These two sum rules are consis- 

tent with the quark-parton picture of the nucleon containing three 

valence quarks and a sea of quark- anti-quark pairs. 

Finally, a third and very important sum rule, 

J 
1 

F;'(x) dx = 
/ 

' c z; x(si(x)+$x)) dx 
0 0 i 

(26) 

is known as the momentum sum rule. For a simple proton consisting 
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of two u quarks and one d quark, each carrying l/3 of the momentum, 

/ 

1 

c 
z; xqi(x) dx = l/3 . 

0 i 

The experimentally measured value is 

/ 

1 

Fgp(x) dx = .15 

0 
(27) 

Here we see a significant deviation from the simple quark-parton 

model. If one looks at vN data, the corresponding momentum sum rule 

gives 

(28) 

where one expects 1. In both cases, there appears to be missing ._ 
momentum based on the quark-parton model interpretation of the mean- 

ing of F2. Inelastic vN and eN agree that approximately one half of 

the momenta is missing, and the interpretation is that there are 

neutral constituents in the nucleon. That is, there must reside in 

the nucleon constituents that carry momenta, but carry neither 

electromagnetic or weak charge. This is one piece of evidence that 

the simple quark-parton picture of the nucleon is not valid. We 

have already seen residual evidence of scale-breaking features in 

the structure functions. The fact that the parton-model description 

ignored the possibility of strong interaction effects in the hadrons 

left the description somewhat incomplete. Perhaps most disconcert- 

ing, at least to some subset of the physicists, was the lack of a 

rigorous foundation to the parton model. A candidate theory of 

strong interactions was emerging which could at least bypass the 

latter problem. A gauge theory of colored gluons and quarks was 

being developed which could be applied to deep inelastic scattering. 

In the final analysis there now seems tobe compelling reasons to go to 
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such a theory, at least as a replacement to the parton model. The 

rno2 important of these is the rigorous formal basis for the theory, 

and the simple fact. as we shall see, that it appears to describe 

well the data. Therefore, I would now like to turn to the questions 

of quantum chromodynamics, as this theory is called. I will discuss 

the underlying intuitive ideas, and the phenomenology as it applies 

to deep inelastic scattering. But let me emphasize here that quantum 

chromodynamics does not replace the quark-parton model in inelastic 

scattering. Instead the description of deep inelastic scattering 

incorporates the older quark-parton model ideas and QCD extends it 

to include quark-quark interactions and quark-gluon interactions. 

III. SCALE BREAKING AND QUANTUM CHROMODYNAMICS 

Quantum chromodynamics is a gauge field theory of colored gluons 

Andy colored quarks. The strong force is mediated by massless vector 

particles called gluons which couple to a strong charge called color. 

Gluons carry color, quarks carry color, but leptons do not. There 

is a fundamental coupling constant us which represents the strength 

of coupling at the quark-gluon 

c1 
S 

reflects the analogy to the 

electrodynamics. In Fig. 8 we 

and gluon-gluon vertices. It's symbol 

fine structure constant of quantum 

see the three basic diagrams in the 

dynamics. They are labelled 

"brems", "pair", and "3-gluon", 

6 
9 46 q 

<* 

again in analogy to QED ideas. 

'3 9 The third process, gluons cou- 
i 4 

lo-is (a) (b) ( c 1 IlO,.ll 
pling to gluons, has no analogue 

in QED because photons carry no 
Fig. 8. Basic QCD couplings: a) 

bremsstrahlung of a 
electric charge, whereas gluons 

gluon from a quark b) carry color. 
pair production of 
quarks from a gluon, and In QED the effective cou- 
c) three gluon vertices. pling constant varies with Q2 

due to vertex corrections of the electromagnetic current; 
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- cx(Q2) = +;) 

[ 

!f where Qi is some r-E 

( > 2 
l-* Rn 

erence four m lrn squared. The strength of 
3 

the electromagnetic coupling increases as Q" increases. 

The intuitive explanation has the photon probing shorter dis- 

tances, allowing the photon to see more of the bare charge, as Q2 

increases. In QCD, the analogous form for cs is 

as(Q2) = a&;)[' + Bas(Q;) +$j-l (30) 

where B= (33- 2Nf)/12r and Nf is the number of quark flavors. Here 

as Q2 ( > decreases as Q2 increases. The intuitive explanation for this 

behavior is somewhat different. The gluons spread the strong charge 

out over a finite region of space, so that as Q 2 increases, probing 

shorter distances, the diffuse strong charge leads to a weakening of ._ 
the coupling strength. If one introduces the parameter 

A2 = Qi exp (31) 

then 

as(Q2> = + Rn (32) 

A is a free parameter or scale parameter not set by the theory, but 

which can be determined by experiment. Present values of A vary 

from .l to 1 GeV, depending on which data samples are used andcertain 

assumptions made in the analyses. The most recent analyses of high 

Q2 data show a preference for lower values of A. For the values 

A= .5 GeV and B= .63 (Nf= 4) Fig. 9 shows the variation of us with 

Q2. The important feature is the asymptotic approach to 0 as Q2 

increases. The vanishing of the coupling constant at infinite Q2 

represents decoupling of strongly interacting particles in this 
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Fig. 9. Variation of us with Q2 

limit, and goes by the des- 

criptive phrase "asymptotic 

freedom". 

The prediction of gluons 

and their coupling to quarks 

leads to the prediction of 

scale-breaking in deep inelas- 

tic phenomena. Radiation of 

gluons from quarks leads to an 

x-distribution that should 

change as Q2 increases. 

Figure 10 shows basic diagram by which scale-breaking should occur. 

The lepton scatters off constituent quarks, 

whose distributions are measureable, but Q/ 
I 

note yet calculated in QCD. As Q2 changes, 

the process shown in Fig. 9 leads to a 
9 

Y 
._ 

Fig. 10. Gluon radiation from quarks in * 
'4 q 

9 
lepton-nucleon scattering. 

9 - a0 3952A22 

change in the quark distributions due to 

a changing contribution from radiated gluons. At high x, the radia- 

tion of gluons should deplete the quark probability distributions. 

Thus as Q2 increases the high x part of F2(x) would be expected to 

decrease. The pair-production diagram of Fig. 8 allows gluons to 

contribute to the quark probability at low x. Thus at low x, as Q2 

increases F2(x) would be expected to increase. The basic QCD-like 

scale-breaking features of inelastic structure functions is shown in 

Fig. 11. There are several important, qualitative features which 

should be emphasized. First, QCD does not predict (yet, at least) 

the basic shape of the structure functions. As we shall see later, 

these forms are derived phenomenologically from the data. The vari- 

ations of the structure functions are predicted in QCD. These vari- 

ations are not dramatic, but vary logarithmically with Q2 due to the 

logarithmic dependence of us. The slope of the Q* dependence should 
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Fig. 11. The qualitative be- 
havior of F2(x,Q2) 
for different values 
of Q2 as expected 
from gluon radiation. 

moment analysis of the inelastic 

be positive at low x and negative 

at high x. At present the experi- 

mental data are insensitive to the 

basic gauge group, color SU(3), or 

the number of quark flavors. The 

scale-breaking features are sensi- 

tive to the spin of the gluon, and 

later comparison of predictions 

for vector and scalar gluons will 

be shown. Finally, one should 

observe that for a changing dis- 

tribution as seen in Fig. 11, it 

is natural to consider moments of 

the distributions and study their 
2 Q dependence. We will next look 

at QCD predictions of the Q2- 

evolution of the structure func- 

tions, and then the highly suc- 

cessful and highly controversial 

structure functions. 

IV. THE Q2 EVOLUTION OF THE STRUCTURE FUNCTIONS 

It is first necessary to connect the ideas of the quark-parton 

model to those of QCD. The terminology used in QCD calculations is 

somewhat different from that already described. For example, it is 

natural to split off the quark-antiquark pairs that arise in the sea 

contribution to the structure functions. These components of the 

structure functions are the so called "flavor singlet" contributions. 

Gluons coupling to q{ pairs contribute to flavor singlet structure 

functions. Unpaired quarks contribute to "flavor nonsinglet" distri- 

butions. Quarks radiating gluons (i.e., gluon bremsstrahlung) modify 

singlet and nonsinglet distributions. Valence quarks contribute to 

the nonsinglet structure functions. Figure 12 shows the basic terms 



19 

Fig, 12. QCD processes which modify 
quark distributions: a) 
flavor nonsinglet (valence) 
quarks, b) flavor singlet 
(sea) quarks, c) gluons. 

which contribute to the sing- 

let and nonsinglet quark 

probability distributions. 

The singlet and nonsing- 

let quark distributions are 

not predicted in QCD. But 

the quark distributions have 

a Q2-dependence modified by 

terms that appear in Fig. 12. 

Consider for example the non- 

singlet distributions. At 

low Q2, the distance scale 

being probed is relatively 

long. Emission and reabsorp- 

tion of quark-antiquark vir- 

tual pairs is hidden. But 

as Q2 increases, the scale 

shrinks and quarks are some- 

times resolved into a quark 

of lower momentum and a gluon. The so-called Alterelli-Parisi 

equation' describing this situation is 

Q 2 --+ Fis(x,Q2) = 
as(Q2> 1 

2T 
J 

dw Fys(~,Q2) pqq(z) W 

X 

(33) 

The fractional change in F2(x,Q2)is givenby an integral over quark 

states of higher momenta, times a "splitting function" P 
qq' 

The 

splitting function is a factor representing the emission of a gluon 

from a quark of momentum w, giving a quark of momentum x. The form 

of Pqq(z) for spin-l particles is7 

4 
C 

1+z2 
pqq(z) = 7 (l- z)+ + $ 6(z- 1) 1 (34) 



20 

where (1- z)+ is defined by the relation 
h 

J 
1 

f(z) dz = 
1 

(1+ z>+ 
fez) - f(1) dz 

(l-z) * 
0 

(35) 

We note that 

(36) 

and thus Pqq(z) is not a probability distribution. The flavor sing- 

let evolution equations are more complicated because of the addition- 

al terms which contribute, as illustrated in Fig. 12. For complete- 

ness they are included here, but are not used in what follows. One 

has to introduce a gluon probability distribution G(x,Q2), and the 

flavor singlet evolution equations are 

Q2 -+ F;(x,Q2) 

as(Q2> l 
= 2n / 

X 

e [Fz (w,Q2) pqqcz> + G (WJJ pgqc:)] (37) 

and 

Q 2 + +,Q2) 
dQ 

X 

(38) 

The singlet distributions require one to solve coupled integrodif- 

ferential equations. The four splitting functions are predicted in 

QCD, but the gluons and singlet quark distribution must be obtained 

from data. The added complexity of the singlet distributions makes 

them less practical to use. 

The singlet and nonsinglet structure functions can be related 

directly to experimental ones, and thus are readily obtained from 
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ed 
F2 

2 s 
9 F2 
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(39) 

en 
F;P-F2 

=1 NS 
3 F2 . 

vN The structure function xF3 is alsoa nonsinglet distribution. Fig. 13 

shows the SLAG/MIT and SLAC data analyzed in terms of singlet and 

nonsinglet contributions.8 
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Pig. 13. Singlet and nonsinglet structure functions for 
eN inelastic scattering (SLAG/MIT and SLAC). 

The Alterelli-Parisi evolution equations provide the basis for 

the phenomenological description of the inelastic structure 



22 

functions. An approximate solution to the QCD equations was proposed 

by^Buras and Gaemers in 1978.q They proposed analytic expressions 

of the form 

x~NS(x,Q2)= , 3 y x’~‘~) 

B (nl (s) ,I+ n2 (s) ) 

s 2 
XF x,Q ( ) 

rl$> 
=As(d(l-x) 

xG x,Q2 ( ) =AG(s)(l- x) 
rlGW 

where s z Rn [(an Q2/A2)/ (an Qi/A2)l. 

(41) 

(42) 

The function B[nl(s), 

l+ n,(s) 1 is the Euler beta function, required to satisfy the sum 

rule 

1 
(43) 

The parameterizations, Equations (40-42), are similar to ones used 

earlier in simple parton model descriptions of the data. Based on 

SLAC-MIT data and a choice of Qi= 1.8 GeV2, the parameters nland n2 

have the values 

ql(s) = 0.70-0.176 s (44) 

n,(s) = 2.60+0.8 s (45) 

Figure 14 shows xF3(x,Q2) in bins of x plotted against the 

parameter Q2. The data come from inelastic v,< scattering of the 

CERN'-Dortmund-Heidelberg-Saclay collaboration at CERN.lg In such 

a figure, one looks for slopes different from zero as an indication 

of the degree of scale breaking. In these data, the small x bins 

show little Q2 dependence, but at large x, the xF3 structure function 

decreases noticeably as Q2 increases. The solid lines represent 

the Buras and Gaemers fit to the data. The data clearly show the 

QCD-like behavior predicted by the Buras and Gaemers analysis. 
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I[ Fig. 14. Method of Buras 

It- 4 fit to the data 

and compared to SLAC eD 

0.05 - inelastic data. Figure 15 

I I II,,,, I I I,,,,,, I shows F, calculated from 2 5 IO 20 50 100 200 L 

IO - ,v Q2 (GeV2) 
the CDHS FzN results, and 110,111 
the SLAC F;Ddata. The solid 

I I I I I I I 1 
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Fig. 15. Structure function F2 derived from vN (Ref. 10) and ed 
(SLAG/MIT and SIX) data. The solid curve is a Buras 
and Gaemers fit. 
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curves are Buras and Gaemers results extended to lower Q'. A notice- 

able rise in F at low x, 

Q2 
2 and a fall in F2 at large x, are seen as 

increases. 

The degree of scale breaking in these data is measured by the 

slope of the fits in Figs. 14 and 15. One can define a slope 

parameter b by 

Rn F2 = b Rn Q2 + constant (46) 

or more precisely 

b _ d(Rn F2) 

d(Rn Q2) ' 
(47) 

In Fig. 16 scaling, which corresponds to b= 0, is seen to occur for 

0.6 

0 
b 

-0.4 

-0.6 

ll Scaling Violation Parameter 
for F2 

02z 2GeV2 

tti 
. SLACIMIT 
0 CHIO 

I I I I IA 

0 0.2 0.4 0.6 0.8 
X 3952*24 

Fig. 16. The scaling violation parameter b for the proton structure 
function F2 as a function of x. (From SLAG/MIT and SLAC 
and CHIO, Ref. 11). The curves are from a Buras and 
Gaemers parametrization. 
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a narrow range near x= .2, but is broken significantly for smaller x 

an&for larger x. Curves for b versus x, calculated from the Buras 

and Gaemers fits are shown for Q2 = 10 GeV2 and Q2= 100 GeV2 to show 

the QCD predictions for scale-breaking. These curves are not fits 

to the data in Fig. 16, but come from fits to other data. 

The conclusions we find from the data on inelastic structure 

function and from the Buras and Gaemers analysis are that leading- 

order QCD provides a good description of eN, UN and vN inelastic 

scattering, and that scale breaking predicted by QCD is seen in 

the data. 

A more recent analysis of inelastic eN data from SLAG/MIT and 

SLAC includes effects of the so called "higher twist" terms. Higher 

twist operators from the operator product expansion formalism con- 

tribute power-law terms to leading-order QCD. Abbott, Atwood and 

Barnett' argue that the combination of power-law and logarithmic Q2 

dependences can introduce significant uncertainties into the deter- 

mination of the scale parameter A, resulting in lower values than 

those obtained from logarithmic Q2 terms only. They argue that we 

do not yet know how much scale violation arises from the logarithmic 

variation of the coupling constant, and how much arises from the 

higher twist terms, and therefore the conclusions about the success 

of QCD predictions may be premature. 

Abbott, Atwood and Barnett select the SLAG/MIT ep and eD data to ob- 

tain singlet and nonsinglet structure functions. They choose a form 

F; = Cl ~'~(1-x)~~ 

FNS '6 
2 = c4(1+ c5x)'1- x) 

(48) 

(49) 

G = A(~-x)~ (50) 

at a value Qi = 30 GeV2. The choice of Qi is not particularly sig- 

nificant to the fits. The evolution equations connect these 
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functions to data at all x and Q2, but the functional forms for 

Q% Q; will differ from those of Eqs. (48-50). 

The best fit parameters are Cl= . 59, C2= .85, C3= 2.7, C4= 1.9, 

C5=l.0 and C6=3.1. The value for the scale parameter A is .63 GeV. 

Figure 17 shows fits to FiP at small W. This figure is interesting 

in that the behavior of the Bjorken scaling variable x (solid curve) 

and the Nachtmann scaling variable 5 (dashed curve) are compared at 

low w. The Nachtmann variable appears to average better the oscilla- 

tions in F2 due to nucleon resonances at low Q2. Notice also that 

the elastic peak contribution is large at low Q2. Abbott, Atwood 

and Barnett cut their data at Q2 t 4 GeV 2 due to uncertainties in 

0.20 

0 

0.08 

FF 

0.04 

0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 17. The structure function Fz for eN scattering in the region 
of low w. The structure due to nucleon resonance is better 
averaged by the use of the variable 5 (dashed curve) than 
x (solid curve). The elastic peak cross section is shown 
in the bin above x= 1. 
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the interpretation of the very low Q2 data. They conclude that the 

SLAC data for F2(x,Q2) are entirely consistent with predictions of 

QCD, but uncertainties from higher twist terms prevent determination 

of the scale parameter A within a factor of two, and may even prevent 

one from observing the logarithmic nature of scale breaking. At the 

time of their analysis, no high Q2 data of sufficient precision to 

improve the fits was available to them. As we shall see later, 

recent experiments of good quality are now producing new data which 

may resolve the issue of power-law versus logarithmic Q2-dependence 

in the structure functions. 

V. MOMENTS OF THE STRUCTURE FUNCTIONS AND TESTS OF QCD 

The QCD prediction of scale-breaking in inelastic structure 

functions leads to a qualitative picture shown in Fig. 11. As Q2 

increases, the structure functions shift to lower values of x. The 

mean and all higher moments should decrease as Q2 increases. It has 

been shown in QCD that the moments have relatively simple functional 

forms, and studies of the Q2 dependence of the moments has been 

quite popular. 

Define the nth moment of a nonsinglet structure function to be 

(51) 

There are two sources of nonsinglet structure functions: 

(i> xF3 from vN inelastic scattering, and 

(ii) F eP 
2 - F2 en from ep and eD data. 

In QCD the nonsinglet moments have the particular simple form 

(in leading-order) 

(52) 

where the d, are constants called "anomalous dimensions" and for 
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vector gluons are given by12 

2 
n(n+ 1) +4 

Values of dn are given in Table I. We 

note that dn is independent of the num- 

ber of quark flavors and independent of 

the color gauge group, but does depend 

on the vector nature of the gluons. 

The constants of proportionality 

implied in Eq. (52) are eliminated by 

taking ratios of moments d 

gS(n,Q2) = const M"'(m,Q') ' 
[ I 

or a 

(53) 

Table I. Values of d, 

n dn 

2 .43 

3 .67 

4 .84 

5 .97 

6 1.08 

Rn #"(n,Q2) = const + 2 Rn M"'(m,Q2) (55) _ 

(54) 

m 

Figure 18 shows how such a plot should appear. As Q2 increases, both 

3932A25 LOG MNS (m,Q2)- 

nth and mth moments decrease, and the 

ratio, plotted on log-log graphs 

should move along a straight line of 

slope dn/dm. 

Because of the logarithmic de- 

pendence one problem to be encount- 

ered is the need for a large range 

of Q2 in the data. Therefore, one 

sees low Q2 data being included in 

these moment analyses. Low Q2 data 

implies low W cuts on the data, and 

Fig. 18. Expected behavior for mth 
vs nth moments plotted on 
log-log scales. 
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the issue of which scaling variable to use arises. Equation (54) 

de&ines the so-called Cornwall-Norton moments of F NS 
i' We saw 

earlier that the use of the Nachtmann scaling variable 5 fit better 

the data at low W. Nachtmann showed that finite target mass effects 

could be better accounted for by use of the variable 5, and he 

redefined the moments to be 

Mi(n,Q2) = s 1 n+l 
dx % Ki(n,x,Q2) Fi(X,Q2) 

0 
X 

(56) 

where k= 2 for i= 3, and k= 3 for i= 2 and 

n2+2n+3+3(n+l) (57) 

(58) 

These moments are called the Nachtmann moments.13 They are 

usually preferred because they take into account the finite masses. 

Figure 19 shows two ratios of moments, M6/M4 and M5/M3, for the 

xF 3 structure function from BEBC-Gargamelle bubble chamber data and 

the CDHS data from CERN. The solid line shows the prediction for 

vector gluons, while the dashed line shows the prediction for scalar 

gluons. The data prefer a vector gluon description and argue against 

the scalar fit. A slanted axis shows the approximate Q2 value of the 

data points. Figure 20 shows the same analysis applied to the SLAC/ 

MIT ep and eD data. The nonsinglet structure function used here is 

F;' - F2 en, described earlier. Clearly the vector gluon description 

is preferred over the scalar one in these data, too. We see in 

Figs. 19 and 20 a remarkable agreement between QCD predictions and 

data. This seems to be a dramatic success for leading-order QCD. 

But a number of objections and problems still cloud this conclusion. 

First, these moments are sensitive to the choice of scaling variable, 
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Fig. 19. Moments of xF3 structure functions from UN scattering 
plotted against each other. Solid lines show vector 
gluon predictions; dashed lines are for scalar gluons. 

0.001 ’ ! ’ i ’ I I I 

0.005 0.0 I 0.02 0.05 
Il.7e MOMENTS 1701.1P 

Fig. 20. Moments of nonsinglet structure functions F:' - F;n 
plotted against each other. Solid lines show vector 
gluon predictions; dashed lines are for scalar gluons. 



31 

and limiting the data to kinematic territory where choice of scaling 

v&'Piables is not important considerably restricts the amount of data 

available. Second, the moment integrals at low Q2 includes consider- 

able amount of elastic peak. The higher moments are dominated by 

the elastic contribution, and the validity of including elastic cross 

sections in the integrals is an assumption. Figure 21 shows the 

integrand for FFp for three moments, illustrating how the higher 

moments become sensitive to low W states. Third, because different 

moments are highly correlated through the use of the same data, 

errors on Figs. 19 and 20 are completely misleading. In fact the 
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l ./W=Z GeV 
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0.1 - -0 

0 -lllllllllllllllll 
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data points seems to prefer 

to fall on the predicted 

curve even where known pro- 

blems, such as normalization 

errors, exist in the data. 

There seems to be a-puzzling 

confirmation of-QCD predic- 

tions independent of the 

quality of the data. Finally, 

and perhaps most seriously, 

there appear to be terms in 

leading order arising from the 

higher twistoperators which can 

contribute additional power- 

law factors. The leading order 

Fig. 21. Integrands for three 
moments of F;'. Note 
that the high x part 
of the data is heavily 
weighted in the higher 
moments. Low W states 
dominate the higher 
moment integrands at 
low Q2. 
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logarithmic Q2 dependence may, in the final analysis, turn out to be 

an-improper form. 

Support for the notion that second order terms are important in 

inelastic scattering phenomenology comes from the analysis of Duke 

and Roberts.14 They take leading order formulations to extract the 

scale parameter A from the different moments of the SLAG/MIT, BEBC 

and CDHS data. The results for An versus n are shown in Fig. 22. 

The most precise data, from Fip - FT of the SLAG/MIT experiments, 

show a strong n-variation. The BEBC and CDHS data show much less 

variation. The interpretation comes from a calculation by Bardeen15 

where An is calculated in leading order, but with next-to-leading 

order effects included. The results are shown by the dashed curve. 

An is expected to have an n-dependence if higher order terms are 

1.2 I I I I 

1.0 

. F;-“(SLAC) Q2> 2 

q XF3 (BEBC) Q2> I 

0.0 

2 
’ 0.6 

1 

0.4 

0.2 

0 I 1 I I 

0 2 4 6 8 IO 
P - 80 n 395ZA2.5 

present, and the indications from 

the data can be taken as a possi- 

ble evidence for higher order 

effects in the data. 

One could summarize the situ- 

ation by saying that the qualita- 

tive features of QCD are seen in 

the data, and leading order QCD 

can provide a good description, 

but at the quantitative level 

much work remains. In the theory 

there is the need to understand 

the effects of higher twist oper- 

ators and to extend the calcula- 

tions beyond leading order. 

Fig. 22. Experimental A values obtained by Duke and Roberts 
(Ref. 14) using BEBC, CDHS and SLAG/MIT and SLAC data. 
The solid curve is a calculation which includes second- 
order effects (Refs. 12 and 15). 
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In the experiments we need high quality data that extends the kine- 

ma+ic range to the very high Q2 values now possible. 

VI. THE PARAMETER R 

No review of deep inelastic phonomena is complete with a dis- 

cussing of the parameter R. Let me begin with a definition of this 

important parameter. Electrons (and muons) can radiate real and 

virtual photons. In the case of real photons, there are only two 

spin states which contribute, J 
Z 

= *l where z refers to the direction 

of photon propagation. It is well known that real photons are trans- 

versely polarized, and the resulting cross section is denoted aT 

(T for transverse). For virtual photons, an additional component 

can also contribute, J = 0. 
Z 

The cross sections resulting from the 

Jz = 0 component of the electromagnetic current is denoted aL (L for 

longitudinal). When one sums over all hadronic final states ( i.e., 

inclusive electroproduction) there are no interference terms present. 

The cross section previously expressed in terms of the structure 

functions Fl and F2 in Eq. 12, has the form 

d20 
___ = r UT + EUL 

dQ2dx ( > 
. (59) 

The factors T and E are readily calculated in the single-photon- 

exchange approximation and are referred to by the names "flux factor" 

and "polarization parameter", respectively. 

The parameter R is defined to be 

R = aL/uT (60) 

which is a function of the kinematic variables, for example x and Q 2 . 

Experimentally one obtains R by measuring cross sections at fixed x 

and Q2, but at different values of e. One can vary the incident beam 

energy E. and the lab scattering angle 8 such that x and Q2 are held 

fixed, but resulting in different E values. In practice experiments 
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cover a grid of values of E. and 0, and after radiative corrections 

h-e been applied, data are interpolated to chosen values of x and 

Q2- One than plots (l/T)(d2u/dQ2dx> versus E for each chosen value 

of x and Q2. The resulting data points, illustrated in Fig. 23, 

should fall on a straight line whose intercept at E = 0 is uT and 

whose slope is R. 

In terms of the 

kinematic parameters 

b 4 N 
-a “0 

-0 

-IL 

+ 

=T 

I t 

0 0.5 I .o 

P- 80 E 3952427 

Fig. 23. Expected eN cross section de- 
pendence on the parameter E. 

Fl(x,Q2) = +- uT(%Q2) 
4lT CL 

and 

r=+ MKy2 
Q4(1 - E) 

(61) 

and 

where 

W2 - M2 
K= 2M (63) 

The previously defined 

structure functions are 

(64) 

1 

F2(x,Q2) = 5 uT(%Q2) + uL(x.Q2)) 

In terms of these more familiar structure functions 

uL R = - = 
F2(x, Q2) 

i 
l+h 

uT 2xF1(x,Q2) v2 
-1 

(65) 

(66) 

Recall now the Callan-Gross relation 2xFl=F2. In the Bjorken 

limit v2 >> Q2, R = 0 implies Callan-Gross. But at finite energies, 
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exact Callan-Gross is not consistent with R = 0, but with a small 

vaime given by 

R = a' = 4M2x2 
C v2 Q2 

(67) 

We learn from this relation that at finite energies, finite mass 

targets lead to nonzero values of R. 

Why is R an interesting parameter? It is sensitive to the spin 

of the constituents. In Fig. 24 we see a cur- 

rent scattering off a constituent particle in 

the Breit Frame. Helicity is conserved for 

massless particles, due to the vector nature 

of the coupling for electromagnetic processes ID 

Fig. 24. Electromagnetic or weak current '- 
scattering off a spin+ constituent -1 

preserves helicity; the J,=O contri- I- 

bution (uL) should vanish, giving I - . 
R= 0. 9-80 3952A28 

(and for vector and axial-vector couplings of the weak currents). 

Spin flip occurs for spin one constituents, corresponding to Jz= +l 

components of the current only. R = aI/aT = 0 in this limit. On the 

other hand, for spin-0 constituents, Js = 0 components contribute, 

and R = infinity. For a mixture of spins, R will fall in between. 

Since we do not work in the Bjorken limit, or with massless parti- 

cles, contributions to R come from 

(i> Finite mass constituents: R = 4m2x2/Q2 

(ii) Transverse momenta giving spin flip terms: R g <P:>/Q2 

(iii) QCD effects such as transverse momenta from gluon 

emission: R N es42/v2 = us4M2x2/Q2 

(iv> "Diquark" constituents (coherent scattering off quark- 

pair bosons): R rises at large x. 

The difficulty with interpreting data in R, and particularly with 
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confronting QCD predictions for R, is that no theory effectively 

combines these processes in a comprehensive way. 

Figure 24 shows the SLAG/MIT and SLAC inelastic scattering ex- 

periments in a highly schematic form. The detector is moveable and 

can be set at various laboratory angles 8. The beam energy can be 

varied up to approximately 25 GeV. From the grid of data points 

obtained one interpolates to common bins of x and Q2 for various 

values of the polarization parameter E. The errors in these proced- 

ures are dominated by systematic uncertainties arising from spectrom- 

eter solid angle, for example, and from uncertainties in the radia- 

tive correction procedures. Systematic errors have been added in 

quadrature with the statistical errors. An example of one R measure- 

ment is shown in Fig. 25, where the data are all taken at W2= 7 GeV2 

and Q2 = 9 GeV2. The approximate laboratory angle for these data are 

shown at the top of the graph. The values of e are shown on the hor- 

izontal axis. Note the suppressed zero on the vertical axis. The 

best straight line fit is shown, corresponding to R=-'.21. A dashed 

curve shows the straight line fit that would result if radiative 

corrections were not applied. 

e The procedures leading to 
60” 30” 15” 

data like those shown in 

Fig. 24 are referred to as 

"separations" of the structure 

functions. In principle only 

separation of the data can lead 

to experimental determination 

=T 
of Fl and F2. Most experiments 

do not have enough data of high 

0 0.2 0.4 0.6 0.8 1.0 
10 7. E 1101.1. 

Fig. 25. Cross sections versus E for ep scattering. Q2 M 9 GeV2 
and W2 z 7 GeV2. The solid curve is a fit for R= .21; 
the dashed curve results from using data not corrected 
for radiative processes, and illustrates the sensitivity 
of R to experimental corrections. 
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quality to make these separations, and it is a common practice to 
make a simplifying assumption such as the Callan-Gross relation, 

or an assumed value of R. 

The SLAG/MIT and SLAC data represent the most extensive separ- 

ations taken up to the present. Figure 26 shows the data for ep+eX 
for the entire range of W2 and Q2 where separations have occurred. 
The previous figure is included in this one. It is possible to fit 
these data with a single, constant value for R. The best value is 

R = 
P 

.21 f .lO (hydrogen data) 
(68) 

Figure 27 shows the same data for the reaction eD+eX. The data are 
very similar to that seen for hydrogen targets, with a best constant 

- R=0.21 
--- R = Q2/v2 IE 
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Fig. 26. E plots for the Q2, W2 range of SLAC ep data. 
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Fig. 27. E plots for the Q2,W2 range of SLAC ed data. 

value 

Rd = .24 f .lO (deuterium data) (69) 

In inelastic neutrino scattering it has been customary to define 

a different, but closely related, R parameter. It is 

2xF1 
R,=l-- 

F2 
(70) 

which represents the deviation of cross section results from exact 

Callan-Gross. Using Eq. (66), one finds the relationship to the 

electroproduction R to be 



- 

Rv = 

39 

(71) 

Rv can be measured in vN and 3N inelastic scattering by looking at 

the y dependence of the cross section given by 

($ + $)= C,2ELEO F2 [I + (l-~)~ - y2R-j (72) 

where data have been accumulated over a range of x values. The data 

are fit to the form, Eq. 72, with Rv a free parameter of the fit. 

Figure 28 shows the results from the CDHS collaboration at CERN.16 

Fig. 28. Rv, the deviation 
from the Callan-Gross 
relation, versus v. 

Their results, plotted against 

the energy transferred to the 

hadrons, v, show that within 

errors, the neutrino data are 

consistent with the Callan- 

Gross relation. Another neu- 

trino experiment, the BEBC 

20 60 100 140 180 bubble chamber at CERN, report 
'O-7" v (GeV) 31C5n?- a value of R= .15 k.10 (stat. 

error)+ .04 (sys. error), obtained by fitting y distributions for 

fixed bins of x and Q 2 17 . 

Figure 29 summarizes these results for R. Three experiments, 

SLAG/MIT and SLAC, Chicago-Harvard-Illinois-Oxford, and BEBC, are 

included in the figure. The CDHS results of Fig. 28 are not shown, 

but are included in spirit by showing what exact Callan-Gross rela- 

tions imply for the SLAC data at the mean Q2 and x values of the 

data. 
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0.2 
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Fig. 29. R= aL/aT versus x for BEBC (Ref. 17), CHIO (Ref. 11) and 
SLAC data. The solid lines are ; the dashed curve 
is R= Q2/v2 (Callan-Gross) for 

Re 
thec?Q2> of each SLAC 

data point. 

In QCD, the parameter R can pick up contributions from gluon 

emission at high x, and pair-production of quarks at low x, both of 

which give quarks transverse momentum. The QCD contribution to R 

is proportional to the coupling a,(Q 2 
) times an integral over 

F2(x,Q2) and G(x,Q2), the gluon distribution function.' An approx- 

imate form used by the CHIO collaborationll is 

RQCD = 

RO(l - x> 
(73) 

Figure 29 shows the QCD predictions as described in Ref. 8, for 

different values of Q2 from 3 to 18 GeV2. 

Based on the above discussions and data, one concludes that the 

parameter R is not a good choice for testing QCD predictions. The 

experiments are all consistent within errors and the Callan-Gross 

relation, 2xFl = F2, is a good approximation to the data. Leading- 

order QCD predictions fall low compared to the data at high x, and 

errors on the data are too large to see the predicted rise at 

small x. 
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VII. RECENT EXPERIMENTAL RESULTS 

m It is perhaps appropriate to conclude this review of deep in- 

elastic phenomena with a look at current experiments in the field. 

Although the lectures have been biased toward somewhat older data, 

which are well established in the literature, several recent experi- 

ments currently running or recently completed have begun to provide 

us with high quality results at high energies for Q2 out to 200 GeV2. 

These experiments cover hydrogen, deuterium, carbon and iron targets. 

Table II summarizes experiments which are now contributing data to 

Table II. Charged Lepton Inelastic Scattering Experiments 

Group(s) 

SLAG/MIT and SLAC 
(6 experiments) 

CHIO 

EMC 

EMC 

BCDMS 

BFP 

MSU-F 

Beam 

e- 

+ 
u 

+ 
u 

+ 
u 

+ 
u 

+ 
u 

+ 
u 

Target 

H,D 

H,D 

H,D 

Fe 

C 

Fe 

Fe 

Laboratory 

SLAC 

Fermilab 

CERN (NA2 area) 

CERN (NA2 area) 

CERN (NA4 area) 

Fermilab 

Fermilab 

charged lepton deep inelastic scattering. A number of inelastic 

scattering experiments will not be discussed, most notably the vN 

experiments which are covered in other lectures. Final state 

studies in the hadrons is an important aspect of inelastic phenomena 

which will be omitted due to limited time. Some of these experiments 

also report studies of multimuon production. Those who wish to learn 

more about this interesting subject are directed to the references. 

I will give a general description of these experiments and look at 

data that bear on the question of structure functions and scale- 

breaking. There will be some intercomparison of experimental data 
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to allow one to judge the quality of the experiments. The main 

obtjective in discussing these recent experiments is to raise the 

awareness of new results which have been recently published or may 

soon be coming out. 

A. The Chicago-Harvard-Illinois-Oxford Collaborationll (CHIO) 

This group has recently concluded two experiments at Fermilab 

in a positive muon beam studying the reaction 

u+p + u+x 

at energies of 96, 147 and 219 GeV. Figure 30 shows a schematic view 

P+ 
Beam 

P-80 

Beom Monitors 
and 

Holo Veto 
Magnet 

Spork 
m Chombers 

- I 10 

Hodron 
Filter 

Fig. 30. Schematic layout of CHIO experiment at Fermilab (Ref. 11). 

of their experimental apparatus. The detector was based on the 

rebuilt magnet of the Chicago synchrocyclotron. It produces a field 

of 1.5 Tesla and has an JBdl of 7.5 Tesla-meters. Incident beam 

particles first encountered a veto wall to eliminate off-axis "halo" 

muons from the trigger. A liquid hydrogen (or dueterium) target, 

120 cm long, was used. Proportional wire chambers before the magnet 

and magnetostrictive spark chambers behind the magnet determined 

the angle and momentum of outgoing particles. Crossed scintillator 

hodoscopes, steel and lead walls followed by chambers permitted 

triggering, and separation of electrons and photons from hadrons. 

The scattering muon was identified by hodoscopes and spark chambers 

placed after the absorbers. 
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Fig. 31. Comparison of the proton structure function F2 from ep 
(SLAG/MIT and SLAC) and up (CHIO) scattering from 
8 I Q2 s 10 GeV2. 

Figure 31 shows the structure function F2 for eight bins of x. 

SLAG/MIT data are included to show the consistency between experi- 

ments as well as the kinematic regions of the data. Extraction of 

F2 required calculations of geometric detection efficiencies, 

corrections for tracking efficiencies, and background subtractions. 

Radiative corrections were applied and a value of R= .52 f .35, 

consistent with measurements over a subset of the data, was assumed. 

Figure 31 shows clear QCD-like scale-breaking features, partic- 

ularly compared with SLAC data. F2 increases with Q2 at low x, and 

decreases with Q2 at high x. There is generally good agreement in 

normalization between the two sets of results. The CHIO data fills 
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in the low x region of these figures. SLAC data are kinematically 

extiuded from low x at moderate Q2. 

Figure 32 shows better the comparison of SLAC and CHIO data. 

Here F2 is plotted as a function of x for the values of Q2 from 

8 to 10 GeV2. The CHIO data clearly fill in the low x regions not 

reached by SLAC experiments. 

0.64 

II ’ 
I I I I I I I I I I I 

I 

’ 0.32 
I2 

0.48 0.48 l l SLAC-MIT SLAC-MIT 

-+ k+ 
b 

o FNAL E98/E398 o FNAL E98/E398 

’ 
4 

8 GeV2 < Q* < IO GeV* 8 GeV* < Q* < IO GeV* 

I2 
0.32 - 

i 

0 0 I I I I I 

0 0 0.16 0.16 0.32 0.32 0.48 0.48 0.64 0.80 0.96 0.64 0.80 0.96 

Fig. 32. Comparison of the proton structure function F2 from ep 
(SLAG/MIT and SLAC) and up (CHIO) scattering from 
8 5 Q2 I 10 GeV2. 

Figure 33 shows R measurements from CHIO for low x. Fits to 

the forms 

(A = .5 GeV) 

and 

R = R. 

(74) 

for R. = 1.20, 1.18 and .52, respectively, are all satisfactory 
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Fig. 33. Measurements of 
R = oL/oT at low x 
from CHIO (Ref. 11). 

within the relatively large 

errors reported. These errors are 

too large to establish a rising R 

at low x as predicted in QCD, but 

the data are consistent with such 

behavior. 

B. The European Muon 

Collaboration18. 

Figure 34 shows a schematic 

layout of a very large and compre- 

hensive experiment presently 

taking data at CERN in the NA2 

area. They report data from 

positive muons on hydrogen, deu- 

terium and iron targets at beam 

energies of 120, 250 and 280 GeV. 

The experiment isconceptually 

similar to the one previously discribed. Incident beam muons first 

encounter a veto wall which eliminates halo muons from the trigger. 

A six-meter-long liquid hydrogen (or deuterium) target provides the 

Spectrometer 

Iron 
Absorber 

9-m 0 2 4m TOP VIEW ,e,1.10 

Fig. 34. Schematic layout of EMC experiment at CERN (Ref. 18) 
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scattering nuclei. The cryogenic target can be replaced with an iron- 

scfitillator sandwich target ("STAC" target for "sampling total ab- 

sorption counter") used in the measurement of Fe cross sections. 

Scattered particles are detected in a series of drift chambers up- 

stream and downstream of the forward spectrometer, a wide-gap dipole 

magnet of I Bdl = 5.2 Tesla-meters. Downstream of the spectrometer 

are located a hodoscope for fast triggering, proportional chambers 
" 

for particle tracking, a gas Cerenkov counter to aid in particle 

identification, and a magnetized iron hadron absorber. Muons are 

identified and tracked behind the absorber. Structure functions 

were obtained based on calculations of geometric efficiencies, cor- 

rections for multiple scattering effects, tracking inefficiencies, 

and radiative corrections. To separate F2 from the data, a value 

of R = .2 was assumed. 

In Fig. 35, the structure function F2 is shown for fixed x bins 

q lZOGeV n 280 GeV 

F2 
1. 

0.4 

0.3 n BmQ- 

0.4 

0.3 

0.4 

1 0.3 (0) 

I !I,//11 
50 100 

( GeV2) 

0.02 ’ ’ ’ ’ ’ ’ ’ / I I IllIll I 

5 IO 
Q2 (GeV2?’ 

100 
3’5181’ 

Fig. 35. The proton structure function F2 from up scattering 
versus Q2 at various values of x. 
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Fig. 36. The scaling violation 
parameter b versus x 
for up scattering. 
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as Q2 increases. The data come 

from 120 GeV and 280 GeV beam 

energies. The solid curves are 

QCD fits based on an analysis 

patterned after Abbott, Atwood 

and Barnett (described earlier) 

with second-order terms inclu- 

ded (from Gonzales-Arroyo, 

Lopez and Yndurainl'). 

Figure 36 shows the slope 

parameter b= d(%n Q2) for the 

different bins in x. Clear 

evidence for scale-breaking 

is seen in these up data, but 

not as dramatic as seen earlier 

in the SLAC ep and CHIP up data, 

shown in Fig. 16. Figure 37 

shows a comparison of normali- 

zation between JZMC 120 GeV up 

data and SLAG/MIT and SLAC 

data. The agreement appears 

to be quite good. Figure 38 

shows the behavior of F2(x) 

for four values of Q2, from 

6 GeV2 to 100 GeV2. The dashed 

curves simply connect the 

points, and do not represent 

any theoretical calculation. 

The Fig. 38(d) shows these 

curves superimposed. 

Fig. 37. Comparison of the 
structure function 
F2 from up and ep 
scattering. 



48 

0.4 

0.3 

0.2 

0. I 

0 
0 0.5 0 0.5 I .o 

0.80 X 3952*3. 

Fig. 38. Approximate behavior of 
F2 from up scattering. 
The solid curves, smooth 
fits to the data points, 
are shown in (d) for 
comparison. 
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This is a beautiful example of 

the QCD-like scale-breaking 

features of the data, anticipat- 

ed earlier in Fig. 11. 

The EMC group also report 

on measurements of uFe scatter- 

ing, where scale violations are 

also seen. The b parameter for 

UFe scattering is shown in 

Fig. 39. 

The EMC group report QCD 

fits to these data with good 

X2, but with a value of 

A = .l GeV. This smaller value 

of A corresponds to smaller 

scale-breaking parameter b seen . 
in Fig. 35 compared to Fig. 16. 

The EMC group obtain good QCD 

fits to their data and the SLAC 

data by including power-law 

terms coming from higher twist 

operators, in apparent agreement 

with the analysis of Abbott, 

Atwood and Barnett. 

Fig. 39. The scaling violation 
parameter b for 
u-iron scattering. 
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C. The Bologna-CERN-Dubna-Munich-Saclay Collaboration (BCDMS) 
A 

Figure 40 shows the layout of the focussing toroidal detector 

of the BCDMS collaboration. The detector consists of an internal 

carbon target, 50-meters in length, and of ten super-modules of 

magnetized iron with eight layers of multiwire proportional planes 

and two layers of sequential trigger counters sandwiched inside. 

Data were taken for a range of Q2 from 30 to 200 GeV2, from incident 

beam energies of 120 GeV and 280 GeV. This experiment occupies 

the CERN NA4 area located downstream of the EMC experiment described 

earlier. BCDMS measure F2 assuming a constant value of R = .22. 

A preliminary sample of data was reported in the summer of 1979, 

and is shown in Fig. 41. These data show no clear evidence of 

scale-breaking, but the preliminary nature of the analysis means 

one should await further publications, which should be forthcoming. 

Segmented 
Triggers Counters 
20 Planes 

Hodoscope 

End Detector 

SMl SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SMlO 

Fig. 40. Schematic layout of the BCDMS experiment at CERN. 
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9-80 Q2 (GeV2) 3951*x7 

causes acceptance uncertainties at 

Fig. 41. Preliminary experimen- 
tal values of F2 from 
U-Carbon scattering. 

D. The Berkeley-Fermilab- 

Princeton Collaboration 

(BFP). 

Finally let me mention one 

last high Q2 experiment measuring 

cross sections for u+Fe inelastic 

scattering. Figure 42 shows an 

artist's view of an interesting 

magnetized iron detector. The 

difference between this detector 

and toroidal iron detectors is 

that there is no beam hole which 

small scattering angles. The 

detector consists of eighteen 25-ton magnetized iron-modules, each 

50 cm in length. The modules are instrumented with scintillators, 

drift chambers, and proportional counters. Data were taken at beam 

energies of 90 GeV and 209 GeV. The structure function F2 was 

MULTI - MUON SPECTROMETER .? Ia 
Berkeley-Fermilob-Princeton 

9-80 
3952A38 

SITI in modules 4,6,8,10, l2,l4, 16,18 
PC+DC in l-18 5C in l-15 

Fig. 42. Schematic layout of the BFP experiment at Fermilab. 
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Fig. 43. Preliminary values of F2 
from u-iron scattering. 
The dashed curves are 
not fits, but serve to 
connect the data points. 

extracted from the data based 

on an assumed value of R. 

Figure 43 shows the prelimin- 

ary results of F2 presented 

at the 1979 Lepton-Photon 

Conference at Fermilab. The 

data show clear evidence of 

scale-breaking. .The dashed 

curves in Fig. 43 are not 

fits, but are hand drawn 

curves to connect the points 

and show the trends of the 

data. 

The BFP collaboration 

reported an 18% discrepancy 

in overall normalization be- 

tweenthis data and the SLAC/ 

MIT and SLAC data. This dis- 

crepancy lies outside quoted errors, and probably arises from some 

systematic effects not yet understood. Further analysis of the new 

BFP data may resolve this discrepancy. BFP also reports a consider- 

able amount of multi-muon production data, which looks very interest- 

ing, but is a topic not considered here. 

Clearly, the theoretical and experimental issues of deep inelas- 

tic phenomena continue to be in a state of change. We have seen the 

issue of scaling and the quark-parton model lead into a study of the 

strong interactions at a very fundamental level. The success of QCD 

tests is based on the validity of quark-parton model ideas, but mod- 

ified to include gluon emission and quark-quark interactions in the 

hadronic piece of the process. Logarithmic scale breaking appears 

to describe well the data, but uncertainties in QCD calculations 

due to higher order terms and the uncalculated power law terms form 

higher twist operators cloud the present interpretations. 
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Further work on the side of the theory, and further high quality, 

hi2h Q2 data on the side of the experimenters may soon clarify the 

present uncertainties. But one expects the questions to continue 

to change, the data to continue to improve, and the interplay between 

the two to continue to be present. The future experiments will 

provide better control of systematic errors, smaller statistical 

errors and Q2 ranges exceeding 1000 GeV2 as we go to Tevatron ener- 

gies and e-p storage rings. 

I wish to acknowledge the considerable help from W. Atwood in 

the preparation of these notes, and the many useful discussions 

with him are especially appreciated. I also wish to acknowledge 

discussions with M. Barnett, H. DeStaebler and R. Taylor, likewise 

appreciated and helpful. 
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