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ABSTRACT 

It is argued that, in certain popular heavy color scenarios in 

which the Higgs sector of the standard STJ2xU 1 electro-weak theory is 

generated dynamically, the physical Higgs particle, of zeroth order 

mass mH, has the pole of its propagator at 

(l-i) "H & ++---- 1 

Jz s sinew 3 2'3gc 
( ) 3 

when mU('a/(2sin2eW))'/MW > $. Here , RHc is the effective radius of 

the heavy color Wigner-Seitz vacuum cells introduced by K. Johnson. 

For conventional values of the parameters, a Higgs particle with 

mU = 0.383 TeV has a width of 0.663 TeV! 

Submitted to Physical Review D 

J; Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
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1. Introduction 

One of the outstanding issues concerning the standard Salam-Ward- 

Glashaw-Weinberg SU XU 
2 1 

model1 of the electro-weak interaction is the 

detailed dynamical mechanism represented by the Higgs sector of this 

model. In an effort to understand this mechanism, several authors2 have 

taken the view that the Higgs sector is generated by a more fundamental 

heavy color interaction (QHCD) [to be distinguished from the convention- 

al color interaction of quantum chromodynamics (QCD)~. Thus, whereas 

the QCD theory strongly interacts at squared momentum transfers 

5 1 (GeV/c)2, the QHCD theory strongly interacts at squared momentum 

2 transfers 5 1 (TeV/c) . Here, we wish to consider the experimental 

accessibility of the physical Higgs particle in such a dynamical scheme 

when its zeroth order mass3 mU is large enough that the physical Higgs 

particle interacts with itself strongly. ._ 

More precisely, the Lagrangian for the standard SU2XU 1 model is by 

now well kn0wn.l After spontaneous symmetry breaking, we adopt the 

unitary gauge for the model. Then, under the assumption that the phys- 

ical Higgs particle $. is strongly interacting, the relevant Higgs 

Lagrangian is 

where, to make contact with Ref. 1, we have 

\ = Ag/d ) Mz = X g2 + g' ( 2)y4 ) 

e = gsine W - !a '/!!v, and 
(2) 

XL = M;/(2h) . 
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Here, g and g' are the SU2 and Ul gauge couplings, respectively, and e 

is the-electron's charge, Y.4 and MZ are the charged and neutral weak 

gauge boson masses, respectively, and Ow is Weinberg's angle. The 

zeroth order mass of the physical Higgs particle is clearly given by 

4 = 2M2 1' (3) 

Since we will take 2h4 > 1, the remaining fermion and boson interactions 

in the model amount to small corrections to any conclusions which we 

arrive at by studying (1). While these corrections are interesting in 

themselves, they do not concern us here. CIn other words, all the 

interaction terms in the complete SU2 xU 1 Lagrangian which are not 

shown in (1) have small couplings involving powers of g and g'.] The 

regime 2h' 
._ 

> 1 requires 

or 

% % 
> 2.26 

(4) 

(5) 

for sin20W = 0.236. Thus, we consider a large Higgs mass. 

To study (1) in this strong coupling regime, we employ methods 

related to those we introduced in Ref. 4. As has been shown by Bender 

a1.,5 et and others,6-11 none of the known properties of calculable 

systems has been omitted by the methods in Ref. 4. This gives us 

additional confidence in the development presented herein. 
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The'methods in Ref. 4 are not generally familiar, however. Thus, we 

shall begin our formal presentation by adapting the relevant aspects of 

the results in Ref. 4 to the analysis of (1). This is done in the next 

section, Sec. II. Our objective is to make the arguments given in this 

paper self-contained. 

The remainder of our discussion is then organized in the following 

way. In Sec. III, we use the results presented in Sec. II together with 

the ideas of Johnson12 on vacuum Wigner-Seitz cells to compute the rela- 

tionship between the width of the heavy Higgs particle and the scale fl HC 

of the QHCD theory. Section IV is composed of some concluding remarks. 

The appendix contains some technical details. 

II. Path-Space Approach to Strongly Coupled Higgs Fields 

Our primary purpose in this section is to "review" the relevant as- ._ 

pects of the Feynman path-space theory of strongly coupled fields which 

we introduced in Ref. 4. We wish to use that theory to study the width of 

the Higgs particle in the SU2 x Ul model in the regime delineated by (4) 

and (5). For this reason, our "review" will be effected by using the 

Lagrangian YH itself in this latter regime as our vehicle of illustration. 

More specifically, we wish to consider the large h limit of this 

Lagrangian gH in (1). Toward this end, we study the generating functional 

for the connected Green's functions for gH, 

iZ(J) = anJa$oexp(iJd4x[YH(+O) + J+~]} , 

where J(x) is an appropriate external source. The relevant physics in the 

large h limit of gH can be obtained by computing Z(J) in this limit. 
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To compute Z(J) for large h, we will use the following functional 

identities: 

exp{-i/d4xb$i} =jg$, exp{isd4x(02 + 2&$:)} (7) 

exp(i/d4x,o} = fg~ LZ~P exp{iJ4x(P(K - @,I -I- F(K))} , (8) 

where b > 0 and F(x) is an arbitrary function of its argument x. 

To prove (7), simply observe that 

Thus, the shift 

(9) 

(10) 

leaves 90 unchanged but produces, on the RHS of (7), 

bu exp{ih4x [cr2 - b$i)} . (11) 
._ 

(Here, RHS denotes 'khe right-hand side. ") The normalization of !&?%ais to 

be chosen such that 

JSu exp{i/d4x02) = 1 . (12) 

Similarly, to obtain (8), recall that for an appropriate normaliza- 

tion of go, 

(13) 

where &(K - @,) is the delta functional of K - 4 0' In more detail, using 

a countable uniform covering @= (U j :j = 1,2,3,... ) of space-time with 

sets Uj such that Xj is the geometric center of U. and such that the 
J 

measure of Uj n U i is zero for i $ j and the measure of each U. is 
J 

Ax + 0, then 

6(K - $,) = n C j:, 1 L^ ~ exP{ipj(n(xj) - CO(~j))Ax} (14) 
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for an abpropriate choice of the constant Cl. The RHS of (8) is then the 

same as 

ci C2 Lrn dKj 1: Cl 2 eXp{iPj(Kj - @o(Z~))~~ + F(@C('j))Ax} (15) 

for an appropriate normalization constant C,. We obtain (8) whenever the 
L 

constants Cl and C2 satisfy 

ClC2/Ax = 1 . (16) 

We will always choose Cl and C2 in accordance with (16). 

The strategy to be used to obtain the large h limit of iZ(J) is as 

follows: first, we shall use (7) to represent the quartic part of 9, as 

exp -i 
tJ- 

d4x 4 @t(x)} = 1!3o expf-i/d4x(02 + fio$i)} . (17) 

Then we shall use (8) three times. 

The first use of (8) is to represent the free part of gH and the 

source term J$, as 

(18) = s gKg7p exp 1 (sd4, (+ (auKauK - 2M:K2) + JK + p(K - Gus))} . 

Here, in the notation of (8), 

- 2Mf$; +J40 - (19) 

The second use of (8) is to represent the cubic part of sH as 

- 4,) - fihhn3 . (20) 

Here, in the notation of (8)., 

F($O) = -fih$ . (21) 
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The'final use of (8) is to express the RHS of (20) as 

In the notation of (8), in (22) 

F(n) = -fihAn3 . (23) 

These representations (17), (18), and (22) allow us to isolate the small 

parts of gH for h large. 

More specifically, if we introduce the results (17), (18), and (22) 

into (6) we have 

iZ(J) = Rn 
s 

~~o~~~p~~~~~v~~‘~v’ exp 

[( 
+ allKa’K - 1 2M2~2 + JK + cr2 + ~%a$~ + P(K 

(24) 
- $,I 

- fihXn2$ + v'(n - q') + v(q - 0,) + hX4 . 

The shifts 

$0 + $0 + (P + v>/wm (25) 

then give 

q + q + v'/(ZfihXn') (26) 

iZ(J) = Rn 
J 

~$o~~~p~o~~@v~qt~v’ exp i 
CJ 

d4x 

1 
[( 
2 alrK2'K - 2M;r~~) + JK + o2 + v50~~ + PK 

vf2 + vv' 
(27) 

- fihAn2q1 - v'y)' + vq + 
4fihhn' 2fihXn 

_ (P + VI2 + hx4 I> . 
460 
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Thus, toeleading order in 1/(4h) one has 

- ~M:K~)+ JK + a2 + &-m$i -t- PK - fihXn2n' (28) 

- v’n’ + vq - (p + v)~/(~&cJ) + hX4 I> l 

In other words, we shall work to lowest order in the interactions 

VI2 = d2 and 
vv’ =a?c , 

4fihhn' 8hsn ' 2fihXn 4hsn (29) 

the small parts of the super-renormalizable nLn' term in (24). 

Effecting the integral over 9~' in (28) simply produces the delta 

functional 6(n'), so that the subsequent integration over C3n' simply 

sets 7-1' = 0. But, for n' = 0, the integration over G?n in (28) produces 

the delta functional 6(v); the subsequent integration over Lav simply 

sets v = 0. Thus, (28) is the same as 

iZ(J) = Rn ~$o~~~p6$cJ exp 1 
J 

{'~d4x[$(auKauK - $K~)+ JK 

+ a2 + I’%,$; + PK - p2/(4Jha)+ hX4 . (30) 

To leading order in 1/(4h), the super-renormalizable interaction in 

(1) is negligible. 
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Analyzing (30) in more detail, we have 

iZ(J) = Rn exp{i$d4x [$(apKa% - ~M;K~) + hX4 

lw$ exp{i gl aj(Bj-o(xj)) + iJd4x 
Ka’K - ~M;K~)+ JK + a2 + &O$; + PK + hX4 11 , (31) 

0 0 

where ESO and we define l-l aj=l and c a =0 for all expressions a., 
j=l j=l j J 

j = 1,2,3,.... The integrations over g$o and C@da may now be done by ob- ._ 

serving that 

(32) 

Here, Ax is the size of the measure of each of the sets in a uniform covering 

of space-time by sets Uj with geometric centers {xj) such that (xj} in (32) 

satisfy 
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(33) 

so that-we can take u. = a(xj) and 9 
Oj 

= $o(Fij). The RHS of (32) is thus 
J 

the same as 

For, all terms in the infinite products in the numerator and denominator 

of (32) cancel except those for the points (xj). Since the denominator of 

the LHS (left-hand side) of (32) is a constant independent of x., we have J 

that (34) is equal to the integrations over g$, and Q2r, in (31) up to an 

unimportant constant factor. Thus, for an appropriate normalization of 

WO' we can write 

f 
CB~o~O exp{i{A4x[02 + Go+:] - $ ujo(xj)}t= Rn * (35) 

The quantity Rn is evaluated in the Appendix. Its value is given by 

Rn = 1/4e-iu:/(4Ax) 
, (36) 

where r(1/4) is the Euler gamma function of argument l/4 and the branch 

of the radicals in (36) is 

-IT < Arg z I 71 (37) 

for complex numbers z. We therefore have the result 

s g$o~o exp(i(Jd4x[a2 + ~o$z] - '& ajo(x 

j=l (38) 

n 

l-l 
2i3/4 

= 
j=l r(1/4) 

1/4e-iai/(4Ax) 
. 
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Further, the attendant integration over dB.da. in (31) can now be 
3 3 

done. For, by elementary methods 

Hence, using (38) and (39), we see that, for appropriate normalizations of 

the functional integrals, (31) is the same as 

E?Xp{ipX [$(apKaliK - 2<K2) + JK + PK + l-d"]) (40) 

= Rn 
/ 

9KgP exp{iJd4x [+(avKa’K - $K~) + JK + PK 

+ P~@x) ‘I2 &/ (-8h-i) ‘I2 + hh4 . .- 

This is the desired large h limit of the Higgs theory represented by gH in (1). 

What we wish to do with (40) is to use it to compute the decay character- 

istics for the respective Higgs particle. To these characteristics we turn in 

the next section. 

III. Heavy Higgs Particle Decay 

To relate our result (40) to the Higgs particle decay properties at 

strong coupling, the one unknown and undefined parameter in (40), Ax, must 

be determined. It is at this stage of our analysis that the heavy color 

origin of this Higgs particle plays an essential role. 

More precisely, the determination of the parameter Ax in (40) requires 

some discussion. In particular, we reiterate that Ax is the size of the mea- 

sures of the sets in a uniform covering @ of space-time which we used to 
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effect the functional integrals for the effective Higgs theory (1). If the 

Higgs field $0 were fundamental, we could consistently take Ax + 0. How- 

ever, according to Ref. 2, 9, is a composite of heavy color fields. The 

dynamics of these heavy color fields is believed to be the same as the QCD 

theory, except that the characteristic scale of masses is 3 x 10' times 

larger than that of QCD. With this last remark in mind, we may therefore 

adopt a bag12,13,14,15 point of view in treating the compositeness of $. as 

it relates to Ax. We find it convenient to use the M.I.T. version12y13 of 

the bag approach to hadron dynamics. 

More specifically, we follow the recent formulation of Johnsonl' of 

the M.I.T. bag and view the QHCD vacuum as composed of Wigner-Seitz cells 

on the surfaces of which the M.I.T. bag heavy color confining conditions 

are satisfied. The constituents of $. are confined in such a Wigner-Seitz 

cell of effective radius %C. Outside of the cell (or box), $. looks 

fundamental -- inside, it looks composite. Further, inside of this cell, 

QHCD is perturbative. While this perturbative regime is interesting in 

itself, here, we work to zeroth order in the respective small perturbative 

effects. 

To make contact with Ax in (40), we proceed as follows. We suppose 
-f 

that the sets in d are chosen so that if Ujc@ and 2. = (t.,x.) is at the 
J J J 

center of Uj then 

- + (Ax)~'~, tj + +(Ax)~'~ 1 (41) 

where V(zj) is the respective Wigner-Seitz cell with z. 
J 

as its geometrical 

center point and with volume (Ax) 314 . When16 

(42) 
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we may identify the Wigner-Seitz cells {V(zj)} with the respective QHCD 

vacuum Wigner-Seitz cells of Johnson. Since we are working to zeroth order 

in the perturbative effects within these cells, we ignore all dynamics within 

a single such cell. Thus, we may not resolve $. beyond the value specified 

for Ax in (42); for, in doing the functional integrals in (7)-(40), we have 

taken, for example, 

J 4 4 d x4 0 (x) -+ Ax c 
cxjl 

(43) 

so that using Ax smaller than (4~s~ ) 3,3 413 would imply that $. looks funda- 

mental inside of the respective Wigner-Seitz cells and would involve dynamics 

inside such cells -- both of which are excluded here. Thus, (43) represents 

the appropriate lower limiting value of Ax, i.e., Ax = 413 (4*rk3,/3) * 

With this last identification we have 

iZ(J) = Rn 
J 

~KC@P exp 1 {* /d4x [$(ap~ali~ - ~M:K~) -I- JK 

213 
gc/(-8hi) l/2 + hX4 I> 

= EnJ9K exp[ifi4x [i (2u~Zlp~ - (2M: 

+ (-2hi)1'2 

bG 

(44) 

From (44), we obtain our basic result: the pole of the composite Higgs 

field is at 
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2M2'+ (-2hi)1'2 1 (l-i) "H & 1 
-- 1 J;; 213 = 2 2+ 

SC 
% 

(45) 

(l-i) "H & =++--- 
Jz Mw sineW 4, ' 

where a is the fine structure constant and 1/((4a/3)2'3P$ ) 
c l 

The corresponding decay width is 

From Refs. 12 and 13, the effective radiusl' of the appropriate Wigner- 

Seitz cells for QCD is RC A 2.2/GeV. From Ref. 2 the corresponding value 

of RHc is RRc A RC/(3x103) ; .73/TeV. Thus, as expected,* AHC z 1 TeV/c. 
._ 

With AHC = 1 TeV/c and sin2f3W = 0.236, the decay widths of the physical 

Higgs field corresponding to mH = 5MW = 383 GeV, 50 s, and 500 54 are 

easily seen to be 0.663 TeV, 1.34 TeV, and 1.59 TeV, respectively. In the 

limit mU -f 00, this contribution to the Higgs width equals 1.62 TeV. 

Our message is quite clear: composite Higgs fields of the type con- 

sidered here will be very broad affairs18 -- quite a challenge for 

experimentalists! 

IV. Discussion 

We have found that the QHCD theory, taken together with the recent 

M.I.T. bag ideas of Johnson , permits one to compute the precise relation- 

ship between the heavy Higgs particle decay width TH and its mass mU in the 

standard SU2 X Ul model. The questionlg which most naturally arises is 

"To what does this composite heavy Higgs particle decay?" 
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To answer this latter question, we simply recall that the degrees of 

freedom of the effective Higgs particle theory on scales smaller than the 

size of the Johnson-QHCD-vacuum-Wigner-Seitz cell were suppressed. Thus, 

the Higgs field instability is to these degrees of freedom. Since these 

degrees of freedom are confined, the decay energy of the Higgs particle 

will ultimately materialize as both ordinary hadrons and presumably new 

hadrons, assuming there are new absolutely stable heavy color, color singlet 

hadrons of appropriate mass generated by QHCD. 

It should be understood that we do not claim to be the first to have 

pointed out that a heavy Higgs particle could have a large width of the 

same size as its mass. *p18 Rather, what we have reported here is, to repeat 

somewhat, a calculation of the detailed relationship between the heavy 
n 

Higgs mass mD, the fine structure constant ~1, sinLoW, and the heavy color 

scale %I,* Such a calculation has not appeared elsewhere;20 
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APPENDIX 

Evaluation of 

We desire to evaluate the quantity 

Rn = 
f, / d”oj / duj exp(i{Ax(~f + ~~j+~) - ajoj}} 

j=' l>$,, lIdoj exp{i{Ax(o: + &oj$tj)}} * (A*1) 

We first note that the CT 
j 

integrals are straightforward. For the numerator 

of (A.l) we have 

m 
s d”j exp i Ax ‘. ii ( 2 + t&J $I -co J j 02j) - "j"j}} 

= ldoj exp{i{Ax(oj + $(G$lj - ojIAx))2 - F cVG'~ - 'j'Ax)2}} (A*2) 

For the o. integral in the denominator, simply set ~1. = 0 in (A.2). Thus, 
J J 

on introducing (A.2) into (A.l) we obtain 

n d+ exp h+4 _ 

Rn = -O" l-l 
Oj Oj 

2145 2ci /Ax + +(Ax)~ 
Oj j 

00 
j=l 

J --m 
cUoj exp F hm04j) 

'(A.3) 

To proceed, we next observe that 

m 

(A 4, 

. 
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where Kli4 is the modified Bessel function of the second kind of order l/4. 

Thus, the numerator integral in (A.3) is now known. To obtain the denomi- 

nator integral in (A.3), we simply take the limit a. + 0 of N(crj) in (A.4). 
J 

We find 

J 

co 

d~oj exp 
--a, 

1 

(Axh'4)1'4 * 

Here, we have used the result that 

(A-5) 

(A. 6) 

for IArg z] ~71. In (A.2), (A.4) and (A.5), the branch of the radicals is 

always such that 

-TT < Arg z i ?T (A.7) 

for the- complex number z. 

To complete the evaluation of Rn, we now take limit Ax + 0 in N(cL~). 

We find 

N(aj) z + ( ia~~/2)1’2 = (+)l" 
' 

since 

On introducing (A.5) and (A.8) into (A.3), we find 

n 

Rn - l-l 

(-n/(ia.Ji;/2))1'2 exp 

Ax+0 j=l r(l'4)/(2i1'4(Axh/4)1'4) 

(A. 8) 

(A.91 

(A.lO) 

n 2i3'4K(Ax)1'4 
= 

l-l r(1'4) > 
. 

j=l 

This is the desired result. It agrees with (36). 
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