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ABSTRACT 

It is shown that the zero range limit of the Karlsson-Zeiger 
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only the observable phase shifts and binding energies of the two 
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Iftwe understood the forces between two hadrons, we should at least 

be able to use this knowledge to calculate the behavior of three hadron 

systems. We know that currently we lack this much understanding. For 

example, the nucleon-nucleon scattering amplitudes are known up to, and 

in some cases well beyond, pion production threshold; but from this 

knowledge we cannot predict the binding energy of the triton or He3, or 

their electromagnetic form factors. Even the n-p capture cross section 

at threshold differs by 10% from the model-independent1 Bethe-Longmire 

prediction. The reason is, as we learned long ago from Wick,2 that the 

coupling of the uncertainty principle to special relativity entails the 

creation of mesonic degrees of freedom at short distance. Nuclear 

physicists usually assume that these hidden degrees of freedom can be 

approximated by a "potential," but there is no unique way to define such 

a potential once the short range non-locality implied by ehe Wick-Yukawa 

mechanism is taken seriously. 

Faced with this ambiguity, it is important to have clear experi- 

mental criteria for determining what new information is contained in 

three hadron observables which is not already predictable using two 

hadron observables. Starting from the "Fixed Past-Uncertain Future" 

interpretation of quantum mechanics, 3 it has been proposed that such a 

reference theory might be provided by calculating three particle ampli- 

tudes using only two particle on shell scatterings.4 Once a-way of 

doing this has been developed, the theoretically ambiguous mixture of 

mesonic effects -- designated but not defined by the terms "off-shell 

effects" and "three-body forces" -- could be uniquely parameterized by 

adding an on-shell three particle direct scattering term to the model. 
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A specific attempt to articulate this program5 failed because it could 

not be proved unitary. Recently, it has been shown6 that the zero range 

1imit:f the Karlsson-Zeiger equations7 define a unique three particle 

theory of the type sought. Most requisite physical properties were 

established, including time reversal invariance, but not unitarity of 

the three particle amplitude. In this communication we remove this 

defect. 

It has been shown8 that the half off-shell two particle transition 

amplitude t(q;K2+iO+) = t+(L2)[1+R2(T2 -E2)f, 2(q)] where 
*i&k K- 

tf(K2) = -e sinbk/rnk is the on-shell amplitude, P the reduced mass, 

and the function f is the transformation to momentum space of the 

difference between the asymptotic wave function e i6(sinky+6)/k and the 

wave function inside the range of forces R; hence the "zero range limit" 

can be defined by taking f=O, which is equivalent to the zero range 

boundary condition u'(y)/u(y) y=o+ = kctndk in the two particle space. 
I 

Because of this factorization, we find6 that in the zero range limit the 

four KZ amplitudes can be written in terms of a single amplitude 

Fab(pa,qa;p;,,q;;Z) = t;(;;~)Zab(pa,pb‘;z)t;(;;2), the elastic scattering 

or rearrangement amplitudes, breakup amplitude, and coalesence amplitude 

being simply the residues of the appropriate double or single poles in t. 

The function Zab is defined by the coupled integral equations 
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zab(pa’P,,;z) = - 6ab $ J 
-1 

lm 

-x x 2. 
ac 2 Il 

dc 
c=a_+ -1 0 

where 

k 6(k-q) + 2.9' sin6 

k kq ' q2-k2 1 
(2) 

and 

(3) 

Here we have restricted ourselves to the case when all angular momenta 

vanish (9.=O=L=O=X) since the generalization is obvious to three 

particle experts and uninteresting to others. Time reversal invariance 

42) 2 follows immediately from the fact7 that Fi+qab 

previously explained.6 

In order to demonstrate that the Fab so defined is in fact unitary 

as well as time reversal invariant, we first use the algebraic identity 

(l/xy) = [(l/x)-(l/y)l/(y-x) and Eq. (2) to rewrite the kernel as 
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k2/tc(k2)12dk 

c2 - 2(2)2- in 
ac 

O3 k2jtc(k2)j 2dk 

-s 

N2 
C 

0 c2+it2-z 
+ 

,-II pc2-g;-z 
I 

(4) 

and by using the standard dispersion-theoretic representation for the 

on-shell two particle amplitude t 

t+(p) = - 
O" 2 I k It(k2)ldk _ 

0 k2-q27in 

N2 w p(02)do2 
-2 -2 + 
q +K J -2 -2 

2 CJ +4 
mX 

m 
3 f f’(i2) + P ~(o")dcF 

4 
;2+;;2 

(5) 

find that Eq. (1) can be rewritten as 

1 

Z pa,p;;z) = - zab 3 
/ a< 

-1 (0 -z 

03 
J q”2 dq” 

C C 

0 

or more symbolically 

Z ab = - 'abGO - x 'acVacGO [tc] 'cb 

=- 
'abGO - 5 'ac [tc]GOVcb &cb 

C 

(6) 

(7) 
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where the second line of Eq. (7) expresses the previously established 

time reversal invariance. 

T: complete the unitarity proof we first need to note that on-shell 

the KZ amplitude Fab is related to the Faddeev amplitude Mab by 

M ab = ta6ab + t a abtb z , (8) 

and next that in establishing the unitarity relation for the amplitudes 

M ab 
-Mtb = - 

c M,,(GO - GkO)Vccl Mzlb 
cc' 

(9) 

the energy-conserving b-function G o-G: is proportional to S(c2+G2- z). 

The final critical step is to note that under this restriction tc is c 1 
the physical on-shell amplitude t,(z-c2). Thus by substituting Eq. (8) 

into Eq. (9) and simplifying we find that the equation we need to prove 

is that . 

Z ab -zzb = -CZactc<GO-G~)Z~b 
C (10) 

The proof can now proceed by following the critical step in the Freedman- 

Lovelace-Namylowski proof9 of the unitarity of the Faddeev equations, 

which is to use two particle on-shell unitarity to replace tc(Go-G~)t~ 

by -(t - 
C 

t:) in the diagonal term in Eq. (10) l If we now invoke Eq. (7) 

in the appropriate order in the first two terms and simplify we find 

that Eq. (10) is equivalent to 
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0 = F ‘actcLz”, - + GOVcbGcb - CGO - ‘: > ‘Cb’cbI 

-CL Z 
C’ 

a., + 8acrVac&; + ~act(Go-G;j)]t~J c'b 

-c 3 cc’ cc ‘Zact(Go -G;)Vccd;,Z;,b (11) 

which a second invocation of Eq. (7) readily verifies as an identity, 

completing the proof. The algebra is trivial, if tedious, and repre- 

sents an explicit sequence of steps which have been carried through 

using the actual integral equations and the discrete contributions from 

the bound state poles, and independently checked.lO 

Although the proof has now been reduced to trivial algebra, and 

the rigorous consequences mentioned in the opening paragraphs now follow, 

some subtlties remain to be discussed. Had we simply taken the zero 

range limit in the Faddeev equations, the amplitude so defined would be 

proportional to t(z-G2), and in those circumstances where the left-hand 

cut p(a2) is not zero would have a spurious singularity that does not 

occur in the original equations, a point emphasized by Lindsay Dodd.ll 

We can see from Eq. (1) or Eq. (6) that the zero range limit of the KZ 

equations does not suffer from this disease. To locate the origin of 

this non-uniformity in the limit, we make use of the Low equation 

t = Vi-VGV to express the fully off-shell amplitude t(q3i;z-G2) in terms 

of the half off-shell amplitudes using the spectral resolution theorem, 

and eliminate the potential V by invoking the time reversal invariance 

of t. This leads,12 using the notation of this paper and some algebra, 

to the consistency condition 
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00 
p(a2)da2 

02 
Co21 du2 

co 

s ( 
N2 -2 

4 
0 +4 >( 

2 -2 
cJ +q > 

- R2 f 

[ 
q2 

(9) 
s 

pw2 
u +c2 

+ f 
q2 

(9) 
/ 

p(02)da2 
-2 

mz 4 
u +E2 

co 

= R2 
s 

f 
k21t(k2)12dk 

fk2Gl) - f <s> 
q2 +k 

2(4) - fw2W 
q 

-2 -2 (4, 
0 k -q k2-t2 

+ R2fk2(q)f 
k2 1 

(12) 

This is equivalent to the constraint studied by Baranger, Giraud, 

Mukhopadhyay and Sauer,13 reduced to a non-singular form by invoking 

the on-shell dispersion relation given in Eq. (5). We see immediately 

that this relation cannot be maintained in the zero range limit in the 

presence of a left-hand cut. Thus we get into trouble by taking the 

zero range limit in the Faddeev equations in that case, but the KZ form 

allows the limit to be taken unambiguously, even when we come back as 

close as we can to the Faddeev form in Eq. (6). We conclude that we 

have found a route to a unique on-shell three particle theory, even 

though we cannot consistently define two particle off-shell amplitudes 

in a conventional way in a two particle space. 

In order to actually solve these equations, it will be convenient 

to isolate the moving singularity in the kernel for 0 5 c2 5 W, and the 

coefficients of the primary singularities, from the non-singular parts 

which do not contribute to the asymptotic wave function. We do this by 

splitting Z into an exterior and interior piece by defining 

Z = e(W-;2)ZE+,(;2-W)Z1. For ZE we make a change of variable 

-2 appropriate to the finite interval, e.g., p = Wsin2w, and expand in 

terms of an appropriate complete set, in this case sin2nw/sin2w. The 

logarithmic singularity in the kernel can then be integrated analytically, 
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leavingra non-singular integral to be done to define the matrix coeffi- 

cients in nn'; if we use empirical input for the two body observables, 

this last integral has to be done numerically in any case. Our splitting 

guarantees that the kernels for Z1 are non-singular. This leads to 

coupled equations of the form 

m 
ZE = KEE ZE + KEBZE + n z nn' n' z 

n' b nb b J 
Kt'(p') Z'(p') d;12 

W 

z; = c Kf;zz + 5 K$ z;, + j<'(p') Z'(p') d;12 (13) 
n 

W 

ZYP) = c K:(P) ZE + 
n 

x gB(p)Z; +fK'I(p,p') Z'(P') d;12 
b W 

Here we exhibit the bound state indices b as a reminder that the value 

of Z at these singularities (elastic and rearrangement amplitudes) 

should be explicitly separated out, but have suppressed the Faddeev 

indices for simplicity. We see that for finite n the matrix for ZE 

can be explicitly inverted and substituted into the continuum equation 

for Z1 making that equation also explicitly non-singular. This is one 

way to generalize a previous non-singular treatment of the two-body 

problem.8 Since only the ZE are physically observable in three particle 

systems, this two step process has the advantage that the solution for 

Z' need only be good enough to guarantee the accuracy of the quadrature 

which occurs in the equations for Z E . This is obviously a less stringent 

requirement than having to solve for the functional dependence on p. 

Since these equations for Z are unique, there is no guarantee that 

they will agree with experiment. According to elementary particle 
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theory, there will be additional effects generated by mesonic degrees 

of freedom at short distance. In conventional non-relativistic theories 

these:re replaced by two-body off-shell effects arising from some assumed 

potential model and in some cases by three-body forces. Unfortunately 

there is no consensus as to how to separate these effects theoretically, 

and as has been pointed out4 they are impossible to separate using only 

the two and three-body observables themselves. However, now that we have 

a unique reference theory based only on two particle observables, we do 

have a way of measuring the combined mesonic effects. One way to make 

this explicit is to introduce into the model a direct "zero range three 

particle" scattering amplitude. If this itself is unitary, like the two 

particle amplitudes, the equations remain unitary and provide via the 

parameters in this added amplitude a way to parameterize the discrepancy 

between the unique theory and experiment. Such a system--need be inverted 

only once to obtain fitting formulae which can be used for data analysis, 

rather than requiring the solution of an integral equation each time a 

parameter is varied. Brayshawl has demonstrated the practicality of 

this approach to data fitting in various relativistic situations. If 

we use relativistic kinematics our equations can be cast in covariant 

form and shown to be a special case of a general separable model given 

by Brayshaw,l') as has been shown by Lindesay. l5 We have also found that 

minimal four particle equations can be obtained in a similar way, but 

will not pursue either of these applications of our approach here. 

It is hard to make adequate acknowledgement for help received in 

a piece of work that has extended over fifteen years. My most recent 

collaborators have been Lindsay Dodd, whose critical acumen eradicated 
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the last wisps of conjecture, and James Lindesay who has already reduced 

the projected relativistic theory to practice. Much is due to the 
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