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ABSTRACT 

The rates for the three-body proton decays p + Irlre+ are related 

o+ to the rate for the decay p + TI e . This is done by making an ansatz 

for the form of the three-body amplitude which is consistent with 

current algebra and with the measured TIT final state interactions. 

We find that the three-body decay rates are comparable with the rate 

for the two-body decay p -+ roe+. 
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1. Introduction 

Grand unified models of the strong weak and electromagnetic inter- 
*- 

actions contain new interactions which can mediate baryon number 

violating nucleon decay.l If proton decay is characterized by a mass 

scale of order 10 15 GeV,2 as indicated by renormalization group analysis, 

then only baryon number violating operators of the lowest possible 

dimension can contribute at an observable rate. Weinberg and Wilczek 

and Zee have enumerated the baryon number violating dimension-six 

operators consistent with Lorentz and SU(3) @ SU(2) 8 U(1) invariance.3*4 

For decays into non-strange final states they are 

Ql = (d"~~(~LeL-~L~L)EuBy ' 

Q2 = (~L",3c~ReR~ee,, ' 
. 

Q, = (~Lu83(~~eL-~~~~)E~~~ ' 

and 

f (1) 

where the notation of Weinberg has been used. We have shown only those 

operators relevant to decays with a positron or electron anti-neutrino 

in the final state. Similar operators exist for decays with a anti-muon 

or muon anti-neutrino in the final state. The operators Ql and Q, lead 

to right-handed anti-leptons in the final state while Q, and Q, lead to 

left-handed anti-leptons in the final state. Consequently it is 

convenient to decompose the effective Hamiltonian for proton decay 

so that 

xbBI=l = 
eff Jv+ + 2 (2) 
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where 1 

X'+ = at-Q2 + b+Q4 + h.c. (34 

and 

is? = a-Q, + b-Q, + h-c. . (3b) 

The Wilson coefficients a& and b, depend on the specific grand unified 

model being considered. The contributions of JV+ and X- do not 

interfere if the mass of the final state anti-lepton is neglected.5 

For example, o+ in the decay p + 71 e the matrix elements for right-handed 

and left-handed positrons can be parameterized in the following manner 

<+'e+(xk(0)jp> Z E, 2 (l+ y5)up , 

and the total rate (m is the nucleon mass) 

‘cp ’ +> = $ @+I2 + lE-12 > +Tre ._ 

(4) 

(5) 

contains no interference between the contributions of rip, and X-. 

Recently several estimates have been made for the two-body proton 

decay rates in the Georgi-Glashow SU(5) grand unified model.6 In the 

present paper we shall consider the three-body proton decay modes 

+ p + TTre in a model independent manner. Since the operators Ql,...,Q4 

defined in Eq. (1) are purely isospin l/2, the final state pions can 

either be in an I=0 or I=1 state; the I=2 final state is forbidden. 

To obtain crude estimates for I'(p + TIT (I=O) e') and I'(p + ITIT (I=l) e') 

+ one can compute the rate for the decays p + me from the lowest order 

diagrams of Fig. 1. Using Eqs. (4) and (5), neglecting the momentum 

dependence of the form factors Et, and noting that the isospin proper- 

ties of Ql,...,Q4 imply <n-e+lX+(O)In> = fi<n"eflZk(0) Ip>, these 
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contributions give7 

, (W 

and 

r p -t TIT (I= l)e+ = ( > 

r(P O +> +IT e 
(6b) 

when the pion mass is neglected, and where gr is the pion-nucleon coupling 

constant 

g: 
-G = 14.6 . (7) 

Therefore the naive expectation is that the three-body decay modes 

+ p + rve of should be significant in comparison with p -t R e . 

Several improvements on the above estimate of the rates for the 

three-body decay modes p + ITIT (I=O) e+ and p + TT~T (1~1) e? are possible. 

In the next section current algebra is used to gain information on the 

decay amplitudes when one of the pions is soft and in Sect. 3 dispersion 

relation techniques are used to estimate the effects of final state 

strong interactions. Concluding remarks are given in Sect. 4. 

2. Current Algebra Constraints 

When one of the pions is "soft", current algebra8 can be used to 

gain information on the amplitudes for the decays p += rre+.. Consider 

firstly the decay p + ?r"roe+. The invariant amplitude for this decay 

a~0y0)(p2,P3) 3 <e+(pl)*"(p2)~o(P3)lJV+(0) IP> (8) 

is a symmetric function of the pion momenta. Using the LSZ reduction 
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formula,'one finds 

Ra~"'o)(p2,p3) = pl.E2 i(p2-pi)/d4x eip30x 

x ~e+(pl)~o(p2)~T($o(x);W;(0))l~~ , (9) 

where 1-1 is the pion mass and $. the neutral pion field. Any field with 

the appropriate quantum numbers can be used for the pion in Eq. (9) 

provided it is appropriately normalized. The standard choice in current 

algebra is to relate the neutral pion field to the third component of 

the axial current by 

. (10) 

Inserting this into Eq. (9), integrating by parts and taking the soft 

pion limit p3 + 0, one finds 

a~oyo)(P2.0) = q <e+(p,)r"(p2) l[Qi3) ,~k~~~] IP> 
71 

+ lim $ pt/d4x eip30x <ef(pl)~o(p3)I~(~~3)(x)M5(0))I~> . (11) 
p3+0 IT 

From Eq. (1) it is easy to relate the equal time commutators of the 

axial charges 65 to those of the isospin charges 1, 

(12) 

This can be used to evaluate the commutator term in Eq. (11). The 

second term in Eq. (11) can be evaluated by diagrammatic techniques 

using the axial current-proton vertex (gA/2)ypy5. From Eq. (4) we find 
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'+gA Y5up ] (13) 

when pion mass is neglected. 

In the introduction rates for p + Tve were given that were 

computed using the Born diagrams in Fig. 1. However, the amplitude 

arising from Fig. 1 is not consistent with the current algebra relation 

in Eq. (13). The diagrams in Fig. 1 are expected to vary more strongly 

over the kinematically allowed region than other contributions, for 

example, from diagrams with higher mass intermediate states (e.g., N*). 

Consequently we assume that these contributions can be approximated by 

a constant over this kinematical region. We further assume that the 

o+ amplitude for p + IT e , when the proton is virtual, is well approximated 

by that for a physical proton -- i.e., we neglect the off-shell dependence 

of E,. These assumptions then lead to the following ansatz for the 

oo+ amplitude for p + n IT e : 

(14) 

Our guiding principle (assumption) here is that the PCAC constraints 

are to be satisfied by adding terms to the lowest 

states for each isospin value. 

The decay rate following from this amplitude 

when the mass of the pion is neglected: 

angular momentum 

is easily calculated 

+ + r”n”e+ 
) ( P+12+ M2) 3 = 

256~~ 
mg"J r0 ' (15) 
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where 

a-. Jo =($$)- co++; 
3 

or equivalently 

r(p -f nOaoe+) 

r(P O +> +re 

The constant Co can be 

Eq. (14) when p3 + 0 agrees 

relation IY 

determined by requiring that the limit of 

with Eq. (13). The Goldberger-Treiman' 

then gives 

/2mgA 

gr= f 
R 

13-L 
co = 2 [ 3 gA 

(17) 

. (18) 

I 

Inserting this into Eq. (16) yields T(p + Toroe+) M O.O6f(p +7re ' '). 

Since the amplitude for p + ITIT (I= 2) e+ vanishes, the rate for p + ."T"e+ 

is one third that for p + ITT (I=O) e+. Thus 

T(P -t 1771 (I= 0) e+ ) k o.ln(p O +) +T e . (19) 

Next we consider the charged pion final state and the constraints 

imposed on the invariant amplitudes 

aFy-)(P2,P3) f <e+(pl)r+(p2)n-(P3)INk(0)lP> (19) 

by current algebra. Proceeding as before, we find 

a:'-)(p2,0) = r+ <e+(p,)~+(p,)I[I+,Je,(O)]IP> , (20) 
IT 

where Eq. (12) has been used. There is no pole term in this amplitude 



-8- 

and the isospin operator acting on the states yields 

(21) 

Alternatively, when the n+ is removed from the final state of the 

matrix element in Eq. (20) and its momentum is taken to zero, we find 

thatlo 

a(+'-)(O,p3) = pil;mo - $px eip20x 2 IT 

x <e+(pl)r-(p3)I~(A~-'(x)TP,(0))l~> (22) 

The commutator terms vanishes in this case and the right hand side of 

Eq. (22) can be evaluated with diagrammatic techniques using the proton- 

neutron-axial current coupling + gAyuy5. The result is 

when the pion mass is neglected. 

The amplitudes for p + TIT (I= O)e+ and p -t TIT (I= l)e+ are related 

to those for p + ?r+,-e+ by the relations 

aiI=O)( p2 ,P3) = -$ [a?'-)(p2,p3) + ay'-)(p3,p2)] (24) 

and 

a(I’l)(p2,p3) = & [a:'-)(p2,p3) - ar'-)(P39P2)]' (25) + 

Using Eqs. (23), (22) and (4) 
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and 

a~=‘)(p2,p3) p-Jo $ Ek<(lky5)[~ d2+1+9,11iUp l (27) 

The isospin zero amplitude was discussed previously in Eq. (26) 

leads to the same result as was derived from our discussion of p -+ Toroe+. 

The isospin one amplitude resulting from the Born diagrams in Fig. 1 does 

not satisfy the constraint given in Eq. (27). A simple ansatz for the 

I=1 amplitude that is consistent with current algebra, bose statistics, 

and with our intuition that most of the kinematical variation of the 

amplitude (apart from the effects of TIT final state interactions) comes 

from the Born diagrams of Fig. 1 is 

$2 
X -_- 

2P'P2 
-$ Dl~*(p2-p3) y5up 

where C, and D, are constants. The rate following from this amplitude is 

T(P + n?r(I= 1) e+) = 
( P+12+ k12> mg2J 

128~~ 
rl 

when the pion mass is neglected, and where 

or equivalently 

- ;CIDl -$Dl+ 1 
(p > 

2 
r -f 7r*(I=l)e+ - = gr 

r(P O +> +Te 161~~ J1 

(29) 

, 

(30) 



-lO- 

The constants Cl and Dl are constrained by Eq. (27) to satisfy 

Cl-D1 = 

To parameterize the freedom in the choice of Cl and Dl we write 

(31) 

. 

Thus the choice b=O means that Dl=O, and b= 1 means that Cl=O. 

In this section we have attempted to improve the naive estimates 

made in the introduction using current algebra to gain information about 

the amplitudes for p + =re+ when one of the pions is soft. We then 

extrapolated over the whole kinematical region assuming that most of 

the variation of the amplitude arises from the Born diagrams in Fig. 1. 

Recall that this procedure resulted in a reduction of the rate for 

p + ~71 (I=O)e+ by roughly a factor of ten but a neglible reduction in 

the rate for p + ITIT(I= l)e+ for b=O or 1 (see Table I). 

However, these computations have neglected the effects of strong 

interaction final state 71~ interactions. Since there is considerable 

phase space available for the pions, their final state interactions can 

be dynamically significant. In the case where the pions are in an I=1 

state, a large enhancement of the rate from the final state interactions 

is expected since they can form a rho resonance. In the next section 

we estimate the effects of final state interactions for both the J=O 

and 1 final states. 
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3. Final State Interactions 

Up to this point our discussion has neglected the strong interactions 

of the pions in the final state. To include these effects we must first 

decompose the amplitudes for p + rre+ into partial waves. The 

p + ~TIT (I=O,l) e+ amplitudes, a (I=O,l) 
2 , satisfy a unitarity constraint 

which follows from a consideration of the crossed diagram shown in Fig. 

2. Let s be the square of the TIT center-of-mass momentum. In the 

"physical" region, s>4~", the absorptive part of the ep-trr amplitudes 

(I=O,l) 
a, satisfyll 

Abs a(1=031)(s.;.;) k , 

x a(Izoyl) (s;i.l;) 
iT 

. (32) 

Here we are working in the 7171 center-of-mass coordinate system where 

p2+p3 =k=(&,;f) , -$ (P2 - P3) = q = ?o , $1 

‘2+ ‘3 =k=(&,:) , + (R2- R3> = R = (0 , t, 

and P = (E ,& , -P, = (e , -3 * 

From p-p, = k = (A ,z) it is easy to show that for u= 0, 

2 s-m s+m2 e= - 
2& ’ 

EC---- 
2& 

and (33) 

In Eq. (32) &(I="') is the isospin zero or one pion-pion scattering 

amplitude. The p -+ rTe+ amplitude a!l"o'l) can be expressed in terms 

of two types of form factors. Suppressing the isospin superscripts 

a, = i;z(l+ YS>[A_, + 2Bgi] y5up - (34) 
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The'unitarity constraint for the crossed process ep + ITIT, given in 

Eq. (32) implies that 
*. 

uz(l?y5)[ImA+-21mB,d]up Z u~(l+y5)[~+-2$,]up , (35) 

where 

(36) 

(37) 

and by = 0. - 

Multiplying Eq. (35) by bu: and summing over the electron and 

proton spins gives 

ImA, - 
2mP,*4 2mb+*p, 

ImB,=g+- - . 
P,'P P,'P ._ (38) 

The ITT scattering amplitude,& has the partial wave expansion 

m 

dU(s; a*;> = 32,~ (2J+1)PJ(i*q)e 
i&J 

sinbJ . 
(39) 

The phase shift for the J'th partial wave, hJ, depends only on s, and 

thus it is evident from Eq. (38) that when one makes the expansion 

A+(w) + 2rnlGlz B+(s;z) = 
& - 

z 
J 

(2J+l) P,(z) f:(s) , 

where z = co;, the unitarity constraint becomes 

(40) 

Im f:(s) = e 
-i&J 

sin6J f:(s) (41) 
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Next we multiply Eq. (35) by 

spins. Choosing the four-vector, *. 

Im B+l$.<12 = ($x;) - 

u $uC 
P e 

and sum over electron and proton 

C = (0,$x:), we find that 

or equivalently, using Eq. (36), 

(43) 

From a standard orthogonality relation I2 for P; it follows that the 

partial wave expansion of B, is 

B+(s;z) = x 
(2J+l) 

P;(z) &s> , 
Jm 

. 

and the unitarity constraint for the gJ is 

Im gJ,(s) = e 
-i6J 

- sindJ&(s) . 

(44) 

(45) 

The decay rate for p -f rive+ can be written as a sum of squares of the 

partial wave amplitudes f:(s) and g:(s): 

r = 3 Ids ,/$ (1 - 5s x (2J+l) 

4u2 
m J 

x [(b;12+ IfJI’) + (s-4u2)(lg:/2+ lgJ12)1 - (46) 

The partial wave amplitudes which follow from the expressions for 

the (Born) decay amplitudes given in Sect. 2 are real on the positive 

real s-axis, s > 0. These partial wave amplitudes we denote by f:(s) 
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and &s). The bar signifies that these are not the same as the true 

partial wave amplitudes f:(s) and g:(s) which have a cut for s > 4y2 - 

and satisfy the unitarity constraints given in Eqs. (41) and (46). 

A simple form for the partial wave amplitudes f:(s) and g:(s) that is 

consistent with the unitarity constraint is 

f;(s) = DJ (u2> [ 1 DJ(S) 
&s) = D,(?J2) [ 1 DJ(S) . 

(47) 

(48) 

The quantities iz and 8: can be deduced from the expressions for the 

decay amplitudes given in Sect. 2. The Omnes DJ function is defined byl3 

r m 
DJ(s) = exp -+ 

/ 

6Jb') 

1 

ds' s' -s -is 1 ._ (49) 

and takes into account the effects of final state 71~ interactions in the 

J'th partial wave. The amplitudes f:(s) and g:(s) defined in Eqs. (47) 

and (48) satisfy the unitarity constraints given in Eqs. (41) and (45) 

because DJ(s) has a cut for s > 4~~ and equals ID,(S)\ exp(-i6J) in 

this region. The normalization factor DJ(p2) was inserted in Eqs. (47) 

and (48) so that the decay amplitudes following from f: and gi will 

satisfy the current algebra constraints which restrict the amplitude 

in the neighborhood of s = u2. Note that since the functions DJ(s) are 

real and slowly varying for s < 4~ 2, Imfz(s) 2 Im z:(s) and 

Imgt(s) x - Im<(s) on the left-hand cut. 
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(I=O) The isospin zero amplitude a, only gets contributions from even 

partiaLwaves. (I=O) The form for a+ given in Sect. 2 (see Eq. (14)) can 

be cast into the form of Eq. (34). -(I=O) The resulting form factors A+ - 

and E:'=') are 

x(1=0) = -fi E y a-i-- 1 - - 
f 5 2 2P'P2 + 2P*P3 

(50) 

and 

1 . (51) 

In Eqs. (50) and (51) and hereafter the pion mass is neglected. Again 

we use a bar to denote that final state interactions have not been 

included. The s-wave amplitude, f:(s) following from these form factors 

can be -derived by inverting Eq. (40). We find that 

._ 
. (52) 

m-s 

The second term in the brace brackets depends on s and arises from the 

Born diagrams in Fig. 1. The first term is a constant independent of s 

and was added to make the amplitude consistent with current algebra. 

The s-wave contribution dominates the rate for p -f ITIT (1~0) e+ SO 

we shall neglect higher partial waves. I4 The s-wave isospin zero 71-1~ 

phase shift, do, is consistent with the presence of a broad resonance 

of mass 700 MeV and width = 500 MeV. Therefore we assume that in the 

physical region 0 -< s < m2 the function Do(s) has the form 

$$- = (I- $)-iyo& . (53) 
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The parameters so and y. are related to the s-wave phase shift. Using 

-1 = yoso& [(s-so) - iyosoG] 3 

(54) 

(55) 

it is evident that s 0 can be identified with the mass of the S-wave 

"resonance" and y 0 controls its width. Therefore the values so g 0.5 GeV2 

and y. 2 0.8 GeV -1 are adopted. Performing the required integration 

(cf., Eq. (46)) we find that ITIT final state interactions enhance the rate 

for p + TUT (I=O)e+ by about a factor of 1.5 so that 

+ + ~77 (I= 0) e+ z 0.2r(p > 
o+ +Tre . > 

(I=l) The isospin one amplitude a+ gets contributions only from odd 

partial waves. The expression fir a:'=') in Eq. (28) of Sect. 2 can be 

put in the form of Eq. (34). Then ._ 

1 9 (56) 

and 

$=l) 
Y!I =fiE+gr + &+& 

- [( 
. (57) 

2 3 

As in the isospin zero case, the rate for p + ITT (1~1) e+ is dominated 

by the contribution of the lowest partial wave.14 Consequently we shall 

restrict our attention to the p-wave amplitudes f:(s) and g:(s), ignoring 

the rescattering corrections to the (< 1%) contributions of higher par- 

tial waves. Inverting Eqs. (40) and (44) we find that15 
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-1 
f+Cs) = m E+gr ' fi _ {tm~fj2[~ &n(+)-2]- +(l- $(1-b 3)) 3 

and 

(58) 

-1 
gl(s) = (<)- ,,,')] +&)(1-b)). 

(59) 

The last terms in Eqs. (58) and (59) were added to the Born amplitudes 

to comply with current algebra restrictions. 

The final state interactions of two pions in a p-wave are dominated 

by the rho resonance. Therefore we assume that in the physical region 

0 < s < m2 the function Dl(s) has the form 

$$- = (1 - --f-- - iyls312 (60) 

Fitting s1 and yl to the mass and width of the rho-resonance gives 

s1 = 0.59 GeV2 and yl = 0.41 GeVB3. Performing the required integration 

+ we find the final state interactions enhance the rate for p -f WT (I=l) e 

by about a factor of six and hence P ( p -+ TUT (I= 1) e+) c i.5r(p +7re O +) 

for both b=O and 1. 
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4. Discussion and Conclusions 

In this paper we have attempted to make a simple model independent 

estimate of the ratio of two-pion to one-pion final states in proton 

decay. We found that for the isospin zero two-pion final state the pole 

or Born contribution gave a ratio around one but when PCAC was imposed 

the ratio was reduced by almost an order of magnitude. In the isospin 

one case the Born diagrams gave a small ratio of about one fifth. 

However, in this case the current algebra constraints caused only a 

slight reduction in the ratio of two-pion to one-pion final states. 

Finally the effects of final state strong interactions in the lowest 

partial waves were estimated using familiar dispersion relation techni- 

ques (whose validity it would be inappropriate to discuss here) and 

were found to enhance the two-pion rates substantially. This oscillatory 

history is shown in Table I where the rates include the .Born contributions 

to the higher partial waves. 

The imposition of the PCAC condition is unique if one adds only 

constants (no growth in s) to the lowest possible partial wave ampli- 

tudes.16 In the I=1 case this corresponds to the choice b=O. However, 

because of the additional s dependence in the rate associated with gt 

(cf., Eq. (46)) we do not consider the choice b=O compelling. 

Fortunately PCAC has little effect on this amplitude and the rate is 

insensitive to the value of b. 

The large rate for the isospin one two-pion final state is more or 

less in qualitative agreement with bag model estimates of p + pe+. We 

have also found a significant rate for isospin zero two-pion final 

states. Because of the large amount of phase space available to the 
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pions one should be suspect of the dramatic cancellation which occured 

when the Born amplitude was adjusted to satisfy the current algebra 

constraints. The rate for p + or (I=O) e+ may be somewhat larger than 

we have calculated. 

Finally we note that other three-body modes, such as n -t TOT-e+, 

p + ~+,"i and n + FIT; follow from our estimates by simple arguements 

(e.g., from isospin r(n + ~TTF (I= l)e+) = 2r(p -f 1~71 (I=l) e+)). 
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TABLE I 

?P 
-k + 7r-rre p -+ roe+ > 

Born Born + PCAC Born + PCAC + Rescattering 

I=0 

I=1 

1.38 

0.24 

0.17 0.24 

0.24 (b=O) 

0.23 (b=l) 

1.6 (b=O) 

1.5 (b=l) 
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13. R. 'Omnes, Nuovo Cimento 8, 316 (1958); N. I. Muskelishvili, 

Singular Integral Equations, Nordhoof, Groningen (1958). . . 

14. We have verified this by explicit computation. 

15. To invert Eq. (45) we used the orthogonality relation 

+1 

I J(J+l) F P;(z>P;(z) (l-z2) = 2J+l 
'JL ' 

-1 

16. In the case p -f ITIT (I= 1) e+ a term p=(p2-p3)/[(p2+P3)2-m2] 

in the form factor ;i!'=') contributes a constant to the partial - 

wave amplitude 7:. However, such a term is unacceptable since 

(I=l) it gives a form factor A+ with a pole at s=m2 for fixed t. 
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FIGURE CAPTIONS 
-. 

1. Born or pole diagrams contributing to p + wTe+. 

2. ep -+ ITIT scattering diagram used in derivation of Eq. (32). 
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Fig. 1 
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Fig. 2 


