CHIRAL DYNAMICS INCLUDING VECTOR MESONS APPLIED TO
THE DECAYS OF THE τ LEPTON*
Richard Fischer ${ }^{\dagger}$ Stanford Linear Accelerator Center Stanford University, Stanford, California 94305
Albrecht Kluiver
Institut fuir Theoretische Physik
Universität Karlsruhe
D-75 Karlsruhe, W. Germany
Fritz Wagner
Max Planck Institut für Physik
D-8 München, W. Germany

Abstract

The decays of the τ-lepton up to four pions are investigated within the framework of phenomenological Lagrangians. These Lagrangians are invariant under the chiral group $\mathrm{SU}(2) \times \mathrm{SU}(2)$ which is nonlinearly realized on the pion field alone. The vector mesons ρ and $A 1$ are introduced as gauge bosons of the chiral group. Due to the nonlinear realization, processes with different numbers of pions are interrelated. Our results are compared to the existing data.

(Submitted to Physical Review D)

[^0]
INTRODUCTION

Current algebral which is the basis for chiral dynamics ${ }^{2}$ relates processes with a different number of pions. As is well known, the predictions of current algebra are most easily obtained by the method of phenomenological Lagrangians in connection with nonlinear realizations of the chiral group.

The whole chiral group $\operatorname{SU}(2) \times \operatorname{SU}(2)$ can be nonlinearly realized on the pion field alone. This was the starting point of a previous work, ${ }^{4}$ where the consequences of pion dynamics in τ-decays as derived from such a Lagrangian were discussed.

If we try to extend pion dynamics beyond the 'soft region' we have to deal with the resonances. Calculating total decay rates for the τ-lepton in Ref. 4 the ρ meson was included by hand via a form-factor wherever a two pion state with appropriate quantum numbers appeared. Within the framework of phenomenological Lagrangians the vector and axial vector mesons can however be introduced from the very beginning by gauging the pion Lagrangian. It is this dynamics that is used here to calculate τ-decays with up to four pions in the final state. The effect of the nonlinearity is that a set of processes given all processes with additional pions are predicted. In our case we can fix the parameters of the Lagrangian with τ-decays into two and three pions. The pion decay constant f_{π} which also enters can be thought of as determined e.g. in pion decay.

The paper is organized as follows: We first recall the general formulae for τ-decays. The second chapter contains a discussion of the interaction Lagrangian and the matrix elements for the decays under
consideration. In the third chapter we present our results on the decay spectra and rates. The conclusions and two appendices follow. Appendix A contains the derivation of the Lagrangian and Appendix B the explicit expressions for the Lagrangian and the currents as used in this paper.

1. T Lepton Decays

Heavy lepton decays have been of interest under various points of view. ${ }^{3}$ Let us first write down the T-matrix element for τ decays into hadrons which according to standard weak interaction theory ${ }^{5}$ is given by the product of the matrix elements of the leptonic and the hadronic currents.

$$
\begin{equation*}
T=\frac{G}{\sqrt{2}} \cdot \cos \theta_{c} \cdot \bar{u}\left(p^{\prime}\right) \gamma^{\mu}\left(1-\gamma_{s}\right) u(p) J_{\mu}^{h}\left(q_{1} \ldots q_{n}\right) \tag{1.1}
\end{equation*}
$$

Using these matrix elements the decay rates $\tau \rightarrow \nu_{\tau}+n$ pions are calculated to be:

$$
\begin{equation*}
\Gamma_{n}=\frac{1}{2 \cdot m_{\tau}} \int d L^{\prime} p_{n+1}\left(p ; p^{\prime}, q_{1} \ldots q_{n}\right) \frac{1}{2} \sum_{\text {spins }}|T|^{2} \tag{1.2}
\end{equation*}
$$

where dLips ${ }_{n+1}$ denotes the invariant phase space integra1 ${ }^{6}$ over the neutrino momentum p^{\prime} and the n pion momenta $q_{1} \ldots q_{n}$. p is the momentum of the decaying τ lepton, m_{τ} its mass.

The integration over the pion momenta in (1.2) can be carried out independently and due to current conservation the result can be written in the form:

$$
\begin{equation*}
\int \operatorname{dLips}_{n}\left(Q ; q_{1} \ldots q_{n}\right) J_{\mu}^{h} J_{\nu}^{h}=\frac{a_{n}}{6 \pi}\left(Q_{\mu} Q_{\nu}-g_{\mu \nu} Q^{2}\right) \tag{1.3}
\end{equation*}
$$

where Q denotes the total hadron momentum. $Q=q_{1}+q_{2}+\ldots+q_{n}$. After integrating over the ν_{τ} momentum p ' the final result can be
expressed as follows, with $y=\frac{Q^{2}}{m_{\tau}^{2}}$

$$
\begin{equation*}
\gamma_{n}=\frac{\Gamma_{n}}{\Gamma_{L}}=\int_{0}^{1} d y(1-y)^{2}(1+2 y) \cdot a_{n} \tag{1.4}
\end{equation*}
$$

where we have used the pure Ieptonic decay rate $\Gamma_{L}=\frac{G^{2} m_{\tau}^{5}}{192 \pi^{3}}$ for normalization. 7 Formula (1.4) reduces our problem to calculating the various functions a_{n} :

$$
\begin{equation*}
a_{n}=-\frac{2 \pi}{Q^{2}} \int \operatorname{dLips}_{n}\left(Q ; q_{1} \ldots q_{n}\right)\left(J_{\mu}^{h}\right)^{2} \tag{1.5}
\end{equation*}
$$

2. Chiral Dynamics With Vector Meson and Pion Interactions

From chiral gauge invariance the following Lagrangian for the interaction of massless pions and the vector mesons has been derived in Appendix A (A25, A28)

$$
\begin{equation*}
\mathscr{L}=\mathrm{I}_{\mathrm{YM}}+\mathrm{I}_{1}+\kappa \cdot \mathrm{f} \cdot\left\{\left(\overrightarrow{\mathrm{P}}_{\mu \nu}^{\prime}\left(\overrightarrow{\mathrm{p}}^{\mu} \times \overrightarrow{\mathrm{p}}^{\nu}\right)+\left(2 \alpha-\frac{1}{2}\right) \cdot \mathrm{f} \cdot\left(\overrightarrow{\mathrm{p}}_{\mu} \times \overrightarrow{\mathrm{p}}_{\nu}\right)^{2}\right\}+\mathrm{I}_{M}\right. \tag{2.1}
\end{equation*}
$$

Where $L_{Y M}$ is the standard $\operatorname{SU}(2) \times \operatorname{SU}(2)$ Yang Mills Lagrangian for the gauge bosons. L_{M} breaks the gauge invariance (but not global $\mathrm{SU}(2) \times \mathrm{SU}(2)$) and makes the gauge bosons massive. $L_{1}=\frac{f^{2}}{2} \eta^{2}\left(\vec{p}_{\mu}\right)^{2}$ contains the kinetic term for the pion field. The rest are interaction terms between pions and vector mesons. The explicit form of (2.1) we are concerned with here is given in Appendix B (B1).

The Lagrangian (2.1) yields the vector current:

$$
\begin{equation*}
\vec{V}_{\mu}=\frac{m_{\rho}^{2}}{f} \cdot \vec{\rho}_{\mu} \tag{2.2}
\end{equation*}
$$

which is proportional to the field of the ρ meson and the axial vector current:

$$
\begin{equation*}
\vec{A}_{\mu}=-\frac{m_{\rho}^{2}}{f} \vec{a}_{\mu}=-\frac{m_{\rho}^{2}}{f} \overrightarrow{\hat{a}}_{\mu}+f_{\pi} \partial_{\mu} \vec{\pi} \tag{2.3}
\end{equation*}
$$

where \hat{a}_{μ} is the field of the physical A_{1} meson. These currents are conserved due to the equations of motion corresponding to (2.1).

The matrix elements of the hadronic currents can be calculated from (2.2) and (2.3) in presence of the interactions given by (2.1). For any given process we have to sum all the tree diagrams. This guarantees a result that is independent of the parametrization ${ }^{10}$ as well as current conservation. That means our current matrix elements are given by the tree diagrams of the perturbation expansion of:

$$
\begin{equation*}
\left.\langle f|\left(\stackrel{\rightharpoonup}{V}_{\mu}+\vec{A}_{\mu}\right) e^{i \int L_{L} d x}\right)_{t}|0\rangle \tag{2.4}
\end{equation*}
$$

L_{I} is the interaction part of the Lagrangian (2.1).
In the case $n=1$, that is $\tau^{+} \rightarrow \nu_{\tau} \pi^{+}$we get from the axial current (2.3) with our normalization:

$$
\begin{equation*}
J_{\mu}^{1}(Q)=-i \sqrt{2} f_{\pi} \cdot Q_{\mu} \tag{2.5}
\end{equation*}
$$

In the case $n=2$ for the decay $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{\circ}$ we have:

$$
\begin{equation*}
\mathrm{J}_{\mu}^{2}\left(\mathrm{q}^{+}, \mathrm{q}_{\mathrm{o}} ; \mathrm{Q}\right)=\sqrt{2} \frac{\mathrm{~m}^{2}}{\left(\mathrm{q}^{+}+\mathrm{q}^{\mathrm{o}}\right)^{2}-\mathrm{m}^{2}+\mathrm{i} \varepsilon}\left(\mathrm{q}^{+}-\mathrm{q}^{\mathrm{o}}\right)_{\mu}\left(1+\frac{\kappa-\frac{1}{2}}{2 \mathrm{~m}^{2}} \mathrm{Q}^{2}\right) \tag{2.6}
\end{equation*}
$$

In the case $n=3$ there are two processes

$$
\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{o} \pi^{o} \text { and } \tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{+} \pi^{-}
$$

with the same amplitude

$$
J_{\mu}^{3}\left(\left(q^{+} q_{1}^{o}\right), q_{2}^{o} ; Q\right)=J_{\mu}^{3}\left(\left(q^{-} q_{1}^{+}\right), q_{2}^{+} ; Q\right)
$$

And in the case $n=4$ we have two different amplitudes for the processes

$$
\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{\circ} \pi^{\circ} \pi^{\circ} \text { and } \tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{-} \pi^{+} \pi^{\circ}
$$

The amplitudes for the decays into three and four pions turn out to be rather lengthy and we have given the explicit expressions in Appendix B (B3-B5).

3. Decay Spectra and Decay Rates

We now compute the decay spectra and decay rates resulting from the amplitudes presented in the last chapter. Our results are compared to the experimental data in Figs. 1-3 and in a table. The decay rate for the decay $\tau^{+} \rightarrow \nu_{\tau} \pi^{+}$is the usual one

$$
\begin{equation*}
\gamma_{1}\left(\pi^{+}\right)=\frac{3}{2}\left(\frac{4 \pi f_{\pi}}{m_{\tau}}\right)^{2} \cdot \cos \theta_{c} \tag{3.1}
\end{equation*}
$$

In calculating the two pion rates we first replace the ρ meson propagator by an appropriate form factor.

$$
\begin{equation*}
\frac{m^{2}}{\left(q^{+}+q^{0}\right)^{2}-m^{2}+i \varepsilon} \rightarrow \frac{m^{2}-i m \Gamma_{\rho}}{\left(q^{+}+q^{0}\right)^{2}-m^{2}+i m \Gamma_{\rho}} \tag{3.2}
\end{equation*}
$$

We then study the dependence of the decay spectrum on the parameter k and find that the data are represented very well if we choose $k=\frac{1}{2}$ (Fig. 1). This choice also simplifies the matrix elements for the three and four pion final states. If we had used the narrow width approximation for the form factor (3.2) that is the replacement:

$$
\begin{equation*}
\frac{m^{2}\left(m^{2}+\Gamma_{\rho}^{2}\right)}{\left(Q^{2}-m^{2}\right)+m^{2} \Gamma_{\rho}^{2}} \rightarrow \frac{\pi \cdot m^{3}}{\Gamma_{\rho}} \delta\left(Q^{2}-m^{2}\right) \tag{3.3}
\end{equation*}
$$

the result for the decay rate would have been 7% higher which is within the experimental error. We take this as justification for the use of the narrow width approximation whenever it seems appropriate.

The 3π matrix elements (B3) for $k=\frac{1}{2}$ give rise to the decay spectra shown in Figs. 2 and 3. The narrow width approximation has been used only in the calculation of the interference term between the two ρ 's in the amplitude.

The width Γ_{A} of the A_{1} meson has been introduced in the same way as for the ρ in (3.2). We now try to determine the parameter α. It is clear from Fig. 5c, the dominant diagram where α enters in the 3π matrix element, that the variation of α tends to have a similar effect as a variation of Γ_{A}. This ambiguity cannot be resolved with present data. We therefore choose to let all that variation be due to Γ_{A} and set $\alpha=0$. That again simplifies then the 4π amplitudes. In comparing our spectra with the data we have to be careful since in 15 the data are given for the selected mode $\tau \rightarrow \rho \pi$ whereas in ${ }^{18}$ all three pion final states are taken. It turns out however that for all practical purposes the spectra for the two cases are equal due to interference of the diagrams $5 b, 5 b^{\prime}$, 5c with 5d. In Figs. 2 and 3 we also compare this result to the previous one ${ }^{4}$ where there was no A_{1} meson. (Dashed-dotted line in Figs. 2, 3.) The decay spectra resulting from the 4 pion matrix elements ($B 4,5$) are shown in Fig. 4. It turns out that the major contribution to the decay spectrum arises from the graphs $5 g$ and $5 i$ which have an A_{1} in it. The rest is small and is indicated in Fig. 4 with a dashed-dotted line. The spectra for (B4) and (B5) are practically the same. The contribution of diagram 5 j which is in the amplitude (B5) only is negligible
since it has a treshold factor $\left(1-\frac{4 m^{2}}{Q^{2}}\right)^{3 / 2}$ that starts at the very end of the available phase space.

CONCLUSIONS
We have calculated spectra and rates for τ-decays up to four pions in the final state. The vector mesons ρ and A_{1} enter the dynamics via gauge couplings to the pions.

Usual weak interaction theory predicts the decay rate into one pion. The two pion sector clearly shows the ρ-meson and prediction and experimental data agree very well if the parameter k is chosen to be $k \approx \frac{1}{2}$. The situation in the three pion sector is less clear. The experimental rates have very large errors and even if adjusted to the area of the predicted spectra one cannot find compelling evidence for the $\mathrm{A}_{1}-$ meson. Interference among the various amplitudes makes the mode $\tau \rightarrow \nu \rho \pi$ the real dominant one. Varying the parameter α that appears in the three pion sector has roughly the same effect as varying the A_{1} width. We therefore chose $\alpha=0$ in all further calculations. The four pion sector is similar to the three pion sector in the sense that the dominant decay amplitude is $\tau \rightarrow V A_{1} \pi$. If therefore the τ-decay spectrum and rate into four pions would have been measured there would be clear evidence in favor or against an A_{1}, since the contribution including on A_{1} is at least three times bigger than in a model without an $A_{1} .^{4}$

Our calculation accounts for approximately 78% of all decays depending on the normalization to $\Gamma(\tau \rightarrow v e \bar{v})$ which we take to be 17%. In addition 5% are expected for the Cabibbo suppressed decays, leaving about 17%, a few percent of which can be attributed to decays into more than
four pions.
The question could be asked whether the remaining $10-15 \%$ are due to some other mechanisms like second class currents. But we have to keep in mind, however, that a change in the leptonic width from 17% to 20% would leave no room for such other effects.

ACKNOWLEDGEMENTS

One of us (R.F.) is grateful to Sid Drell for the kind hospitality at SLAC. We want to thank Craig Blocker, Peter Dondi, Jonathan Dorfan, John Jaros and Julius Wess for helpful discussions. This work is supported by the Max Kade Foundation and the Department of Energy under contract DE-AC03-76SF00515.

APPENDIX A

The formalism of nonlinear realizations and phenomenological
 short derivation of the formulas necessary. The group of interest is $\operatorname{SU}(2) \times \operatorname{SU}(2)$ with the general element $b \times d ; b$ and d are elements of an SU(2) group. The diagonal elements $U \times U$ form a subgroup, the isospin group. An arbitrary element can be decomposed into a product of a chiral element $V \times \mathrm{V}^{-1}$ and an element of the isospin subgroup:

$$
\begin{equation*}
b \times d=\left(V \times V^{-1}\right)(U \times U) \tag{A1}
\end{equation*}
$$

This equation can be solved for V and U and we obtain:

$$
\begin{equation*}
\mathrm{v}^{2}=\mathrm{b} \cdot \mathrm{~d}^{-1} ; \quad \mathrm{U}=\mathrm{V} \cdot \mathrm{~d}=\mathrm{V}^{-1} \cdot \mathrm{~b} \tag{A2}
\end{equation*}
$$

To find a nonlinear realization of the chiral transformations we have to study the multiplication law of the group $g^{\circ} \cdot g=g^{\prime}$ in the decomposition (A1). The effect of an isospin transformation g° on g is:

$$
\begin{equation*}
\left(\mathrm{U}_{0} \times \mathrm{U}_{0}\right)\left(\mathrm{V} \times \mathrm{V}^{-1}\right)(\mathrm{U} \times \mathrm{U})=\left(\mathrm{V}^{\prime} \times \mathrm{V}^{\prime-1}\right)\left(\mathrm{U}^{\prime} \times \mathrm{U}^{\prime}\right) \tag{A3}
\end{equation*}
$$

Using (A2) we obtain:

$$
\begin{equation*}
V^{\prime}=U_{0} V_{0}^{-1}, \quad U^{\prime}=U_{0} U \tag{A4}
\end{equation*}
$$

If g° is a chiral element we find

$$
\begin{equation*}
\left(V_{0} \times V_{0}^{-1}\right)\left(V \times V^{-1}\right)(U \times U)=\left(V \times V^{-1}\right)\left(U^{\prime} \times U^{\prime}\right) \tag{A5}
\end{equation*}
$$

where

$$
\begin{equation*}
V^{\prime 2}=V_{0} V^{2} V_{0} \text { and } U^{\prime}=\widetilde{U} U \tag{A6}
\end{equation*}
$$

We have used the abbreviation

$$
\begin{equation*}
\tilde{U}=V^{\prime} V_{0}^{-1} V^{-1}=V^{\prime-1} V_{0} V \tag{A7}
\end{equation*}
$$

which should indicate that \tilde{U} is an element of an $\mathrm{SU}(2)$ group.
To obtain an $\operatorname{explicit}$ form of a nonlinear transformation law we have to parametrize the $S U(2)$ group elements. We choose the exponential
parametrization, the final result of the computation of S-matrix elements is independent of the choice of the parametrization. ${ }^{11}$

$$
\begin{equation*}
V=e^{i \vec{\xi} \frac{\vec{\tau}}{2}} \tag{A8}
\end{equation*}
$$

$$
\vec{\tau} \text { are the Pauli matrices }
$$

from (A4) and (A6) follows

$$
\begin{align*}
\vec{\xi}^{\prime} \vec{\tau} & =U_{0} \vec{\xi} \vec{\tau} U_{0}^{-1} \tag{A9}\\
e^{i \vec{\xi} \cdot \vec{\tau}} & =v_{0} e^{i \vec{\xi} \vec{\tau}} V_{0} \tag{A10}
\end{align*}
$$

which gives under infinitesimal transformations

$$
\mathrm{U}_{0}=1+i \vec{i} \frac{\vec{\tau}}{2}, \quad V_{0}=1+i \vec{B} \frac{\vec{\tau}}{2}
$$

the usual isospin transformations

$$
\begin{equation*}
\delta^{\text {iso }} \vec{\xi}=-(\vec{\alpha} \times \vec{\xi}) \tag{A11}
\end{equation*}
$$

and the nonlinear chiral transformations

$$
\begin{equation*}
\delta^{\operatorname{chi} \vec{\xi}}=\vec{\beta}+[\vec{\xi} \times(\vec{\xi} \times \vec{\beta})]\left\{\frac{1}{|\vec{\xi}|^{2}}-\frac{\cot |\vec{\xi}|}{|\vec{\xi}|}\right\} \tag{Al2}
\end{equation*}
$$

With the help of the nonlinear transforming $\vec{\xi}$ it is possible to associate with any linear representation of the isospin group

$$
\begin{equation*}
\psi^{\prime}=\mathscr{D}\left(U_{0}\right) \psi \tag{A13}
\end{equation*}
$$

a nonlinear realization of the whole chiral group and any nonlinear realization of the full group which transforms linearly under isospin transformations can be parametrized that it transforms in the same way as $\psi .{ }^{11}$

For chiral transformations (A13) is extended to

$$
\begin{equation*}
\psi^{\prime}=\mathscr{D}(\widetilde{\mathrm{U}}) \psi \quad \text { with } \widetilde{\mathrm{U}} \text { given in (A7) } \tag{A14}
\end{equation*}
$$

In order to construct Lagrangians we now apply this to the nonlinearly transforming object $\partial_{\mu} \vec{\xi}$ and want our isospin and chiral transformations to be space-time dependent: $\vec{\alpha}=\vec{\alpha}(x) ; \vec{\beta}=\vec{\beta}(x)$. From (A9) we get the isospin
transformations of $\mathrm{V} \partial_{\mu} \mathrm{V}^{-1}$ and $\mathrm{V}^{-1} \partial_{\mu} \mathrm{V}$ (both expressions if expanded start $\left.\sim \partial_{\mu} \vec{\xi}\right)$

$$
\begin{align*}
& V^{\prime} \partial_{\mu} V^{\prime-1}=U_{0}\left\{V\left(\partial_{\mu}+U_{0}^{-1} \partial_{\mu} U_{0}\right) V^{-1}\right\} U_{0}^{-1}+U_{0} \partial_{\mu} U_{0}^{-1} \\
& V^{\prime-1} \partial_{\mu} V^{\prime}=U_{0}\left\{V^{-1}\left(\partial_{\mu}+U_{0}^{-1} \partial_{\mu} U_{0}\right) V\right\} U_{0}^{-1}+U_{0} \partial_{\mu} U_{0}^{-1} \tag{Al5}
\end{align*}
$$

And from (A10) and (A7) for chiral transformations

$$
\begin{align*}
& V_{\mu}^{\prime} \partial_{\mu} V^{\prime-1}=\widetilde{\mathrm{U}}\left\{\mathrm{~V}\left(\partial_{\mu}+\mathrm{V}_{0} \partial_{\mu} \mathrm{v}_{0}^{-1}\right) \mathrm{v}^{-1}\right\} \tilde{\mathrm{U}}^{-1}+\tilde{\mathrm{U}}_{\mu} \tilde{\mathrm{U}}^{-1} \\
& \mathrm{~V}^{\prime-1} \partial_{\mu} \mathrm{V}^{\prime}=\widetilde{\mathrm{U}}\left\{\mathrm{~V}^{-1}\left(\partial_{\mu}+\mathrm{V}_{0}^{-1} \partial_{\mu} \mathrm{V}_{0}\right) \mathrm{V}\right\} \tilde{\mathrm{U}}^{-1}+\tilde{\mathrm{U}}_{\mu} \tilde{\mathrm{U}}^{-1} \tag{A16}
\end{align*}
$$

This shows that by introducing as usual covariant derivatives

$$
\mathrm{V}\left(\partial_{\mu}-\operatorname{if}\left(\vec{\rho}_{\mu}+\vec{a}_{\mu}\right) \frac{\vec{\tau}}{2}\right) \mathrm{V}^{-1}
$$

and

$$
V^{-1}\left(\partial_{\mu}-i f\left(\vec{\rho}_{\mu}-\vec{a}_{\mu}\right) \frac{\vec{t}}{2}\right) V
$$

these quantities transform like connections from which follows that their difference transforms like a tensor and their sum again like a connection.

The gauge fields $\vec{\rho}_{\mu}$ and \vec{a}_{μ} transform as usual under infinitesimal
gauge transformations:

$$
\begin{align*}
& \delta^{i s o \vec{\rho}_{\mu}}=-\left(\vec{\alpha} \times \vec{\rho}_{\mu}\right)+\frac{1}{f} \partial_{\mu} \vec{\alpha} \\
& \delta^{i s o} \vec{a}_{\mu}=-\left(\vec{\alpha} \times \vec{a}_{\mu}\right) \\
& \delta^{\operatorname{chi} \vec{\rho}_{\mu}}=\left(\vec{\beta} \times \vec{a}_{\mu}\right) \tag{A17}\\
& \delta^{\operatorname{chi} \vec{a}_{\mu}}=\left(\vec{\beta} \times \vec{\rho}_{\mu}\right)-\frac{1}{f} \partial_{\mu} \vec{B}
\end{align*}
$$

We define the tensor $\overrightarrow{\mathrm{p}}_{\mu}$:

$$
\begin{equation*}
-i \frac{\vec{\tau}}{2} \vec{p}_{\mu}=\frac{1}{2 f}\left\{V\left(\partial_{\mu}-i f\left(\vec{\rho}_{\mu}+\vec{a}_{\mu}\right) \frac{\vec{\tau}}{2}\right) V^{-1}-V^{-1}\left(\partial_{\mu}-i f\left(\vec{\rho}_{\mu}-\vec{a}_{\mu}\right) \frac{\vec{\tau}}{2}\right) V\right\} \tag{A18}
\end{equation*}
$$

and the connection $\overrightarrow{\mathrm{v}}_{\mu}$:

$$
\begin{equation*}
-i \frac{\vec{\tau}}{2} \vec{v}_{\mu}=\frac{1}{2 f}\left\{V\left(\partial_{\mu}-\operatorname{if}\left(\vec{\rho}_{\mu}+\vec{a}_{\mu}\right) \frac{\vec{\tau}}{2}\right) V^{-1}+V^{-1}\left(\partial_{\mu}-i f\left(\vec{\rho}_{\mu}-\vec{a}_{\mu}\right) \frac{\vec{\tau}}{2}\right) V\right\} \tag{A19}
\end{equation*}
$$

or explicitly

$$
\begin{align*}
\overrightarrow{\mathrm{P}}_{\mu}= & \frac{1}{f} \partial_{\mu} \vec{\xi}+\frac{1}{f}\left(\vec{\xi} \times\left(\vec{\xi} \times \partial_{\mu} \vec{\xi}\right)\right) \frac{|\vec{\xi}|-\sin |\vec{\xi}|}{|\vec{\xi}|^{3}}+\vec{a}_{\mu}+\vec{\xi} \times\left(\vec{\xi} \times \vec{a}_{\mu}\right) \frac{1-\cos |\vec{\xi}|}{|\vec{\xi}|^{2}} \\
& -\left(\vec{\xi} \times \vec{\rho}_{\mu}\right) \frac{\sin |\vec{\xi}|}{|\vec{\xi}|} \tag{A20}\\
\vec{v}_{\mu}= & \frac{1}{f}\left(\vec{\xi} \times \partial_{\mu} \vec{\xi}\right) \frac{\cos |\vec{\xi}|-1}{|\vec{\xi}|^{2}}+\vec{\rho}_{\mu}-\left(\vec{\xi} \times \vec{a}_{\mu}\right) \frac{\sin |\vec{\xi}|}{|\vec{\xi}|}+\vec{\xi} \times\left(\vec{\xi} \times \vec{\rho}_{\mu}\right) \frac{1-\cos |\vec{\xi}|}{|\vec{\xi}|^{2}} \tag{A21}
\end{align*}
$$

From \vec{v}_{μ} we can construct the tensor

$$
\vec{v}_{\mu \nu}=\partial_{\mu} \vec{v}_{\nu}-\partial_{\nu} \vec{v}_{\mu}+f\left(\vec{v}_{\mu} \times \vec{v}_{\nu}\right)
$$

and define

$$
\vec{\rho}_{\mu \nu}^{\prime}=\vec{v}_{\mu \nu}+f\left(\vec{p}_{\mu} \times \vec{p}_{\nu}\right)
$$

which can be expressed more easily in the original fields $\vec{\xi}, \vec{a}_{\mu}, \vec{\rho}_{\mu}$

$$
\begin{equation*}
\vec{\rho}_{\mu \nu}^{\prime}=\vec{\rho}_{\mu \nu}+\frac{1-\cos |\vec{\xi}|}{|\vec{\xi}|^{2}} \vec{\xi} \times\left(\vec{\xi} \times \vec{\rho}_{\mu \nu}\right)-\frac{\sin |\vec{\xi}|}{|\vec{\xi}|}\left(\vec{\xi} \times \vec{a}_{\mu \nu}\right) \tag{A22}
\end{equation*}
$$

where

$$
\vec{\rho}_{\mu \nu}=\partial_{\mu} \vec{\rho}_{\nu}-\partial_{\nu} \vec{\rho}_{\mu}+f\left(\vec{\rho}_{\mu} \times \vec{\rho}_{\nu}\right)+f\left(\vec{a}_{\mu} \times \vec{a}_{\nu}\right)
$$

and

$$
\vec{a}_{\mu \nu}=\partial_{\mu} \vec{a}_{\nu}-\partial_{\nu} \vec{a}_{\mu}+f\left(\vec{\rho}_{\mu} \times \vec{a}_{\nu}\right)+f\left(\vec{a}_{\mu} \times \vec{\rho}_{\nu}\right)
$$

We just remark that $\vec{\rho}_{\mu \nu}^{\prime}$ can also be obtained in the following way

$$
\begin{equation*}
\vec{\rho}_{\mu \nu}^{\prime} \frac{\vec{\tau}}{2}=\frac{1}{2}\left\{V\left(\vec{\rho}_{\mu \nu} \frac{\vec{\tau}}{2}+\vec{a}_{\mu \nu} \frac{\vec{\tau}}{2}\right) V^{-1}+V^{-1}\left(\vec{\rho}_{\mu \nu} \frac{\vec{\tau}}{2}-\vec{a}_{\mu \nu} \frac{\vec{\tau}}{2}\right) V\right\} \tag{A23}
\end{equation*}
$$

and that there is another tensor

$$
\begin{align*}
\vec{a}_{\mu \nu}^{\prime} \frac{\vec{\tau}_{2}^{2}}{2} & =\frac{1}{2}\left\{\nu\left(\vec{\rho}_{\mu \nu} \frac{\vec{\tau}}{2}+\vec{a}_{\mu \nu} \frac{\vec{\tau}}{2}\right) v^{-1}-v^{-1}\left(\vec{\rho}_{\mu \nu} \frac{\vec{\tau}_{2}^{2}}{}-\vec{a}_{\mu \nu} \frac{\vec{\tau}}{2}\right) v\right\} \\
\vec{a}_{\mu \nu}^{\prime} & =\vec{a}_{\mu \nu}+\frac{1-\cos |\vec{\xi}|}{|\vec{\xi}|^{2}} \vec{\xi}^{2} \times\left(\vec{\xi} \times \vec{a}_{\mu \nu}\right)-\frac{\sin |\vec{\xi}|}{|\vec{\xi}|}\left(\vec{\xi} \times \vec{\rho}_{\mu \nu}\right) \tag{A24}
\end{align*}
$$

We can now write down the most general gauge invariant Lagrangian relevant for our processes. (The squares of (A23) and (A24) are not relevant up to four pions.)

$$
\begin{gather*}
\mathscr{L}=\mathrm{L}_{\mathrm{YM}}+\mathrm{L}_{1}+\kappa \cdot \mathrm{f}\left\{\vec{\rho}_{\mu \nu}^{\prime} \cdot\left(\overrightarrow{\mathrm{p}}^{\mu} \times \overrightarrow{\mathrm{p}}_{\nu}^{\nu}\right)+\left(2 \alpha-\frac{1}{2}\right) f\left(\overrightarrow{\mathrm{p}}_{\mu} \times \overrightarrow{\mathrm{p}}_{\nu}\right)^{2}\right\} \tag{A25}\\
\mathrm{L}_{\mathrm{YM}}=-\frac{1}{4}\left(\partial_{\mu} \phi_{\nu}^{a}-\partial_{\nu} \phi_{\mu}^{\mathrm{a}}+\mathrm{f} \cdot \mathrm{c}^{\mathrm{abc}} \phi_{\mu b} \phi_{\nu c}\right)^{2} \tag{A26}
\end{gather*}
$$

where $\phi_{\mu}^{1,2,3}=\rho_{\mu}^{1,2,3}$ and $\phi_{\mu}^{4,5,6}=a_{\mu}^{1,2,3}$ and $c^{a b c}$ are the structure constants of $\operatorname{SU}(2) \times \operatorname{SU}(2) c^{a b c}=\varepsilon^{a b c}$ if $\{a, b, c\}=\{1,2,3\}$ etc.

$$
\begin{equation*}
L_{1}=\frac{f^{2}}{2} \eta^{2}\left(\vec{p}_{\mu}\right)^{2} \tag{A27}
\end{equation*}
$$

In order to apply this Lagrangian to physical processes we have to break the gauge invariance since our vector mesons should be massive. We do this by adding a mass term L_{M} to our Lagrangian (A25) that preserves global $\operatorname{SU}(2) \times \operatorname{SU}(2)$ symmetry.

$$
\begin{equation*}
L_{M}=\frac{1}{2} m^{2}\left(\vec{\rho}_{\mu}^{2}+\vec{a}_{\mu}^{2}\right) \tag{A28}
\end{equation*}
$$

The next step is to diagonalize I_{1} since there appears a term $\underset{\sim}{\sim} \vec{a}_{\mu} \partial^{\mu} \vec{\xi}$. We do this by redefining our field \vec{a}_{μ}

$$
\begin{equation*}
\vec{a}_{\mu}=\overrightarrow{\hat{a}}_{\mu}-\frac{n^{2} f}{\left[n^{2} f^{2}+m^{2}\right]} \partial_{\mu}^{\vec{\xi}} \tag{A29}
\end{equation*}
$$

which is already the most general possibility since additional terms would cancel out in the S-matrix. ${ }^{10}$

We require that vector meson dominance holds for the ρ meson. This means that in (A21) there should not appear a term ($\vec{\xi} \times \partial_{\mu} \vec{\xi}$) with the same quantum numbers in addition to $\vec{\rho}_{\mu}$ since \vec{v}_{μ} is the quantity which enters universally via the covariant derivative in all interactions especially in the nucleon system. This can be done by choosing $n^{2} f^{2}=m^{2}$ which also fixes the ratio of the masses of the vector mesons.

$$
\begin{equation*}
\frac{\mathrm{m}_{\rho}^{2}}{\mathrm{~m}_{\hat{a}}^{2}}=: \frac{\mathrm{m}^{2}}{\overline{\mathrm{~m}}^{2}}=\frac{1}{2} \tag{A30}
\end{equation*}
$$

The vector current resulting from our Lagrangian is

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mu}=\frac{\mathrm{m}^{2}}{\mathrm{f}} \cdot \vec{\rho}_{\mu} \tag{A31}
\end{equation*}
$$

and the axial vector current is

$$
\begin{equation*}
\vec{A}_{\mu}=-\frac{m^{2}}{f} \vec{a}_{\mu}=-\frac{m^{2}}{f} \vec{a}_{\mu}+\frac{\eta^{2}}{2} \partial_{\mu} \vec{\xi} \tag{A32}
\end{equation*}
$$

From L_{1} after shifting \vec{a}_{μ} (A29) we can identify the physical pion field $\frac{\eta}{\sqrt{2}} \vec{\xi}=\vec{\pi}$ and from (A32) applied to pion decay we conclude that $\frac{\eta}{\sqrt{2}}=f_{\pi}$ the pion decay constant ($\approx 92 \mathrm{MeV}$).

APPENDIX B

In Appendix B we give the explicit expressions for the Lagrangian and the matrix elements relevant to τ-decays $u p$ to four pions. In our notation we supress the vector character of the fields; ρ, π, \hat{a} is meant to be $\vec{\rho}, \vec{\pi}$, $\overrightarrow{\mathrm{a}}$. The Lagrangian (A25) reduces to:

$$
\begin{aligned}
\mathscr{L}^{\text {relevant }}= & \frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-\frac{1}{4}\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right)^{2}-\frac{1}{4}\left(\partial_{\mu} \hat{a}_{\nu}-\partial_{\nu} \hat{a}_{\mu}\right)^{2}+\frac{1}{2} m^{2} \rho^{2}+\frac{1}{2} \bar{m}^{2} \hat{a}^{2} \\
& +\frac{1}{12} \cdot \frac{1}{f_{\pi}^{2}}\left(\pi \times \partial_{\mu} \pi\right)^{2} \\
& +\frac{1}{3} \frac{f}{f_{\pi}}\left(\pi \times\left(\pi \times \partial_{\mu} \pi\right)\right) \hat{a}^{\mu} \\
& -2 f^{2} \cdot f_{\pi} \cdot\left(\pi \times \rho_{\mu}\right) \hat{a}^{\mu} \\
& +f \cdot\left(\pi \times \partial_{\mu} \pi\right) \rho^{\mu} \\
& +f^{2} \cdot\left(\pi \times \rho_{\mu}\right)^{2} \\
& +\left[\kappa\left(2 \alpha+\frac{1}{2}\right)-\frac{1}{4}\right] \frac{1}{16 f^{2} f_{\pi}^{4}}\left(\partial_{\mu} \pi \times \partial_{\nu} \pi\right)^{2} \\
& +\frac{\kappa}{4 f \cdot f_{i}^{3}}\left(\partial_{\mu} \hat{a}_{\nu}-\partial_{\nu} \hat{a}_{\mu}\right)\left(\pi \times\left(\partial^{\mu} \mu_{\pi} \times \partial^{\nu} \pi\right)\right) \\
& +\frac{1}{4 \cdot f_{\pi}}\left(\partial_{\mu} \hat{a}_{\nu}-\partial_{\nu} \hat{a}_{\mu}\right)\left(\left(\rho^{\mu} \times \partial^{\nu} \pi\right)+\left(\partial^{\mu} \pi \times \rho^{\nu}\right)\right) \\
& +\left[\kappa\left(2 \alpha-\frac{1}{2}\right)+\frac{1}{4}\right] \frac{1}{4 f \cdot f_{\pi}^{3}}\left(\partial_{\mu} \pi \times \partial_{\nu} \pi\right)\left(\left(\hat{a}^{\mu} \times \partial^{\nu} \pi\right)+\left(\partial^{\mu} \pi \times \hat{a}^{\nu}\right)\right) \\
& -\frac{1}{2} f\left(\partial_{\mu}^{\rho} \nu_{\nu}-\partial_{\nu}^{\rho}{ }_{\mu}\right)\left(\rho^{\mu} \times \rho^{\nu}\right) \\
& +\left[\kappa+\frac{1}{2}\right] \frac{1}{2 f_{\pi}}\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu}^{\rho} \rho_{\mu}\right)\left(\left(\hat{a}^{\mu} \times \partial^{\nu} \pi\right)+\left(\partial^{\mu} \pi \times \hat{a}^{\nu}\right)\right) \\
& +\frac{\kappa f \cdot f_{\pi}^{4}}{}\left(\pi\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu}^{\rho}\right)\right)\left(\pi\left(\partial^{\mu} \pi \times \partial^{\nu} \pi\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& +\frac{k}{2 f}{ }_{\pi}^{2}\left(\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right) \pi\right)\left(\left(\rho^{\mu} \partial^{\nu} \pi\right)-\left(\partial^{\mu} \pi \rho^{\nu}\right)\right) \\
& +\left[k-\frac{1}{2}\right] \cdot \frac{1}{4 \mathrm{ff}_{\pi}^{2}}\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right)\left(\partial^{\mu} \pi \times \partial^{\nu} \pi\right) \\
& -\frac{\kappa}{12 f \cdot f_{\pi}^{4}}\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right)\left(\partial^{\mu} \pi \times \partial^{\nu} \pi\right)|\pi|^{2} \\
& +\frac{\kappa}{2 \mathrm{f}_{\pi}{ }^{2}}\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right)\left(\rho^{\nu}\left(\pi \partial^{\mu} \pi\right)-\rho^{\mu}\left(\pi \partial^{\nu} \pi\right)\right) \\
& +\left[\kappa-\frac{1}{2}\right] \cdot \frac{1}{4 f_{\pi}{ }^{2}}\left(\rho_{\mu} \times \rho_{\nu}\right)\left(\partial^{\mu} \pi \times \partial^{\nu} \pi\right) \\
& -\frac{1}{8 f_{\pi}^{2}}\left(\rho_{\mu} \times \partial_{\nu} \pi\right)\left(\left(\rho^{\mu} \times \partial^{\nu} \pi\right)-\left(\rho^{\nu} \times \partial^{\mu} \pi\right)\right) \\
& -\left[\kappa\left(2 \alpha-\frac{1}{2}\right)\right] \frac{1}{4 \mathrm{f} \cdot \mathrm{f}_{\pi}{ }^{4}}\left(\partial_{\mu} \pi \times \partial_{\nu} \pi\right)\left(\rho^{\mu}\left(\pi \partial^{\nu} \pi\right)-\rho^{\nu}\left(\pi \partial^{\mu} \pi\right)\right) \\
& +\kappa \cdot \alpha \cdot \frac{1}{2 f \cdot f_{\pi}^{4}}\left(\pi\left(\partial_{\mu} \pi \times \partial_{\nu} \pi\right)\right)\left(\left(\rho^{\mu} \partial^{\nu} \pi\right)-\left(\rho^{\nu} \partial^{\mu} \pi\right)\right) \tag{BI}
\end{align*}
$$

The matrix element for the decay into two pions is:

$$
\begin{equation*}
\mathrm{J}_{\mu}^{2}\left(\mathrm{q}^{+}, \mathrm{q}^{\mathrm{o}} ; \mathrm{Q}\right)=\sqrt{2} \cdot \mathrm{~m}^{2} \cdot\left(\mathrm{q}^{+}-\mathrm{q}^{\mathrm{o}}\right)_{\mu} \cdot \mathrm{P}\left(\mathrm{q}^{+} \mathrm{q}^{\mathrm{o}}\right)\left\{1+\frac{\mathrm{k}-\frac{1}{2}}{2 \mathrm{~m}^{2}} \mathrm{Q}^{2}\right\} \tag{B2}
\end{equation*}
$$

where q^{+}, q°, q^{-}are the pion momenta and Q is their sum.

$$
P\left(q^{+}, q^{o}\right)=\frac{1}{\left(q^{+}+q^{0}\right)^{2}-m^{2}+i \varepsilon}
$$

The corresponding diagram is shown in Fig. 5a.

The matrix element for the decay into 3 pions is:

$$
\begin{aligned}
& J_{\mu}^{3}\left(\left(q^{+} q_{1}^{o}\right), q_{2}^{o} ; Q\right)=J_{\mu}^{3}\left(\left(q^{-} q_{1}^{+}\right), q_{2}^{+} ; Q\right) \\
& =\frac{\mathrm{i} \sqrt{2}}{\mathrm{f}_{\pi}}\left\{-\frac{1}{2}\left(\left(\mathrm{q}_{\mu}^{-}-\frac{\mathrm{Q}_{\mu}}{Q^{2}}\left(Q q^{-}\right)\right) \cdot\left(\kappa \alpha+\frac{3}{4} \kappa+\frac{1}{8}\right)\right.\right. \\
& +\frac{\overline{\mathrm{m}}^{2}}{Q^{2}-\bar{m}^{2}+\mathrm{i} \varepsilon}\left\{\begin{array}{l}
\frac{1}{2}\left(\mathrm{q}_{\mu}^{-}-\frac{Q_{\mu}}{Q^{2}}\left(Q q^{-}\right)\right)\left(-\left[\kappa \alpha+\frac{3}{4} \kappa+\frac{5}{8}\right]+\frac{1}{\mathrm{~m}^{2}}\left(Q q^{-}\right)\left(\kappa \alpha-\frac{\kappa}{4}+\frac{1}{8}\right)\right) \\
+\left(\mathrm{q}_{1 \mu}-\frac{Q_{\mu}}{Q^{2}}\left(Q q_{1}\right)\right)\left(Q q_{2}\right) \frac{1}{m^{2}}\left(\kappa \alpha-\frac{\kappa}{4}+\frac{1}{8}\right)
\end{array}\right. \\
& +\frac{1}{2} m^{2}\left[I+\frac{\kappa-\frac{1}{2}}{m^{2}}\left(q^{-} q_{1}\right)\right] P\left(q^{-} q_{1}\right)\left\{\begin{array}{l}
\left(q^{-}-q_{1}\right) \mu-\frac{Q_{\mu}}{Q^{2}}\left(Q\left(q^{-}-q_{1}\right)\right) \\
-\frac{2\left(\kappa+\frac{1}{2}\right)}{m^{2}}\left(Q\left(q^{-}-q_{1}\right)\right)\left(q_{2 \mu}-\frac{Q_{\mu}}{Q^{2}}\left(Q q_{2}\right)\right)
\end{array}\right. \\
& \left\{+\frac{(k+1)}{m^{2}}\left\{\begin{array}{l}
q_{2} Q^{2}-Q_{\mu}\left(Q q_{2}\right) \\
+2 q_{1 \mu}\left(Q q_{2}\right)-2 q_{2 \mu}\left(Q q_{1}\right)
\end{array}\right\}\right.
\end{aligned}
$$

+ the same where $1 \leftrightarrow 2$

The diagrams for the amplitude (B2) are shown in Figure $5 \mathrm{~b}-\mathrm{d}$.

The matrix element for the decay into $\pi^{+} \pi_{1}{ }_{1} \pi_{2}{ }_{2} \pi_{3}^{o}$ is:

$$
\begin{aligned}
& \frac{\sqrt{2}}{f_{\pi}^{2}} \frac{1}{Q^{2}-m^{2}+i \varepsilon} \times \\
& \left\{\frac{m^{2}}{3}\left(4 q_{\mu}^{+}-Q_{\mu}\right)+\sum_{i \neq j \neq \ell=1}^{3}\left\{\left(2 q_{i}-Q\right)_{\mu} \frac{m^{2}+\left(k-\frac{1}{2}\right)\left(Q q_{i}\right)}{\left(Q-q_{i}\right)^{2}+i \varepsilon}\right.\right. \\
& \left.+q_{i \mu}\left(\kappa-\frac{1}{2}\right)\right\} \cdot q_{\ell}\left(q^{+}-q_{j}\right) \cdot\left\{\frac{1}{3}+\left(q^{+} q_{j}\right) \frac{\kappa\left(2 \alpha+\frac{1}{2}\right)-\frac{1}{4}}{2 m^{2}}\right\} \\
& +\frac{1}{2}\left[\kappa\left(2 \alpha+\frac{1}{2}\right)-\frac{1}{4}\right]\left\{\mathrm{q}_{\mu}^{+}\left(\mathrm{Qq}^{+}\right)-\sum_{\ell=1}^{3} \mathrm{q}_{\ell \mu}\left(\mathrm{q}^{+} \mathrm{q}_{\ell}\right)\right\} \\
& +\sum_{\ell=1}^{3}\left\{\mathrm{q}_{\ell \mu}\left(\mathrm{Qq}^{+}\right)-\mathrm{q}_{\mu}^{+}\left(\mathrm{Qq}_{\ell}\right)\right\}\left\{\frac{1}{2}\left[\kappa\left(2 \alpha+\frac{1}{2}\right)-\frac{1}{4}\right]-\frac{2}{3}(\kappa+1)\right\} \\
& +\frac{1}{2} \frac{\left[k\left(2 \alpha-\frac{1}{2}\right)+\frac{1}{4}\right]}{m^{2}} \sum_{\ell=1}^{3}\left\{Q_{\mu}\left(Q\left(q^{+}-q_{\ell}\right)\right)-\left(q^{+}-q_{\ell}\right)_{\mu} Q^{2}\right\}\left(q_{\ell} q^{+}\right) \\
& +\frac{k\left[k\left(2 \alpha-\frac{1}{2}\right)+\frac{1}{4}\right]}{2 m^{2}} \sum_{i \neq \ell=1}^{3}\left(q_{\ell} q^{+}\right)\left\{q_{i \mu}\left(Q\left(q^{+}-q_{\ell}\right)-\left(q^{+}-q_{\ell}\right)_{\mu}\left(Q q_{i}\right)\right)\right\} \\
& +\left[\frac{k}{2}-\frac{1}{4}\right] \mathrm{m}^{2} \sum_{i \neq \ell=1}^{3} P\left(q^{+} \mathrm{q}_{\ell}\right)\left\{\left(\mathrm{q}^{+}-\mathrm{q}_{\ell}\right)_{\mu}\left(Q \mathrm{q}_{\mathrm{i}}\right)-\mathrm{q}_{\mathrm{i} \mu}\left(\mathrm{Q}\left(\mathrm{q}^{+}-\mathrm{q}_{\ell}\right)\right)\right\} \\
& +\left[\frac{\kappa}{2}+\frac{1}{4}\right] \sum_{i \neq j \neq \ell=1}^{3} P\left(q^{+} q_{\ell}\right)\left\{q_{j}\left(q^{+}-q_{\ell}\right)\right\}\left\{q_{j \mu}\left(Q\left(Q-q_{i}\right)-\left(Q-q_{i}\right)_{\mu}\left(Q q_{j}\right)\right)\right\} \\
& +\frac{1}{2}\left[\kappa+\frac{1}{2}\right]^{2} \sum_{i \neq j \neq \ell=1}^{3} P\left(q^{+} q_{\ell}\right)\left[q_{j}\left(q^{+}-q_{\ell}\right)\right]\left\{q_{i \mu}\left(Q-q_{j}\right)^{2}-\left(Q-2 q_{j}\right)\left(Q q_{i}\right)\right\} \\
& +\frac{\mathrm{m}^{2}}{4} \sum_{i \neq j \neq \ell=1}^{3} P\left(q^{+} q_{\ell}\right)\left\{\left(q^{+}+q_{\ell}\right)_{\mu}\left(Q\left(q^{+}-q_{\ell}\right)\right)-\left(q^{+}-q \ell\right)_{\mu}\left(Q\left(q^{+}+q_{\ell}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{m^{2}}{2}\left(\kappa-\frac{1}{2}\right) \sum_{i \neq j \neq \ell=1}^{3} P\left(q^{+} q_{\ell}\right)\left\{\left(q^{+}+q_{\ell}\right)_{\mu}\left(q_{j}\left(q^{+}-q_{\ell}\right)\right)-\left(q^{+}-q_{\ell}\right)_{\mu}\left(q_{j}\left(q^{+}+q_{\ell}\right)\right)\right\} \\
& +m^{4} \sum_{\ell=1}^{3}\left(q^{+}-q_{\ell}\right)_{\mu} p\left(q^{+} q_{\ell}\right) \\
& +\sum_{i \neq j \neq \ell=1}^{3} m^{4}\left\{\left(2 q_{i}-Q\right)_{\mu} \frac{\left[1+\frac{\kappa-\frac{1}{2}}{m^{2}}\left(Q q_{i}\right)\right]}{\left(Q-q_{i}\right)^{2}}+q_{i \mu} \frac{\left(\kappa-\frac{1}{2}\right)}{m^{2}}\right\} q_{j}\left(q^{+}-q_{\ell}\right)\left\{1+\frac{\kappa-\frac{1}{2}}{m^{2}}\left(q^{+} q_{\ell}\right)\right\} P\left(q^{+} q_{\ell}\right) \\
& +\frac{1}{2} \sum_{i \neq j \neq \ell=1}^{3}\left\{Q^{2} A_{\mu}\left(\left(q_{\ell} q^{+}\right), q_{j},\left(Q-q_{i}\right)\right)-Q_{\mu}\left[Q^{\sigma} A_{\sigma}\left(\left(q_{\ell} q^{+}\right), q_{j},\left(Q-q_{i}\right)\right)\right]\right\} \\
& +k \sum_{i \neq j \neq \ell=1}^{3}\left\{\left(Q q_{i}\right) A_{\mu}\left(\left(q_{\ell} q^{+}\right), q_{j},\left(Q-q_{i}\right)\right)-q_{i \mu}\left[Q A_{\sigma}\left(\left(q_{\ell} q^{+}\right), q_{j},\left(Q-q_{i}\right)\right)\right]\right\}(\tag{B4}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{\mu}\left(\left(q_{\ell} q^{+}\right), q_{j},\left(Q-q_{i}\right)\right)
\end{aligned}
$$

The corresponding graphs are shown in Figure 5e-i.

The matrix element for $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{-} \pi^{+} \pi^{o}$ is given by:

$$
\begin{aligned}
& \frac{\sqrt{2}}{f_{\pi}^{2}} \frac{1}{Q^{2}-m^{2}+i \varepsilon} \times \\
& \left\{\begin{array}{l}
m^{2}\left\{\frac{1}{3} q_{\mu}^{o}-\frac{1}{6}\left(q_{1 \mu}^{+}+q_{2 \mu}^{+}\right)\right\} \\
+\frac{1}{2}\left[2 \kappa \alpha+\frac{k}{2}-\frac{1}{4}\right]\left\{q_{\mu}^{-}\left(q^{-} q_{1}^{+}\right)-q_{\mu}^{-}\left(q^{-} q^{0}\right)+q_{\mu}^{0}\left(q^{\circ} q^{-}\right)-q_{1 \mu}^{+}\left(q_{1}^{+} q^{-}\right)\right\}
\end{array}\right. \\
& +\left\{\left(2 q_{o}-Q\right)_{\mu} \frac{\left[m^{2}+\left(\kappa-\frac{1}{2}\right)\left(Q q_{o}\right)\right]}{\left(Q-q_{o}\right)^{2}}+q_{\mu}^{o}\left(\kappa-\frac{1}{2}\right)\right\} \cdot\left(q_{1}^{+}\left(q^{-}-q_{2}^{+}\right)\right)\left(\frac{1}{3}+\frac{\left[2 \kappa \alpha+\frac{\kappa}{2}-\frac{1}{4}\right]}{m^{2}}\left(q_{2}^{+} q^{-}\right)\right) \\
& +\left\{\left(2 q_{2}^{+}-Q\right)_{\mu} \frac{\left[m^{2}+\left(\kappa-\frac{1}{2}\right)\left(Q q_{2}^{+}\right)\right]}{\left(Q-q_{2}^{+}\right)^{2}}+q_{2 \mu}^{+}\left(\kappa-\frac{1}{2}\right)\right\} \cdot\left(q^{-}\left(q^{\circ}-q_{1}^{+}\right)\right)\left(\frac{1}{3}+\frac{\left[2 \kappa \alpha+\frac{\kappa}{2}-\frac{1}{4}\right]}{m^{2}}\left(q_{1}^{+} q^{o}\right)\right) \\
& +\left\{\left(2 q_{1}^{+}-Q\right)_{\mu} \frac{\left[\mathrm{m}^{2}+\left(\kappa-\frac{1}{2}\right)\left(Q q_{1}^{+}\right)\right]}{\left(Q-q_{1}^{+}\right)^{2}}+q_{1 \mu}^{+}\left(\kappa-\frac{1}{2}\right)\right\} \cdot\left(q_{2}^{+}\left(q^{o}-q^{-}\right)\right)\left(\frac{1}{3}+\frac{\left[2 \kappa \alpha+\frac{\kappa}{2}-\frac{1}{4}\right]}{m^{2}}\left(q^{-} q^{o}\right)\right) \\
& +\left\{\mathrm{q}_{\mu}^{-}\left(\mathrm{Qq}_{\mathrm{o}}\right)-\mathrm{q}_{\mu}^{o}\left(\mathrm{Qq}^{-}\right)+\mathrm{q}_{1 \mu}^{+}\left(\mathrm{Qq}^{-}\right)-\mathrm{q}_{\mu}^{-}\left(\mathrm{Qq}_{1}^{+}\right)\right\}\left[\kappa \alpha+\frac{\kappa}{4}-\frac{1}{8}+\frac{1}{3}\left(\kappa-\frac{1}{2}\right)\right] \\
& +\left\{\mathrm{q}_{\mu}^{\mathrm{o}}\left(\mathrm{Qq}_{1}^{+}\right)-\mathrm{q}_{1 \mu}^{+}\left(\mathrm{Qq}{ }^{\mathrm{o}}\right)\right\}\left[\kappa+\frac{1}{2}\right] \\
& +\frac{1}{4} \frac{\left[2 \kappa \alpha-\frac{\kappa}{2}+\frac{1}{4}\right]}{m^{2}}\left\{\begin{array}{l}
\left(q^{-} q_{2}^{+}\right)\left[Q_{\mu}\left(Q\left(q^{-}-q_{2}^{+}\right)\right)-\left(q^{-}-q_{2}^{+}\right)_{\mu} Q^{2}\right] \\
+\left(q^{\circ} q_{1}^{+}\right)\left[Q_{\mu}\left(Q\left(q^{\circ}-q_{1}^{+}\right)\right)-\left(q^{\circ}-q_{1}^{+}\right)_{\mu} Q^{2}\right] \\
+\left(q^{\circ} q^{-}\right)\left[Q_{\mu}\left(Q\left(q^{\circ}-q^{-}\right)\right)-\left(q^{\circ}-q^{-}\right)_{\mu} Q^{2}\right]
\end{array}\right. \\
& +\frac{\kappa\left[2 \kappa \alpha-\frac{\kappa}{2}+\frac{1}{4}\right]}{2 m^{2}}\left\{\begin{array}{l}
\left(q^{-} q_{2}^{+}\right)\left[q_{\mu}^{o}\left(Q\left(q^{-}-q_{2}^{+}\right)\right)-\left(q^{-}-q_{2}^{+}\right)_{\mu}\left(Q q^{o}\right)\right] \\
+\left(q^{\circ} q_{1}^{+}\right)\left[q_{2 \mu}^{+}\left(Q\left(q^{\circ}-q_{1}^{+}\right)\right)-\left(q^{o}-q_{1}^{+}\right)_{\mu}\left(Q q_{2}^{+}\right)\right] \\
+\left(q^{\circ} q^{-}\right)\left[q_{1 \mu}^{+}\left(Q\left(q^{\circ}-q^{-}\right)\right)-\left(q^{o}-q^{-}\right)_{\mu}\left(Q q_{1}\right)\right]
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\left(\kappa-\frac{1}{2}\right)}{2} m^{2}\left\{\begin{array}{l}
\left\{\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)_{\mu}\left(Q \mathrm{q}^{\mathrm{O}}\right)-\mathrm{q}_{\mu}^{\circ}\left(\mathrm{Q}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\right)\right\} P\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right) \\
+\left\{\left(\mathrm{q}^{\circ}-\mathrm{q}_{1}^{+}\right)_{\mu}\left(Q \mathrm{q}_{2}^{+}\right)-\mathrm{q}_{2 \mu}^{+}\left(Q\left(\mathrm{q}^{\circ}-\mathrm{q}_{1}^{+}\right)\right)\right\} P\left(\mathrm{q}^{\circ} \mathrm{q}_{1}^{+}\right) \\
+\left\{\left(\mathrm{q}^{\circ}-\mathrm{q}^{-}\right)_{\mu}\left(Q \mathrm{q}_{1}^{+}\right)-\mathrm{q}_{1 \mu}^{+}\left(Q\left(\mathrm{q}^{\circ}-\mathrm{q}^{-}\right)\right)\right\} P\left(\mathrm{q}^{\circ} \mathrm{q}^{-}\right)
\end{array}\right. \\
& +\frac{1}{2}\left(\kappa+\frac{1}{2}\right)\left\{\begin{array}{l}
\left(\mathrm{q}_{1}^{+}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\right)\left\{\mathrm{q}_{1}^{\mu}\left(\mathrm{Q}\left(\mathrm{Q}-\mathrm{q}^{\mathrm{o}}\right)\right)-\left(\mathrm{Q}-\mathrm{q}^{\mathrm{o}}\right)_{\mu}\left(\mathrm{Qq}{ }_{1}^{+}\right)\right\} \mathrm{P}\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right) \\
+\left(\mathrm{q}^{-}\left(\mathrm{q}^{\circ}-\mathrm{q}_{1}^{+}\right)\right)\left\{\mathrm{q}_{\mu}^{-}\left(\mathrm{Q}\left(\mathrm{Q}-\mathrm{q}_{2}^{+}\right)\right)-\left(\mathrm{Q}-\mathrm{q}_{2}^{+}\right)_{\mu}\left(Q \mathrm{q}^{-}\right)\right\} \mathrm{P}\left(\mathrm{q}^{\circ} \mathrm{q}_{1}^{+}\right) \\
+\left(\mathrm{q}_{2}^{+}\left(\mathrm{q}^{\circ}-\mathrm{q}^{-}\right)\right)\left\{\mathrm{q}_{2 \mu}^{+}\left(\mathrm{Q}\left(\mathrm{Q}-\mathrm{q}_{1}^{+}\right)\right)-\left(\mathrm{Q}-\mathrm{q}_{1}^{+}\right)_{\mu}\left(\mathrm{Qq} \mathrm{Q}_{2}^{+}\right)\right\} \mathrm{P}\left(\mathrm{q}^{\circ} \mathrm{q}^{-}\right)
\end{array}\right. \\
& +\frac{1}{2}\left(\kappa+\frac{1}{2}\right)^{2}\left\{\begin{array}{l}
\left(\mathrm{q}_{1}^{+}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\right)\left\{\mathrm{q}_{\mu}^{\mathrm{o}}\left(\mathrm{Q}-\mathrm{q}_{1}^{+}\right)^{2}-\left(\mathrm{Q}-2 \mathrm{q}_{1}^{+}\right)_{\mu}\left(\mathrm{Qq}{ }^{\circ}\right)\right\} \mathrm{P}\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right) \\
+\left(\mathrm{q}^{-}\left(\mathrm{q}^{\circ}-\mathrm{q}_{1}^{+}\right)\right)\left\{\mathrm{q}_{2 \mu}^{+}\left(\mathrm{Q}-\mathrm{q}^{-}\right)^{2}-\left(\mathrm{Q}-2 \mathrm{q}^{-}\right)_{\mu}\left(\mathrm{Qq}_{2}^{+}\right)\right\} \mathrm{P}\left(\mathrm{q}^{\circ} \mathrm{q}_{1}^{+}\right) \\
+\left(\mathrm{q}_{2}^{+}\left(\mathrm{q}^{\circ}-\mathrm{q}^{-}\right)\right)\left\{\mathrm{q}_{1 \mu}^{+}\left(\mathrm{Q}-\mathrm{q}_{2}^{+}\right)^{2}-\left(\mathrm{Q}-2 \mathrm{q}_{2}^{+}\right)_{\mu}\left(\mathrm{Qq} \mathrm{q}_{1}^{+}\right)\right\} \mathrm{P}\left(\mathrm{q}^{\circ} \mathrm{q}^{-}\right)
\end{array}\right. \\
& +\frac{m^{2}}{4}\left\{\begin{array}{l}
\left\{\left(q^{-}+q_{2}^{+}\right)_{\mu}\left(Q\left(q^{-}-q_{2}^{+}\right)\right)-\left(q^{-}-q_{2}^{+}\right)_{\mu}\left(Q\left(q_{2}^{+}+q^{-}\right)\right)\right\} P\left(q^{-} q_{2}^{+}\right) \\
+\left\{\left(q^{\circ}+q_{1}^{+}\right)_{\mu}\left(Q\left(q^{\circ}-q_{1}^{+}\right)\right)-\left(q^{\circ}-q_{1}^{+}\right)_{\mu}\left(Q\left(q_{1}^{+}+q^{\circ}\right)\right)\right\} P\left(q^{\circ} q_{1}^{+}\right) \\
+\left\{\left(q^{\circ}+q^{-}\right)_{\mu}\left(Q\left(q^{\circ}-q^{-}\right)\right)-\left(q^{\circ}-q^{-}\right)_{\mu}\left(Q\left(q^{\circ}+q^{-}\right)\right)\right\} P\left(q^{\circ} q^{-}\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\mathrm{m}^{4}}{2}\left\{\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)_{\mu} P\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right)+\left(\mathrm{q}^{\circ}-\mathrm{q}_{1}^{+}\right)_{\mu} P\left(\mathrm{q}^{\circ} \mathrm{q}_{1}^{+}\right)+\left(\mathrm{q}^{\circ}-\mathrm{q}^{-}\right)_{\mu} P\left(\mathrm{q}^{\circ} \mathrm{q}^{-}\right)\right. \\
& +m^{4}\left\{\left\{\left(2 q^{\circ}-Q\right)_{\mu} \frac{\left[1+\frac{\left(k-\frac{1}{2}\right)}{m^{2}}\left(Q q^{\circ}\right)\right]}{\left(Q-q^{\circ}\right)^{2}}+q_{\mu}^{\circ} \frac{\left(k-\frac{1}{2}\right)}{m^{2}}\right\} x\right. \\
& \begin{array}{l}
{\left[1+\frac{\left(k-\frac{1}{2}\right)}{\mathrm{m}^{2}}\left(\mathrm{q}_{2}^{+} \mathrm{q}^{-}\right)\right]\left[\mathrm{q}_{1}^{+}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\right] \cdot \mathrm{P}\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right)} \\
+\left\{\left(2 \mathrm{q}_{2}^{+}-\mathrm{Q}\right)_{\mu} \frac{\left[1+\frac{\left(\kappa-\frac{1}{2}\right)}{\mathrm{m}^{2}}\left(Q q_{2}^{+}\right)\right]}{\left(\mathrm{Q}-\mathrm{q}_{2}^{+}\right)^{2}}+\mathrm{q}_{2 \mu}^{+} \frac{\left(\kappa-\frac{1}{2}\right)}{\mathrm{m}^{2}}\right\} \times
\end{array} \\
& {\left[1+\frac{\left(\mathrm{k}-\frac{1}{2}\right)}{\mathrm{m}^{2}}\left(\mathrm{q}_{1}^{+} \mathrm{q}^{\mathrm{o}}\right)\right]\left[\mathrm{q}^{-}\left(\mathrm{q}^{\mathrm{o}}-\mathrm{q}_{1}^{+}\right)\right] \quad \mathrm{P}\left(\mathrm{q}^{\mathrm{o}} \mathrm{q}_{1}^{+}\right)} \\
& +\left\{\left(2 q_{1}^{+}-Q\right)_{\mu} \frac{\left[1+\frac{\left(k-\frac{1}{2}\right)}{m^{2}}\left(Q q_{1}^{+}\right)\right]}{\left(Q-q_{1}^{+}\right)^{2}}+q_{1 \mu}^{+} \frac{\left(\kappa-\frac{1}{2}\right)}{m^{2}}\right\}^{x} \\
& {\left[1+\frac{\left(k-\frac{1}{2}\right)}{m^{2}}\left(q^{o} q^{-}\right)\right]\left[q_{2}^{+}\left(q^{o}-q^{-}\right)\right] \quad P\left(q^{\circ} q^{-}\right)} \\
& +\left\{\frac{1}{2} Q^{2}+\kappa\left(Q q^{\circ}\right)\right\} A_{\mu}\left(\left(q^{-} q_{2}^{+}\right), q_{1}^{+},\left(Q-q^{\circ}\right)\right)-\left(\frac{1}{2} Q_{\mu}+\kappa q_{\mu}^{o}\right) Q^{\sigma} A \sigma\left(\left(q^{-} q_{2}^{+}\right), q_{1}^{+},\left(Q-q^{o}\right)\right) \\
& +\left\{\frac{1}{2} Q^{2}+\kappa\left(Q q_{2}^{+}\right)\right\} A_{\mu}\left(\left(q^{\circ} \mathrm{q}_{1}^{+}\right), q^{-},\left(Q-q_{2}^{+}\right)\right)-\left(\frac{1}{2} Q_{\mu}+\kappa q_{2 \mu}\right) Q^{\sigma} A \sigma\left(\left(q^{\circ} q_{1}^{+}\right), q^{-},\left(Q-q_{2}^{+}\right)\right) \\
& +\left\{\frac{1}{2} Q^{2}+\kappa\left(Q q_{1}^{+}\right)\right\} A_{\mu}\left(\left(q^{\circ} \mathrm{q}^{-}\right), \mathrm{q}_{2}^{+},\left(Q-\mathrm{q}_{1}^{+}\right)\right)-\left(\frac{1}{2} Q_{\mu}+\kappa q_{1 \mu}^{+}\right) Q_{A \sigma}^{\sigma}\left(\left(\mathrm{q}^{\circ} \mathrm{q}^{-}\right), \mathrm{q}_{2}^{+},\left(Q-\mathrm{q}_{1}^{+}\right)\right) \\
& +\mathrm{m}^{4}\left\{\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)_{\mu}\left(Q\left(\mathrm{q}_{1}^{+}-\mathrm{q}^{\mathrm{o}}\right)\right)-\left(\mathrm{Q}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\right)\left(\mathrm{q}_{1}^{+}-\mathrm{q}^{\mathrm{o}}\right)_{\mu}\right\} \mathrm{P}\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right) P\left(\mathrm{q}^{\mathrm{o}} \mathrm{q}_{1}^{+}\right) \\
& +\frac{\mathrm{m}^{4}}{2}\left\{\left(\mathrm{q}_{1}^{+}+\mathrm{q}^{\mathrm{o}}\right)_{\mu}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\left(\mathrm{q}_{1}^{+}-\mathrm{q}^{\mathrm{o}}\right)-\left(\mathrm{q}^{-}+\mathrm{q}_{2}^{+}\right)_{\mu}\left(\mathrm{q}^{-}-\mathrm{q}_{2}^{+}\right)\left(\mathrm{q}_{1}^{+}-\mathrm{q}^{\circ}\right)\right\} \mathrm{P}\left(\mathrm{q}^{-} \mathrm{q}_{2}^{+}\right) P\left(\mathrm{q}^{\circ} \mathrm{q}_{1}^{+}\right)
\end{aligned}
$$

REFERENCES

1. S. Weinberg, Phys. Rev. Lett. 18, 188 (1967).
2. S. Gsiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 (1969).
3. H. Thacker and J. J. Sakurai, Phys. Lett. 36B, 103 (1971); Y. S. Tsai, Phys. Rev. D4, 2821 (1971); J. D. Bjorken, C. H. Llewellyn Smith, Phys. Rev. D7, 887 (1973); I. Sanda and N. Kawamoto, Phys. Lett 76B, 446 (1978); T. N. Pham, C. Rojesuel and Tran N. Truong, Phys. Lett 78B, 623 (1978); H. Goldberg and R. Aaron, Phys. Rev. Lett. 42, 339 (1979); A. Bartl and N. Paver, Nuov. Cim. 55A, 475 (1980).
4. R. Fischer, F. Wagner, J. Wess, Zeitschr. f. Phys. C3, 313 (1980).
5. R. E. Marshak, Riazuddin and C. P. Ryan, Theory of Weak Interactions (John Wiley, New York, 1969).
6. H. Pilkuhn, Interactions of Hadrons (North Holland Publ. Co., Amsterdam, 1967), p. 16 ff.
7. See Ref. (5) p. 194.
8. C. G. Callan, S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2247 (1969).
9. B. Zumino, Brandeis Lectures, S. Deser editor (MIT Press, Cambridge, Massachusetts, 1970), p. 439.
10. S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 (1969).
11. J. Wess, Springer tracts in Modern Physics 50, 132, G. Höhler editor (Springer Verlag, Berlin, 1969).
12. G. Flügge, Zeitschr. f. Phys. C1, 121 (1979).
13. B. H. Wiik and G. Wolf, DESY 78/23 (1978).
14. G. Feldmann in "Neutrino 78." (Proc. of the Int. Conf. On Neutrino Physics and Neutrino Astropysics, Lafayette, Ind.) G. Feldman, SLAC-PUB-2230 (1978) .
15. G. Alexander et al., Phys. Lett. 73B, 99 (1978).
16. G. S. Abrams et al., Phys. Rev. Lett. 43, 1555 (1979); Johnathan Dorfan, SLAC-PUB-2590 (1980); Craig Blocker, LBL-Preprint-10801 Ph.D. thesis (1980).
17. C. Daum et a1., Phys. Lett. 89B, 281 (1980).
18. J. Jaros et al., Phys. Rev. Lett. 40, 1120 (1978).

TABLE

$$
\text { Ratios } \gamma_{n}=\frac{\Gamma\left(\tau \rightarrow n \text { pions }+\nu_{\tau}\right.}{\Gamma(\tau \rightarrow \underset{(e)}{\mu} \nu \nu)}
$$

The parameters entering the theoretical calculations are: $f_{\pi}=92 \mathrm{MeV}$, $\mathrm{m}_{\tau}=1782 \mathrm{MeV}, \Gamma_{\rho}=155 \mathrm{MeV}, \mathrm{m}_{\rho}=775 \mathrm{MeV}, \mathrm{m}_{\mathrm{Al}}=\sqrt{2} \mathrm{~m}_{\rho}, \Gamma_{\mathrm{A} 1}=250 \ldots$ $300 \mathrm{MeV} .{ }^{17}$ A review of the experimental situation is found in Ref. 12.

n	Mode	Theory	Experiment	total rate γ_{n}
1	$\pi^{+} v$	0.60	$\begin{gathered} 0.54 \pm .18 \text { Pluto }^{18} \\ \text { SLAC-LBL }^{14} \\ 0.50 \pm 18 \text { DELCO }^{14} \end{gathered}$. 60
2	$\rho^{+}{ }^{+}$	$\begin{aligned} & 1.20 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 1.43 \pm .53 \mathrm{DASP}^{13} \\ & 1.21 \pm .12 \pm .20 \mathrm{SLAC}^{2} \pm \mathrm{LBL}^{16} \end{aligned}$	1.20
3	$\begin{gathered} \pi^{+} \pi^{-} \pi^{+} v \\ \pi^{+} \pi^{o} \pi^{o} v \\ \rho^{o} \pi^{+} \nu \\ \rho^{+} \pi^{o} v \end{gathered}$	$\begin{aligned} & 0.21 \ldots 0.25 \\ & 0.21 \ldots 0.25 \\ & 0.21 \ldots 0.25 \\ & 0.21 \ldots 0.25 \end{aligned}$	$\begin{aligned} & 0.34 \pm .25 \text { SLAC-LBL }^{18} \\ & 0.31 \pm .10 \text { Pluto }^{15} \end{aligned}$	0.42-0.50
4	$\begin{aligned} & \pi^{+} \pi^{o} \pi^{o} \pi^{o} \\ & \pi^{+} \pi^{-} \pi^{+} \pi^{o} \end{aligned}$	$\begin{aligned} & 0.14 \ldots 0.16 \\ & 0.14 \ldots 0.16 \end{aligned}$		0.28...0.32

1. Decay spectrum $\frac{d \gamma_{2}}{d y}$ for $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{0} \cdot y=\frac{Q^{2}}{2}$ the invariant mass of the pion system relative to the mass of the τ. The data are from Ref. 16. The curve is obtained from (2.6) for $k=\frac{1}{2}, 0.023 \ldots 0.49$ is the interval from which the experimental rate is calculated.
2. Decay spectrum $\frac{d \gamma_{3}}{d y}$ for $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{o} \pi^{o}$ and $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{+} \pi^{-}$. The shaded area corresponds to the variation of $\Gamma_{A 1}$ in the range from 250 to 300 MeV . The dashed-dotted line indicates the spectrum without an A_{1} meson as calculated in Ref. 4. The data are normalized to an area corresponding to $\gamma_{3}=0.23$.
3. Same as in Fig. 2. But here $\Gamma_{A l}$ is kept fixed at 300 MeV and the parameter α is varied from 0 to 0.9 .
4. Decay spectrum $\frac{d \gamma_{4}}{d y}$ for $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{\circ} \pi^{\circ} \pi^{o}$ and $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{-} \pi^{+} \pi^{o}$. The shaded area corresponds to a variation of $\mathrm{T}_{\mathrm{A} 1}$ from 250 to 300 MeV . The dashed-dotted line is the contribution to the spectrum from graphs without an A_{1} meson, $\alpha=0$.
5. Shown are the graphs that contribute to the various processes: 5a to $\frac{d \gamma_{2}}{d y} ; 5 b-5 d$ to $\frac{d \gamma_{3}}{d y} ; 5 e-5 i$ to $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{o} \pi^{o} \pi^{o}$ and $5 j$ together with $5 e-5 i$ to $\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{-} \pi^{+} \pi^{\circ}$. The charge states of $5 b-5 i$ have to be relabeled accordingly.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

(a)

(c)

(b)

(d)

(b')
(e)

(f^{\prime})

(i)

Fig. 5

[^0]: *Work supported in part by the Department of Energy, contract DE-AC03-76SF00515 and by the Max Kade Foundation.
 $\dagger_{\text {Max }}$ Kade fellow address after Nov. 1: Inst. f. Theor. Physik Universität Karlsruhe, Germany.

