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ABSTRACT 

The decays of the r-lepton up to four pions are investigated within 

the framework of phenomenological Lagrangians. These Lagrangians are 

invariant under the chiral group SU(2) x SU(2) which is nonlinearly 

realized on the pion field alone. The vector mesons p and Al are intro- 

duced as gauge bosons of the chiral group. Due to the nonlinear realiza- 

tion, processes with different numbers of pions are interrelated. Our 

results are compared to the existing data. 
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INTRODUCTION 

Current algebra1 which is the basis for chiral dynamics2 relates 

Processes with a different number of pions. As is well known, the pre- 

dictions of current algebra are most easily obtained by the method of 

phenomenological Lagrangians in connection with nonlinear realizations 

of the chiral group. 

The whole chiral group SU(2) x SU(2) can be nonlinearly realized on 

the pion field alone. This was the starting point of a previous work,4 

where the consequences of pion dynamics in T-decays as derived from such 

a Lagrangian were discussed. 

If we try to extend pion dynamics beyond the 'soft region' we have 

to deal with the resonances. Calculating total decay rates for the 

r-lepton in Ref. 4 the p meson was included by hand via a form-factor 

wherever a two pion state with appropriate quantum numbers appeared. 

Within the framework of phenomenological Lagrangians the vector and 

axial vector mesons can however be introduced from the very beginning 

by gauging the pion Lagrangian. It is this dynamics that is used here 

to calculate T-decays with up to four pions in the final state. The 

effect of the nonlinearity is that a set of processes given all processes 

with additional pions are predicted. In our case we can fix the parameters 

of the Lagrangian with T-decays into two and three pions. The pion 

decay constant fX which also enters can be thought of as determined e.g. 

in pion decay. 

The paper is organized as follows: We first recall the general 

formulae for r-decays. The second chapter contains a discussion of the 

interaction Lagrangian and the matrix elements for the decays under 
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consideration. In the third chapter we present our results on the decay 

spectra and rates. The conclusions and two appendices follow. Appendix A 

contains the derivation of the Lagrangian and Appendix B the explicit 

expressions for the Lagrangian and the currents as used in this paper. 

1. r Lepton Decays 

Heavy lepton decays have been of interest under various points of 

view.3 Let us first write down the T-matrix element for 'I decays into 

hadrons which according to standard weak interaction theory5 is given 

by the product of the matrix elements of the leptonic and the hadronic 

currents. 

G 

“=z 

l case 

C 

l u(PW(l - @(p> J;$-. -a> (1.1) 

Using these matrix elements the decay rates T + vr + n pions are calcu- 

lated to be: 

'n = * J dLipsn+l(p;p’, ql l +. 4,) 3 c ITI2 
(1.2) 

T spins 

where dLips n+l denotes the invariant phase space integral6 over the 

neutrino momentum p' and the n pion momenta ql....q n l p is the momentum 

of the decaying r lepton, m its mass. T 

The integration over the pion momenta in (1.2) can be carried out 

independently and due to current conservation the result can be written 

in the form: 

/ dLipsn(Q;ql...qn)J>t 
a 

= -$ (Q,Qv - glrvQ2) (1.3) 

where Q denotes the total hadron momentum. Q = ql + q2 + . . . + qn. 

After integrating over the vr momentum p' the final result can be 
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Q2 expressed as follows, with y = - 
m2 T 

'n ' 
'n=7= / Wl - y)2(l + 2y) l a 

L 0 n (1.4) 

G2m5 
where we have used the pure leptonic decay rate I' = --Z- for normaliza- 

L 1927r3 
tion.7 Formula (1.4) reduces our problem to calculating the various 

functions a : n 

a = -- 
n “i JdLipsn(Q;ql.. -9,) (JF12 

Q 
(1.5) 

2. Chiral Dynamics With Vector Meson and Pion Interactions 

From chiral gauge invariance the following Lagrangian for the inter- 

action of massless pions and the vector mesons has been derived in 

Appendix A (A25, A28) 

P=LYM +Ll+ K'f* x T) +(2a +* f .($$v)2 
> 

+$ (2.1) 

Where LYM is the standard SU(2) x SU(2) Yang Mills Lagrangian for the 

gauge bosons. LM breaks the gauge invariance (but not global SU(2) X SU(2)) 

and makes the gauge bosons massive. f2 
Ll = 2 n2Q2 contains the kinetic 

term for the pion field. The rest are interaction terms between pions 

and vector mesons. The explicit form of (2.1) we are concerned with 

here is given in Appendix B (Bl). 

The Lagrangian (2.1) yields the vector current: 
2 

(2.2) 
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which is proportional to the field of the p meson and the axial vector 

current: 
2 2 + mP -t m+ 

A = - - a = -P A + f,at 
lJ f ?J f alJ 

(2.3) 

where i is the field of the physical A meson. 
u 1 These currents are 

conserved due to the equations of motion corresponding to (2.1). 

The matrix elements of the hadronic currents can be calculated from 

(2.2) and (2.3) in presence of the interactions given by (2.1). For 

any given process we have to sum all the tree diagrams. This guarantees 

a result that is independent of the parametrizationlO as well as current 

conservation. That means our current matrix elements are given by the 

tree diagrams of the perturbation expansion of: 

. 
(fi((Gu + dl)ellLIdx)tlO) (2.4) 

LI is the interaction part of the Lagrangian (2.1). 
+ In the case n=l, that is 'I + V~IT+ we get from the axial current 

(2.3) with our normalization: 

J;(Q) = -ia fn 

+ In the case n=2 for the decay 'I + V~X'IT" 

J;(s+,s,;Q) = fi 
2 

m 

(q+ + q")2 - m2 + is 

In the case n=3 there are two processes 

+ -c + VT= " ' and r+ + IT -Ir 

with the same amplitude 

l QIJ 

(2.5) 

we have: 
1 

(q+ - q")V(l +2 Q2) (2.6) 

Vp+TT+?T- 

J;((q+q;) ,q;;Q) = J;((q-q;) ,q;;Q) 



-6- 

And in the case n=4 we have two different amplitudes for the processes 

+ T + v V+IT~T~T~ and r+ + -4-O 

'I + vTr IT IT -Tr 

The amplitudes for the decays into three and four pions turn out to be 

rather lengthy and we have given the explicit expressions in Appendix B 

(B3 - B5). 

3. Decay Spectra and Decay Rates 

We now compute the decay spectra and decay rates resulting from 

the amplitudes presented in the last chapter. Our results are compared 

to the experimental data in Figs. l-3 and in a table. The decay rate 

for the decay rf + 
+-VT is the usual one = 

4lTf 2 
y,(?T+) = 5 + ( ) l case 

C 

T 

(3.1) 

In calculating the two pion rates we first replace the p meson 

propagator by an appropriate form factor. 

2 2 m - imr m -t P 
(q+ + q")2 - m2 + is cs' + 4012 - m2 + imT 

(3.2) 

P 

We then study the dependence of the decay spectrum on the parameter K 

and find that the data are represented 

(Fig. 1). This choice also simplifies 

and four pion final states. If we had 

tion for the form factor (3.2) that is 

1 very well if we choose K = 2 

the matrix elements for the three 

used the narrow width approxima- 

the replacement: 

m2(m2 + rp2) 
Tr 

(Q2 - 
2 2+ m2) -I- m r 

' m3 6(Q2 - m2> r (3.3) 

P P 
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the result for the decay rate would have been 7% higher which is within 

the experimental error. We take this as justification for the use of the 

narrow width approximation whenever it seems appropriate. 

The 31r matrix elements (B3) for K = 3 give rise to the decay spectra 

shown in Figs. 2 and 3. The narrow width approximation has been used 

only in the calculation of the interference term between the two p's in 

the amplitude, 

The width TA of the Al meson has been introduced in the same way as 

for the p in (3.2). We now try to determine the parameter CX. It is 

clear from Fig. 5c, the dominant diagram where c1 enters in the 3~r matrix 

element, that the variation of a tends to have a similar effect as a 

variation of r A' This ambiguity cannot be resolved with present data. 

We therefore choose to let all that variation be due to TA and set c1 = 0. 

That again simplifies then the 4r amplitudes. In comparing our spectra 

with the data we have to'be careful since inL5 the data are given for 

the selected mode 'I -+ pn whereas inl8 all three pion final states are 

taken. It turns out however that for all practical purposes the spectra 

for the two cases are equal due to interference of the diagrams 5b, 5b', 

5c with 5d. In Figs. 2 and 3 we also compare this result to the previous 

one 4 where there was no A 1 meson, (Dashed-dotted line in Figs. 2, 3.) 

The decay spectra resulting from the 4 pion matrix elements (B4,5) 

are shown in Fig. 4. It turns out that the major contribution to the 

decay spectrum arises from the graphs 5g and 5i which have an Al in it. 

The rest is small and is indicated in Fig. 4 with a dashed-dotted line. 

The spectra for (B4) and (B5) are practically the same. The contribu- 

tion of diagram 5j which is in the amplitude (B5) only is negligible 



since it has a treshold factor 

of the available phase space. 

that starts at the very end 

CONCLUSIONS 

We have calculated spectra and rates for r-decays up to four pions 

in the final state. The vector mesons p and Al enter the dynamics via 

gauge couplings to the pions. 

Usual weak interaction theory predicts the decay rate into one pion. 

The two pion sector clearly shows the p-meson and prediction and experi- 

mental data agree very well if the parameter K is chosen to be K M %. 

The situation in the three pion sector is less clear. The experimental 

rates have very large errors and even if adjusted to the area of the pre- 

dicted spectra one cannot find compelling evidence for the Al-meson. 

Interference among the various amplitudes makes the mode T -t VPIT the real 

dominant one. Varying the parameter c1 that appears in the three pion 

sector has roughly the same effect as varying the Al width. We therefore 

chose cx = 0 in all further calculations. The four pion sector is similar 

to the three pion sector in the sense that the dominant decay amplitude 

is T + VA IT. 1 If therefore the r-decay spectrum and rate into four pions 

would have been measured there would be clear evidence in favor or 

against an A 1' since the contribution including an A 1 is at least three 

times bigger than in a model without an A 4 1' 

Our calculation accounts for approximately 78% of all decays depend- 

ing on the normalization to r(r+-vei) which we take to be 17%. In addi- 

tion 5% are expected for the Cabibbo suppressed decays, leaving about 

17% ) a few percent of which can be attributed to decays into more than 
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four pions. 

The question could be asked whether the remaining lo-15% are due to 

some other mechanisms like second class currents. But we have to keep 

in mind, however, that a change in the leptonic width from 17% to 20% 

would leave no room for such other effects. 
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APPENDIX A 

The formalism of nonlinear realizations and phenomenological 

Lagrangians has been worked out in great detai1.8,g,10 We give here a 

short derivation of the formulas necessary. The group of interest is 

SU(2) x SU(2) with the general element b x d; b and d are elements of an 

SU(2) group. The diagonal elements U x U form a subgroup, the isospin 

group. An arbitrary element can be decomposed into a product of a chiral 

element V x V -1 and an element of the isospin subgroup: 

b x d = (V x V-l)(U x U) 

This equation can be solved for V and U and we obtain: 

(Al) 

-1 V2=b*d ; U=V.d=V-%~ (AZ) 

To find a nonlinear realization of the chiral transformations we have 

to study the multiplication law of the group go l g = g’ 
in the decomposi- 

tion (Al). The effect of an isospin transformation go on g is: 

(uoxuo)(vxv-l)(uxu) = (V’XV ‘-l) (U’ x u’) 

Using (A2) we obtain: 

(A4) V ' = u. vu& u' = uou 

If go is a chiral element we find 

(V 0 x I+ (V x v-l> (u x U) = (V x v-l) (u' x u') (A5) 

(A3) 

where 

V2 = VoV2Vo and U' = ElJ (A61 

We have used the abbreviation 

-1 U=v’vo v -1 = /-lv 
0 

v 

which should indicate that U is an element of an SU(2) group. 

(A7) 

To obtain an explicit form of a nonlinear transformation law we 

have to parametrize the SU(2) group elements. We choose the exponential ' 
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parametrization, the final result of the computation of S-matrix elements 

is independent of the choice of the parametrization.ll i 

V=e 
i‘;+ 

-t 
T are the Pauli matrices 

from (A4) and (A6) follows 

W) 

which gives under infinitesimal transformations 

-t + 
U,=l+iZs, V. = 1 + ii;: 

the usual isospin transformations I 

(All> 

and the nonlinear chiral transformations 

b-1 : 

With the help of the nonlinear transforming t it is possible to associate 

with any linear representation of the isospin group 

IJ’ = NJ,) $J 
I 

(A13) 

a nonlinear realization of the whole chiral group and any nonlinear realiza-' 

tion of the full group which transforms linearly under isospin transforma- 

tions can be parametrized that it transforms in the same way as $.I1 

For chiral transformations (A13) is extended to 

IJJ’ = $2J(iY)+ with ? given in (A7) (A14) 

In order to construct Lagrangians we now apply this to the nonlinearly 

transforming object ali$ and want our isospin and chiral transformations to 

be space-time dependent: z = z(x); $ = J(x). From (A9) we get the isospin ~ 
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transformations of vay,v-’ and V -1 allV (both expressions if expanded start 

v’apv '-1 = u. v (au +u;‘aUuo) v-l uil 1 > + uoa&jl 

v’.-la VI = 
1-I u. v { 

-I (au + IJO’ aUuo) v } ui’ +uau -1 
ova 

And from (AlO) and (A7) for chiral transformations 

vf allv ‘-1 = 5 v(ap + voapvil) v-l 5-l + EapiF1 { > 

(A15) 

(A161 
/-l ayvf = E &au +v;‘apvo)v T1 - ---’ i 1 + uapu 

This shows that by introducing as usual covariant derivatives 

+ 
v aU-if(;U+Zp)$ V 

( 1 
-1 

and 

v-l a 
+ 

( 
-5 

1-I 
-if<; -a )-t V 

1-I 1-I 2 ) 
these quantities transform like connections from which follows that their 

difference transforms like a tensor and their sum again like a connection. 

The gauge fields $ and 2 transform as usual under infinitesimal 
1-1 v 

gauge transformations: 

iso+ 6 a= 
?J 

-(X) 

chi-t 
6 P 1-I 

= (BXZJ 

6chi-+ a 1-I 
We define the tensor G : 

lJ 

(A17) 

3-t -f 
-12P1, =& va I( 

+ 
-if(zU+Z )L 1-I 2 ) 

V -1 _ v-1 
1-1 ( aU-if(c -$): V 

1) (A181 1-I 
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(A19) 

and the connection ‘; : 
1-I 

2-t -1 
-=s 

+ v-1 
1-I 

or explicitly 

-+ 
V cos.1~1 -1 +; _ (zx; ) sin\;1 +zx (cx; ) 1-cosli[ 

1-I ITI” p 1-I l-9 u l-u2 (A211 

From 2, we can construct the tensor 
+ 

=a’: 
“w uv 

and define 

which can be expressed more easily in the original fields x, z , z 1-I !J 

6422) 

where 
+ 
P 1.IV 

=a; 
lJV 

-a$ 
Vl.l 

+ f(;vx;v) + f($xZv) 

and 
-f 
a =a: 

!JV UV 
- a& + f(QZv) + f(Z$,) 

We just remark that c' 
lJV 

can also be obtained in the following way 
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and that there is another tensor 

-t -f 
a' =a , l-cosltl ; x _ sinIt 
I.lv lJv l-o2 

gx; 
?JV 

) 

I-3 
t% x ;)tJ 

(~24) 

We can now write down the most general gauge invariant Lagrangian relevant 

for our processes. (The squares of (A23) and (A24) are not relevant up to 

four pions.) 

Liz?= LYM (2a-$)f(G Gv)2 (~25) 1-I 

LyM= - -$ (au+: - av+;+ f l cab’ +llb $vc)2 (A261 

where $I 1,2,3 = 1,2,3 
% 

and $ 4,596 =a 1,2,3 and c abc are the structure 
u li 1-I 

constants of SU(2) X SU(2) c abc abc 
= c if (a,b,c) = {1,2,3) etc. 

2 2 
Ll =+n (;;J2 (~27) 

In order to apply this Lagrangian to physical processes we have to break 

the gauge invariance since our vector mesons should be massive. We do 

this by adding a mass term LM to our Lagrangian (A25) that preserves global 

SU(2) X SU(2) symmetry. 

The next step is to diagonalize Ll since there appears a term 

We do this by redefining our field z 1J 

-t + 
a = ^a - 

C 

n2f a -g 
?J v n2f2+m2 ' 1 

W8) 

(A291 

which is already the most general possibility since additional terms would 

cancel out in the S-matrix.lO 
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We require that vector meson dominance holds for the p meson. This 

means that in (A21) there should not appear a term (zx aPz) with the same 

quantum numbers in addition to z since G 
Fr P 

is the quantity which enters 

universally via the covariant derivative in all interactions especially in 

the nucleon system. This can be done by choosing n2f2=m2 which also fixes 

the ratio of the masses of the vector mesons. 

The vector current resulting from our Lagrangian is 

2 

1-1 

and the axial vector current is 

(A30) 

(A31) 

(A=) 

From Ll after shifting i (A29) we can identify the physical pion field 

3=' 
IT and from (A32) applied to pion decay we conclude that J- = fr 

fi 
the pion decay constant (z92 MeV). 
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APPENDIX B 

In Appendix B we give the explicit expressions for the Lagrangian 

and the matrix elements relevant to T-decays up to four pions. In our 

notation we supress the vector character of the fields; p, r, z is meant 

-+ -;t to be c, IT, a. The Lagrangian (A25) reduces to: 

L-z 
relevant = + (au8)2 - $.(aFfpv - avpv)2 - +(aliiv - av1y)2 + +m2p2 + +iii2Z2 

1 .L( 
+12 f2 T x allr) 

2 

IT 

+d$-- 
IT ( 

7fx(71xauTi) 2 
1 

+f l (7~ x a,r)p” 

+ f2 2 
l (TXP > 

lJ 

+ [f&+3 ++) - +] 16f\f 4 (auT X avd2 
-iT 

+& 4f.f.. 3 (alJsv - avgp) ( 77 x (a% x a%) 
) 

IT 

+ & (av&v - aviu> ( (p” x avd + (a:71 x ~“1) 

+ K(2Ct 
[ 

-+,++I lL 
4f.f 3 

(aua x a$ 

71 

- 3 f Cy, - avpu) (Pi x P’> 

+ Ic 
6f*f4 

da P u v - a,p,) 
N 

r(a%7 x av7d 

7-r 
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-l-J-- 
2f 2 ( (aJk 

- avpuh H (Pavid - ca%pv)) 

7r 

1 

4f f 2 (a!Jpv 
IT 

K 

12f*f,4 (all% 
-avPJ(a~Txava)lr12 

+ [K-+1*-$ (P, x P,) (a% x ah) 

71 

- + (P 
8f, I-r 

- [K(24)] ’ 
4f*f 

4 (alin x avn) 

Tr 

+ K’Ct. 
1 

2fmfr4 
7(alla x avs) 

I( 
(ppavr) - (p’a%)) 01) 

The matrix element for the decay into two pions is: 

JE(q+,q';Q) = fi* m2 l 
(9’ - qO$ l P(q+q') {l +g Q2t 

+ 0 where q , q , q- are the pion momenta and Q is their sum. 

(B2) 

m4+, so> = 1 
ccl++ q012 - m2 + is 

The corresponding diagram is shown in Fig. 5a. 



- 18 - 

The matrix element for the decay into 3 pions is: 

Q) = J,f ((q-q:, , q;; 9) 

1.2 *J- =- 
fT 

% _- ; ((9, -3 (Qq-1) (Ka+$ +$, 

fii 
2 

k2-2 l Q -m +ic 
L 
-( 7 q-7 : (Qq-)) (-ka+:K++]+ --$(Qq-)(Ka -F ++I) 

Q?J 
t 911-1-7 ( (Qq$) (Qq2) + (KC1 -; + + ) 

m 

kLm2 1+K-2 
2 [ 

1 
- 

7 (4 ql) 1 P(q-ql) - 
QIJ 

(q - qlL - a” (Q(s- - 41)) 

2(K +3 

m2 
(Q(s- - ql))(q2 ~ - 3 (Qq,)) 

+ (K + 1) [ q2vQ2 - Q,(Qq2) 
2 m \ +2ql?A (Qs,) - 2q2v (Qs$ 

t the same where 1 * 2 

@3) 

The diagrams for the amplitude (B2) are shown in Figure 5b-d. 
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The matrix element for the decay into ~'v;T~F; is: 

fi 1 x 

fn2 Q2 2 -m +ie 

$ (4+2.J + 

3 

ct 
(hi - Q), 

m2+(K-+)(Qqi) 

\ 
i#j#!L=l (Q-qiJ2+ie 

+ qi,,(K-3) 

K(2af;) -+ 

2m2 

+ + K(2a++) -+ 
3 

$Qs+) - c qRu (q+s,) 

R=l t 

+ s,,(Qq+) - q;(Qq$ {+ [K&++b+] - 5 (K+l) } 

+$ 1 
m 

Q(s+ - q$) - (q+- q&Q2 

2m2 
- 2 (q,q+) { qip (Sk+- qk) - (S' - qR)li (Qqi))} 

i#!L=l 

3 
+ [t-i] m2 C P(q+qL) {(q+-qe)p(Qqi) - qi~(Q(q+-q~))} 

if%=1 

3 

+ [;++I C 
i#j+E=l 

P(q+q,) { qj (q’- qQ)} { qjll (Q(Q - qi) - (Q - qi)p(Qqj))) 

++ [K++]’ 2 P(q+qg)[qj(qf-q~)l {4q(Q-qj'2 - (Q-2qj’p(Qqi)} 

i+j#J!,=l 

2 3 
+y 

c 
P(q+q,) h++ q& Q(q+ - s,) ) - (s+- qO,,(Q(q++ q))} 

i#j#R=l 
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++ (K-i) 5 (q++qR)~(qj(q+-qR)) - (S+-9Q)~(4j(q++qQ) 

i#j#%=l 

3 

+ m4 c 
R=l 

cs+ - qQ&p Gl+q 

3 

+ 4 

= i 

m (2qi-Q) ['+$ (Qqi']+ 
1-1 c) 

i#j#!L=l (Q - qilL 

(K-2) r 1 
K-T + 

q- 11-1 m2 
qj(q+-qR) '+ 

I 
---+I s,) pbl+q$ 

m 

+i {Q2A,((qeq+), qjy (Q-qi)) - 9,[Q"Au('q~S'), qjy (Q-qi))]) 

i#j#L=l 

3 

+ K C { (Qqi) $ ((q,q'), qj y (Q - 9i)) - qil-l (Q - qi)Jll 

(B4) 
i+j+!Z.=l ' 

where 

Al-l (q,4'), qj, (Q-d 
A f 

1 = 
(Q-qi)2-fE2+iE 

q~(Q- qi)2 - (Q - qi)ll ((Q - qi) 4’) > 

+ 
K(2++ +] 

2m2 
(q+q,) { (q+- qR)1l (Q - qi)2 - (Q - qi)~ ((9 - qi) (s’- q~): 

1 (q+- qR)~ (Q - qi) 2 - (Q - qi)~ ((Q - qi) (s' - 4k)) } 

- [2Kfl](Q-qi)(q'-qQ) qj,(9-qi)2- (Q-q1)1-1((Q-qi)q 
i 

. qju(Q-qi)(q+-qQ) - (q+-q,&, ((Q - qi) qj) }- \ 

The corresponding graphs are shown in Figure 5e-i, 
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+ The matrix element for T + V=IT+~-~+IT' is given by: 

fi 1 x 
fX2 Q2 -m2+is 

2101 + I { m 3 qv - 6 klp + 4$ ) 

[+ + [2KCX+$-+] {q-+-q;) - q;(q-q") + q,o(q'q-) - q;&q-)} 

m2+ (K - + ) (Qq,) 1 1 1 
21ca+ F-r 1 

(Q -so) 2 + q;(K m2 

(K -+)(Qql,] 

(Q-q;12 

1 
2KCX +;-x 

m2 

- + > (Qq:, 1 1 

(Q - q;12 -+ q&k *(&lo-q-$ 
2KCX +;-c 1 

2 
m 

+ q,(Qq,) { - q;(Qq-) + 4:,(Qq-) - ,,(Qq;,) [Ka +;-++$ (K +] 

- q;,, (Qq'l} [K ++] 

+i [ 2Ka 
L+L 

2 4 1 
m2 

(q-q;) [Qu (Qh- - q;)) - 6 - q:),Q2] 

(q’qf) [Qv(Q(qo - q;)) - (so - q;$Q2] 

I + (q’q-) [Q, (Q(q’ - q-1) - (so - q-),92] 

K 2Ka 
[ 

-K+1 

+ 
2 4 1 

2m2 
(q-q;) [q; (Qh- - q:)) - (q- - q;), (Qq’)] 

( Q(q" - 4;)) - k" - q;j, (Qq;)] 

(Q(q" - q-1) - (so - q-1, (Qql)] 
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(K -’ 

+ 2 
2 jrn2 

(q- - q;),(QqO) - q;(Qh- - q;))} p (q-q;) 

- q;J (Qq;) - q&( Q(s" - ,;I)} P(q'q;) 

(so - q-lu (Qq;) - q;p (Q(q' - q-1) > P(q'q-) 

++ (K++) 

i 

(q;h- - ,;I) ( q;(Q(Q - 4’)) - (Q - q”)Fi (Qq;) > P(q-q;) 

+ 
( 

q- (qO - 4;) ) { ,;(Q,Q - q;)) - (Q - n:),(Qn-)) P(q’q;) 

+ (&lo - 4-q { q:,( Q(Q - q;)) - (Q - q;),, (Q,;) } P(q”q-) 

12 
++ (K+?) 

(i 
+- - q;) H 

$9 - q;12 - (Q - 2q;$ (9s')) P(q-q;) 

+ ( q- (so - q;)) { qlu (Q - s-1 2 - (9 - 2q-$ (Q,:,) P(q'q:) 

I + ( q;(q" - 4-j) {q:, (Q - q;12 - (9 - 2q;jv (Qq;) } P(q'q-) 

. 

2 
+y q;),,(Q(q- - q:)) - (q- - q;)Fi(Q(q;+q-))} P(q-q;) 

+ q;$( Q(q" - q;)) - ho - q;$ (Sk; + 4")) } P (q'q;) 

( ho + q-l,, (Q(q" - q-1) - (so - q-lp( Q(s" + q-1) } P(q'q-) + $ (K -+I { S;p(So(q- - 4;)) - q;(q:(q- - ,;I) 
r 

+ cq; + q;$ q;(4- - cl;)) ( - kl- - 4:)p(4;(q:+q-))} WI-q;) 1 + - 4:)) - 4:, pq” - ,;I) + (q;+q-)Jl-(q” - 4:)) 
- (SO - q;g 4- cq; + 4O)) } p (qOq:) 

+ 9+ i ( .& +I0 - 4-q - 4:, (q&lo - q-1) + (6 + 4;$ (4:(4O - 4-g 
i - (s”-4-)p(9:(9-+90) H p (sod 
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4 
+F (q-- q;J P(q-q;) + (qO- q;jv P(q"q;) + (SO- q-1, P(qOq-) 

+ m4 

i 

1+ 

+ @q;- Q), 
(Q- q;12 

1+ Es- ho 

(K -+I 

+ Oq;- Q), 
IL+ 2 (Qq;) 

m 1 
(Q- q;12 

. [ 

(K-3, 

IL+ 2 (qOi-> p (s”s-> 
m 1 

+{+ Q2+&Qqo)) Au ((q-q;), q;, (Q-q')) - ($Q,+Kq;) QUA+-+’ q19 tQ-qo)) 

+ { + Q2 + K (@I;) } Au (ho+, q-, (Q - 4;)) - ( +Qu + K42u) QuAa ((q'q;) 3 4- 9 (Q - q:)) 

+ { $ Q2 + K (@l;) > A,, (hod, q;, (Q-q;,) - +Q,+rq:,) Q'Ao((q'q-1, q;, (9-q;)) 

+ m4 {(q-- ql) (Q(q:- noI) - (Q(q--y ql))(q:- q"jp} P(q-ql)P(q'ql) 
lJ 

+ the same expressions where 1 * 2. 04) 
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TABLE 

Ratios yn = 
r(r -f n pions + vr 

r(r+ VnJ) 
(4 

The parameters entering the theoretical calculations are: fr = 92 MeV, 

m T = 1782 MeV, p = 155 MeV, m = 775 MeV, m 
P P 

Al = Amp, TAl = 250 . . . 

300 MeV.17 A review of the experimental situation is found in Ref. 12. 

Mode Theory Experiment 

+ 
ITV 

P+V 

+ -+ 
n7TlTv 

+oo 
7rRTrV 

p “?T+V 

p+?r”v 

+ooo 
‘TTTrlTTr 

lT+lT-lT+lT” 

0.60 

1.20 
1.17 

0.21...0.25 

0.21 . ..0.25 

0.21...0.25 

0.21...0.25 

0.14...0.16 
0.14 . ..0.16 

total rate 

'n 

0.54 + .18 Plutol* 

SLAC-LBL14 
0.50 + 18 DELCOI 

1.43 + .53 DASP13 

1.21 + .12 + .20 SLAC-LBL1' 

0.34 + .25 SLAC-LBL1* 

.60 

1.20 

0.42-0.50 
0.31 !I .lO Pluto15 

0.28...0.32 
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FIGURE CAPTIONS 

1. 

2. 

3. 

4. 

5. 

dY2 + +o sl Decay spectrum dy for r +- urr v .y = 2 the invariant mass of 
m-c 

pion system relative to the mass of the f. The data are from 
3 

the 

Ref. 16. The curve is obtained from (2.6) for K = $. 0.023 . . . 0.49 

is the interval from which the experimental rate is calculated. 

dY3 Decay spectrum - for -r+ -f VgT ' ' ' 
dy 

IT 7r and -c+ -+ v ?T+n+Tr-. The shaded T 
area corresponds to the variation of TAl in the range from 250 to 

300 MeV. The dashed-dotted line indicates the spectrum without 

an Al meson as calculated in Ref. 4. The data are normalized to 

an 'area corresponding to Y 3 = 0.23. 

Same as in Fig. 2. But here rAl is kept fixed at 300 MeV and the 

parameter a is varied from 0 to 0.9. 

Decay spectrum dy4 dy for r+ += ~=IT+IT~IT~K~ and T + + -+o 
+ v-P R ?T IT l 

The 

shaded area corresponds to a variation of I' Al from 250 to 300 MeV. 

The dashed-dotted line is the contribution to the spectrum from 

graphs without an Al meson, a = 0. 

Shown are the graphs that contribute to the various processes: 

dY2 5a to -* 5b dY3 
dy ' 

- 5d to -* 
dy ' 

5e - 5i to r+ -t v lT+Tr"7r07ro 'I: and 5j 

together with 5e - 5i to -r+ + v~IT+~-IT+,". The charge states of 

5b - 5i have to be relabeled accordingly. 



12 

IO 

8 

dr, 
dY 6 

0 \ 0.2 0.4 / 0.6 
0.023 0.49 

9-80 Y 

0.8 1.0 

395161 

Fig. 1 



1.0 

dr, 0.8 
I 
ay 0.6 

0.4 

I I ’ I ’ I 1 I ’ 

II A SLAC-LBL (MARK r) 
l DESY (PLUTO) 

CY=O 
I& = 250.. .300 MeV 

I 

0 
0 0.2 0.4 0.6 0.8 1.0 

9 - 60 Y 395182 

Fig. 2 



1.4 

1.2 

1.0 

dr, 0.8 

dy 0.6 

0.4 

0.2 

0 

9 - 80 

II A SLAC-LBL (MARK I) 
l DESY (PLUTO) 

0 0.2 0.4 0.6 0.8 1.0 
Y 395183 

Fig. 3 



0.5 

0.4 

dr, 0.3 

dy 0.2 

0.1 

0 

9 - 80 

I 1 I I 1 I 1 I 1 

0 0.2 0.4 0.6 0.8 1.0 
Y 395184 

Fig. 4 
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