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ABSTRACT 

The effective nonleptonic weak Hamiltonian is examined beyond the 

leading-logarithm approximation. In the AS=l, AC=1 part of the 

Hamiltonian no significant contribution is found. In the AS=l, AC=0 

sector coefficients of the "penguin" operators depend strongly on added 

corrections. The momentum subtraction scheme has been used in the 

calculation. The independence of the result on the renormalization 

procedure, as well as on the choice of the renormalization point u 

is discussed. 

Submitted to Nuclear Physics B 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
t On leave of absence from the Rudjer BogkoviE Institute, Zagreb, 

Croatia, Yugoslavia. 



-2- 

1. Introduction 

Considerable progress has been made in the understanding of non- 

leptonic weak decays by using the effective Hamiltonian C1,21, in which 

strong interaction effects have been incorporated by means of the 

renormalization-group (RG) analysis C31. Theoretical calculations for 

a wide range of processes have been reasonably successful for both AS=1 

C2,4-71 and AS=0 sectors CS,91. However, it seems that the explanation 

of charm-changing decays of the D-meson is still missing ClOl, and it is 

not as yet quite clear what is the source of this discrepancy. One 

possible explanation is that the dynamical scheme in which the effective 

Hamiltonian serves as an input is oversimplified for this case. The 

other possibility is that there is some additional mechanism that could 

affect coefficients of various operators in the Hamiltonian. 

The main purpose of this paper is to investigate quantum-chromo- 

dynamic (QCD) corrections to weak Hamiltonian beyond the leading 

logarithmic (LL) order, taking into account the power-corrections too. 

The complete analysis via RG becomes extremely complicated, but some 

feeling of the importance of power-corrections can be reached even by 

the g2 -order calculation. Note that useful approximations such as the 

Appelquist-Carazzone theorem Cl11 and the R-rule Cl21 become inadequate 

beyond the LL. The method used in the paper is based on the comparison 

of matrix elements calculated to the lowest order in GF and g2 by the 

direct perturbative calculation, with the matrix elements calculated 

using the related effective Hamiltonian. 

In section 2 AS=l, AC=1 part of the effective Hamiltonian is 

considered in order to see how power-corrections of the type (mq/p)u, 
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where m 
4 

is the mass of some quark, influence the coefficients of 6' 20 

and OS4 operators ( see (A2) for the definition, . > Section 3 is devoted 

to study of operators with mixed left-right chiral structure (penguin 

terms c21) in AS=l, AC=0 sector of the effective Hamiltonian. One 

finds that power-corrections in this case can considerably enhance the 

order g 2 coefficient of the penguin-like operator. 

The underlying theoretical model used in sections 2 and 3 is the 

standard weak, four-quark model with strong interactions included with 

the help of QCD. Applying the momentum subtraction scheme c131, relevant 

Green's functions of the theory have been renormalized at a symmetric 

point in the momentum space. The physical results, however, must be 

independent of the selection of the renormalization procedure as well 

as of the choice of the renormalization point. The meaning of this 

statement for the case when an effective Hamiltonian serves as an input 

in the calculation of some real nonleptonic process is discussed in the 

concluding section. A few details of the calculation are given in the 

appendix. 

2. Effective Hamiltonian for AS= 1, AC= 1 Transitions 

The relevant interaction-part of the standard C14,151 SU(3) xSU(~)~ x 

U(l)k Lagrangian for AS=l, AC=1 transitions is 

Lz? = int i&T c 
quarks 

31-Y, XaV$ 

(2.1) 

h +- 
{ ( 2fi 

cos8[;d+cs]V-A+sin@[;s-cd]V-A)W++h.c. . 
> 

A renormalizable gauge for weak interaction part is used, with a 

W-boson propagator -ig'v/(k'-M2). In principle the term with Higgs- 
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ghost particles should be included in (2.1), but since in all cases 

considered their contribution is suppressed by an additional factor 

(mq/M)2 compared to the W-boson contribution, one can drop these parti- 

cles from analyses. 

One first calculates the matrix element for d-d -f s+u "scattering" 

in the lowest order in GF and zeroth order in g. The only possible 

contribution is shown on fig. la, and gives 

2 

&la = i$- cos20 syV(l-y5)c &'(1-y5)d 1 

q2-M2 

= -iG cos20 a [("C)v-,&d)vBA + @h2/M2)] * (2.2) 

The same matrix element could be calculated by help of the standard 

current xcurrent Hamiltonian 

HCC = + cos28 syP(l-y5)c ;y"(l-y5)d . (2.3 

Its contribution is displayed on fig. lb. The heavy dot represents the 

local operator on the RHS of the expression (2.3). The related matrix 

element is 

-j. G COS28 
&lb= fi &-)v-~(‘~>v-A l 

(2.4) 

Matrix elements (2.2) and (2.4) are identical when @(q2/M2> terms 

are neglected. As expected, the perturbative calculation gives the same 

result as the calculation using an effective Hamiltonian. 

One proceeds now in the same way to calculate matrix elements to 

the order g2. The diagrams needed in the perturbative calculation are 

shown on fig. 2. The dashed lines represent gluon exchanges. 
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Let us consider the effective Hamiltonian to the order g2 of the 

form 

H G cos20 =- 
eff ZT 

scud+ L(A&;d+B;d;c 
167~~ )I 

(V-A) (V-A) + @k4) ) c2’ 5, 

where A and B are the quantities to be determined. go part of (2.5) 

gives rise to diagrams on fig. 3, and g2 part to diagrams on fig. 4. 

If (2.5) is a correct Hamiltonian, the relation 

(2.6) 

must be satisfied. It is easy to see that "K2b = d3b (to the order 

@(q2/M2)), and instead of (2.6) one gets 

JKZa -'A(3a=JKq . 

In the appendix it is shown how the matrix elements in fig. 2a can be 

(2.7) 

separated in the form 

2 h2 
g- 

8M2 
(F + @(l/M2)) . 

Only the first part of this expression is interesting; terms of order 

@'(l/M4) are either suppressed by the big mass in the denominator or 

are of a dimension higher then six, and will not be considered 

explicitly. The result is then 

$- RnM2 

-I- ..fl Lydy/ dx(-Rn ~102+$~n+3$4)](~hac)V-A(;had)vDA . (2.8) 
0 0 

Functions 4, (i= 2-4) are written in the appendix (All), and here the 

function 01 corresponding to the first diagram on fig. 2a is listed: 

$1 = ~~[p~x~+r~(l-x)~- 2prx(l-x)] +y[(mE-p2)x+ (mi-r2)(1-x)] . (2.9) 
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The diagrams in fig. 3a are evidently divergent, and have to be 

renormalized by means of the subtraction in the symmetric point 

p2=p' =r2=r 2 12 = -u2 
2pr = 2p'r' = -2rp'=-2rr' E -2pp' = -2r'p = $ u2 . (2.10) 

Then one gets finite, but uL-dependent contribution for the matrix 

element JK 
3a' 

cos28 A?- J12ydy J'dx V2 

167r2 0 0 
Rn ~1s~2s + + Rn $3@4 

Q3s04s 

x ( ;Xac)vwA (had),_, l 

4 is denotes the function I$~ calculated in the symmetric point (2. 

For example 2 

01s = P2Y 
"d m2 
-2 (l-x) + 2 x . 
u u2 1 

(2.11) 

.o> . 

(2.12) 

In fact, there are some additional contributions to (2.11), typically 

of the form 

Gg 2 + s'(l+ y5)hac ii(l+ yg)had , 
lJ 

or 

Gg 
2 mm’ -go 

iJ2 
pv -Y5 )AaC :a"(1 + y5)Xad , 

where m and m' are masses of some in-(out-)going quarks. In a more 

careful treatment such terms have to be included in (2.5) too, but 

for p N mc they are suppressed. 

Using the known property of X-matrices 

=-hi 6 3 ij kl +26 6 iljk ' 
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one gets 

&2, - &3a = iG cos20 2 
v5 16~~ 

: + 5 Rn M2 

(2.13) 

+ ~1~~dy~1~x(-an(lS~2S+~~~~3s~4s.)l(-~~~~~+2~d~~)~V~A~~V~A~. 
0 0 

Since the contribution of fig. 4 is 

t-M= 2g2 
4 -iG cos 0 

Jz 16n2 
A&id + B:d<c 1 (V-A)(V-A) ' 

(2.14) 

the final result is* 

It is not a great task to find the LL part of the quantity A explicitly. 

It depends on the relations between n and quark masses. Two typical 

values are 

for mE>u2>mt . . . (2.16) 

and one recognizes the standard LL results (A3) and (A5). 

The complete function A together with its LL part is plotted on 

fig. 5. Evidently, the inclusion of the power-corrections makes no 

significant change to the AS= 1, AC= 1 Hamiltonian, as long as u is 

chosen near the mass of the charmed quark. 

* 
Due to the fact that A= -B/3 in (2.15), the known Cl1 relation 

‘84 = '20 ( 1 
-l/2 is preserved even beyond the LL approximation. 
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3. The Influence of the Power-Corrections to the Penguin Terms 

It has been argued [2,4-71 that operators with mixed left-right 

chirality in AS= 1, AC= 0 effective Hamiltonian might play an important 

role in understanding of nonleptonic weak processes. However, due to 

the GIM mechanism Cl51 such terms arise in a LL approximation only for 

P< mc c21. There is no reason to believe that this result will 

survive once the power-corrections are taken into account. 

In this section the coefficient of the operator 9 is considered. 

9’ 3 s~'(l-y5) Xad DIbGb& . (3.1) 

By the equation of motion, 9 could be related (see, e.g., refs. C12,161) 

to the standard penguin operator. Dzb in (3.1) is the covariant 

derivative acting on the gluon energy-momentum tensor. 

One first considers the gLGF contribution of the ordinary pertur- 

bative calculation to the matrix element of the form (3.1). The related 

diagrams are presented on fig. 6. It will be enough to calculate 

diagrams 6a and 6b with only one external gluon leg.* It is easy to see 

that diagrams 6c give contribution of the form 

ZQQQd , (3.2) 

(where Q denotes the covariant derivative of the fermion field), and 

can also be dropped from consideration. The matrix element of the 

diagram on fig. 6a is 
c) 

"Ksa 
hL & f = sin0cos9 -jj- 2 

s dnk 
X- 

(2dn 
YJ1-Y5) h ,1 Y, + vP(l-r5> 1 

k-q-mu k-m 
U 

(k-p)2-M2 

(3.3) 

The calculation of diagrams 6d and 7c with more gluon legs confirms 

the result (3.8). 
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The expression (3.3) is divergent, but when the analogous contribution 

from fig. 6b is subtracted (due to -sinecos6 coupling), the resulting 

integral is finite: 

&6(a+b) = i sin0cosfJ ?- A-. 
fi 4a2 

Xa ( q2Y"-;qa) (l-Y5) 

1 2 2 

s 
m -q x(1-x) 

X dxx(l-x) Rn ' 
0 m2-q2x(1-x) 

+ @(1/M2> 
I 

U 

t (contribution of the form (3.2j) . (3.4) 

Let us suppose that the relevant AS= 1, AC= 0 effective 

Hamiltonian has the form 

H = sinf3cos0 A > 
2 

eff -&cd 
a 

- 'Cc' (V-A) (V-A) + g D ' y 

i- g2 (lin. comb. of four-quark operators + @(g4) ) 1 . (3.5) 

Diagrams that could be built from the go part of (3.5) are presented 

on fig. 7, and the contribution of the operator 9' to the required 

matrix element is indicated on fig. 8. 

The diagram 7a is divergent, and has to be subtracted at a 

symmetric point p2=p =-u . 12 2 The resulting finite, p-dependent matrix 

element is then 

d7a = i sinWose - G -EL Xa(q2Y"-q%)(1-Y5) 
4% 4r2 

1 m2+v2x(1-x) 
X 

J dxx(l-x) Rn '; 2 + (other uninteresting terms) . (3.6) 
0 m -q x(1-x) 

U 

By replacing mu by mc in (3.6), and changing the sign, one gets the 

matrix element d7b. 

The contribution of the operator9 from (3.5) is 

JK8 = i sinecose - G A% Aa(q2+q';)(l-Y5) 8~~ D 
a- 4a2 

. (3.7) 
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Because of the equality ,M6(a+b) = 'A/7(a+b) + .M8, the unknown function 

D is given by 

8s2D = s 
1 

dxx(l-x) Rn 
mz+p2x(l-x) 

. 
0 m2u+u2X(l-X) 

(3.8) 

The LL part of the integral in (3.8) can be easily found: 

87~~5 = zero [+@'($, $)] for u">mz>mi (3.9a) 

(3.9b) 

By the equation of motion (3.9b) leads to the well known [2] left-right 

part of the AS= 1, AC= 0 weak Hamiltonian: 

HL-R 
eff = sinf3cosf3 - k$(-&!Jn<)&P 

lJ2 

G g2 
2 

- sink0se - - 
> 

9,(1-y5) Xad c $r"'XaQ (3.10) 

a- 4?T2 
quarks 

The function 8s2D (3.8) is plotted on fig. 9. It is calculated under 

the assumption that values of mass-parameters mc and mu are nearly 

constant for considered values of 1-1. The numbers between the curves 

denote ratios of the function D (3.8) and its LL part g (3.9). Even 

the low-~ ratio shows the importance of power-corrections to the LL 

result, and for values u 2 m c, (3.8) is almost completely dependent 

on the power-correction terms. 

4. Discussion and Conclusion 

The main aim of this paper was to learn how the power-corrections 

of the form (m /u)o 
4. 

influence a standard LL part of the effective 

Hamiltonian. It was shown that in AS= 1, AC= 1 part of the Hamiltonian 
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there was no significant contribution* to the lowest order part of the 

coefficients C20 and C84. 

The result in AS= 1, AC= 0 part of Hamiltonian deserves much more 

attention. For the values of ~-0.5 GeV power-corrections to the 

coefficients of penguin-like operators are as important as the LL 

contribution. As u increases the old result C21 becomes overshadowed 

by corrections. Since the corrections have the same sign-as LL part 

(see fig. 9), the coefficients get considerably bigger. 

This result is not in a contradiction with the present theory of 

hyperon decays. It has been shown [4] that the calculation could 

reproduce s-wave amplitudes correctly while giving p-wave amplitudes 

somewhat too small if the penguin coefficients are taken to be just 

such as given by the leading-log analysis. The result is improved 151 

when these coefficients are increased by hand. The same is true C2l 

for kaon decays into two pions: the theoretical predictions are in 

better agreement with experiment if penguin coefficients are larger 

than given by the LL analysis. Some changes are expected to appear 

in the analysis of CP-violation parameters [6] too. 

While the GIM mechanism Cl51 "kills" penguin terms for a certain 

choice of 1-1 in the LL approximation, terms with mixed chirality survive 

in the effective Hamiltonian even for v>rnc in the calculation beyond the 

leading log. This new effect might play an important role in analyses 

of the AS=l, AC= 0 decays of charm particles, such as F +- DIT, etc. 

* 
The known disagreement between the theory and experiment for 

charm-changing decays of the D-meson Cl01 becomes slightly worse 

when power-corrections are taken into account. 
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However, as far as one is able to handle only the lowest order strong 

corrections, no final answer can be given. An analysis via RG equation, 

which helps when LL result is considered, becomes extremely involved if 

power-corrections are included. The RG functions f3, y and 6, that are U- 

independent in LL approximation, become complicated functions of the 

renormalization point. Furthermore, the boundary condition on the 

solution of the RG equation, C(u,g 
2 +O)=Cfree, happens to be insufficient 

' and one has to know how fast C goes to Cfree, i.e., derivatives of C with 

respect to g2 must be known in the g2+0 limit. 

It is shown that coefficients in the effective Hamiltonian have 

considerably richer structure when the complete analysis rather than LL 

approximation is performed. However, results (2.15) and (3.8) apparently 

depend on the renormalization scheme as well as on the choice of u, and 

a comment of this fact has to be made. 

Let us forget for a moment that quarks are hadronized in real 

particles, and consider the world in which free quarks interact. 

Furthermore, for the sake of simplicity, imagine that quarks are massless. 

Their behaviour is then governed by the Lagrangian of the form (2.1), 
* 

where g is an unknown parameter of the theory. In order to find it one 

has (i) to choose some appropriate experiment, (ii) to make a selection 

of the renormalization scheme as well as of the renormalization point, 

and then to calculate the S-matrix, and (iii) to relate the experimentally 

measured value to the parameter g. (It is the property of asymptotically 

free theories cl71 that no matter what renormalization scheme one chooses, 

the value of the parameter g determined from an experiment through steps 

* 
The weak interaction part of (2.1) is forgotten in the further analysis. 
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(i)-(iii) will decrease as 1-1 in step (ii) grows). From now on, g acquires 

a fixed value, and in order to have a scheme- and n- independent results 

one is forced to analyze any other experiment with just this value of g 

and just the same selection of the renormalization as used in the step (ii). 

In the real world the situation would be analogous* if the mechanism 

of hadronization were known, and under the assumption that strong inter- 

actions could be treated perturbatively. However, that is not the case, 

and hadronic matrix elements of an effective Hamiltonian are usually 

determined [4,5,8] by using quark-model wave functions to describe 

baryon and meson states. Thus the insensitivity of the result on a 

renormalization prescription in a sense given above is spoiled completely. 

One can just hope that matrix elements calculated for a specific choice 

of p have the same behaviour as elements that would be calculated by 

a correct calculation (if such could be performed). A common approach 

C1,2,181, i.e., choosing the value of the average mass of quarks involved 

in a process for p, works surprisingly well. 

Let us conclude with the following remark. It seems that, at least 

in principle, the weak effective Hamiltonian could be calculated quite 

accurately. The part of corrections not considered in previous works 

is discussed in this paper. Another problem that exceeds the intentions 

of this work deserves further attention: how and why the present scheme 

of calculation of matrix elements of the weak Hamiltonian, although 

apparently incapable of feeling the problems of the renormalization 

gives still good results. 

* 
Note that the true Lagrangian contains additional parameters, e.g., 

masses of quarks. 
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Appendix 

A. Effective Hamiltonian in Leading-Log Approximation 

(i) AS=l, AC=1 Part 

The effective AS= 1, AC= 1 Hamiltonian for the standard model is 

usually written in the form Cl81 

H eff = 

where 

84 
Q20 = 

+ c20 @20) ' 

( udsc 5 Gcsd (V-A)(V-A) > . 

In (Al) Cabibbo-suppressed terms are omitted. The coefficients C20 

and Cg4 in the LL approximation are for u > mc given by C1,18,191 

2 2 

c20 = =1+ A- Rn M + @(g4> 
4n2 lJ2 

‘84 = ‘20 ( ) -l/2 
For u s mc, the coefficients are cl23 

c20 = $1 2/9(K2)w25 ; -l/2 

2 
2 m 

Kc1 = l+ggRnC ; 
16a2 u2 

K2 
C 

Thus one gets n 
2 

c20 c 
M2 m‘ + @(g4) =l++ in--- 

47T lJ2 
L Rn -$ > 9 

Ft 

(Al) 

(A3 

(A31 

(A4) 

(A51 

and a similar expression for C84. 
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(ii) AS=l, AC=0 Part 

The well known c23 LL AS=l, AC= 0 Hamiltonian contains, besides the 

usual four-quark operators, also the operator9 (3.1) in the region 

l.~ <mc. The coefficient of the operator is calculated by help of the 

RG equation, and is given approximately by 

G Cp = sinecos0 - 
ZLi- t 

(K2) 12'25 -0.48(~~) 
[ 

0.42 
- o.ol(K$ 

-0.30 

- 0.,03(K1)o'80 + 0.51(Kl)os50 1 + (K2)-6’25[o.02(Kl)042 

- O.O~(K~)-~*~~ - O.O~(K~)~*~~ + O.O~(K~)~*~~ I> , (A61 

where Kl and K2 are defined in (A4). The expression (A6) can be written 

as 
= sin6cose A 

[ 

I 22, 
m2 

cP 22 + @(g4) 
fi l2 4T2 p2 I 

, 

and one recognizes the result (3.10) obtained by the perturbative 

calculation. 

B. Calculation of Diagrams on Fig. 2 

When the finite part of some weak interaction amplitude is 

calculated, the terms of order l/M4 (where M is the mass of a weak boson) 

give usually no significant contribution, and the analysis is much simpler 

if it is possible to isolate the dominant part. Here the method of 

such a separation is sketched in the calculation of the Feynman integral 

related to the first diagram on fig. 2a. 

If the momentum of gluon is denoted by k, the matrix element is 

cc2 E cos2f3) 

2 h2 2 d4k 
Mia=c sp;- s 

1 

w4 k2[(k+p)2-mf][(k-r)2-mi][(k+q)2-M2] 

X gyv. ( 1-my5) (i+;+mc) y,x,C x Gyp (I-y5) (;-kfmd) had 
- (A7) 



-17- 

The straight expansion of W-boson propagator around M2 is not allowed, 

since the higher order terms become more and more divergent, and another 

method has to be found (see Appendix D of ref. C201). Let us first 

write the denominator by help of the Feynman parametrization as 

s' 2ydy j-l dx 
1 

0 0 k2-2kc-d I3 [(k+q) 2-M2] 

C = 
lJ -XYP~ + (l-x)yru 

d f y(l-x) 

After the translation ku+ ku + c is done, 
v 

around k2-M2 . Thus 

w3) 

. 
one can expand W-propagator 

M;a+C 
2 h2 g2 d4k -- P 

J J-J- 

k +ku+c 
lJ P 

8 4 (2r)4 (k2-$l)3(k2-M2) 

2(q+c)k- (q+cj2 

k2-M2 
+ C$/(k2-M2)2) , 1 W’) 

where 4, = c2 + d is defined in (2.9), and q = p-p' = r'-r. The simple 
.L 

analysis shows 

contributes to 

that only the first term in the square bracket in (A9) 

the order @(l/M2), and all the other terms are of the 

order b(l/M4). The final result is 

Mia =ic 2 h2 - 82 
8M2 16a2 

j-l 2ydy j 
0 0 

d x[-$-!?n$] 

x (sxac) v-A(;Aad>v-A + d%l/M4> . (AlO) 

The terms proportional to (mcmd/41) and those of dimensions higher than 

six have not been written explicitly in (MO). 
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By a similar analysis one gets the leading contribution of other 

diagrams on fig. 2a. In Section 2, the following functions have been 

used in addition to I$~: 

12 2 
42 = Y2 I: P x +r'2(1-x)2- 2p'r'x(l-x)] + y[(m~-p'2)x+(m~- r12)(l-x)] 

93 
='y2 p2x2+r [: '2(l-x)2+2pr1x(l-x)] + y[(mz- p2)x+ (mt-r'2)(1-x)] 

$4 
= y2 

I: p12x2+r2(1-x)2+2 rp'x(l-x)] + y[(mi- p12)x+(mi-r2)(l-x)] 
l 

(All) 
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Figure Captions 

Fig. 5. The function A (solid line), and its leading-log part' 

(dashed line), calculated from (2.15) and (2.16), 

using values M= 80 GeV, m,=1.5 GeV and ms=0.15 GeV. 

Fig. 9. The function SITED (3.8), and its leading-log part (3.9). 

The calculation has been done with the fix value 

m c=1.5 GeV. 

(Please note: figures 1,2,3,4,6,7 and 8 are described in the main text.) 
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