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Abstract: The asymptotic freedom behavior of quantum chromodynamics allows the 
rigorous calculation of hadronic and nuclear amplitudes at short distances 
using perturbative methods. The implications of QCD for large momentum 
transfer nuclear form factors and scattering processes, as well as for the 
structure of nuclear wavefunctions and nuclear interactions at short dis- 
tances are discussed. The necessity for color-polarized internal nuclear 
states is also discussed. 

1. Introduction 

In quantum chromodynamics the fundamental degrees of freedom of hadrons and 
their interactions are the quanta of quark and gluon fields which obey an exact 
internal SU(3) llcolorll symmetry. It now seems possible that quantum chromo- 
dynamicsl) is the theory of the strong interactions in the same sense that quantum 
electrodynamics accounts for electromagnetic interactions. It is well known that 
the general structure of QCD meshes remarkably well with the facts of the hadronic 
world, especially quark-based spectroscopy, current algebra, the approximate point- 
like structure of large momentum transfer lepton-hadron reactions, and the loga- 
rithmic violation of scale-invariance in deep-inelastic reactions. The theory is 
particularly successful in predicting the features of electron-positron annihila- 
tion into hadrons: the magnitude and scaling of the total cross section, the 
production of hadronic jets with a pattern conforming to elementary quark and 
gluon processes, and heavy quark phenomena. The empirical results are consistent 
with the basic postulates of QCD, that the charge and weak currents within hadrons 
are carried by the quarks, and that the strength of the quark-gluon couplings 
become weak at short distances (asymptotic freedom). 

It is clear that if QCD is the correct theory of the strong interactions it 
must account for the features and interactions of nuclei as well as mesons and 
baryons. Because of asymptotic freedoml), we can in fact make detailed predictions 
for nuclear form factors and scattering processes at large momentum transfer, as 
well as predict the asymptotic short distance features of the nucleon-nucleon 
interaction and nuclear wavefunctions. We will also discuss here a particularly 
novel-feature of QCD: the necessity for color-polarized (or "hidden-color") 
nuclear states. 

In terms of their Fock state description, the hadrons, including nuclei, are 
(color singlet) composites of quark and gluon quanta; e.g., 

IT+> = a;,)Ju2> + a;3)Juag> + . . . 

IP> = aT3) luud> + aT4)luudg> -t . . . 

ID> = ay6) juud ddu> + . . . 

This is in exact analogy to the Fock state expansion 

Ipositronium> = a(,)Ie+e-> + a(3)(e+e-u> + . . . 
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in QED. For definiteness we shall specigy the s$a_tes at equal "time" r=t+z on 
the light-cone*). The total 3-momenta, k, and k = k"+kz, are then conserved 

&$i=O, ckt=p+), . 1 and the momentum-space wavefunction for each n-particle 

Folk state cokponent of a hadron with total momentum p' is a function (spin-labels 

are suppressed) Y = Y(Xi,~~i)) where xi = kl/p+, czLi=O, and cxi=l. The 

states are off the "energy" shell (k- E k"-k') 
i i 

p- - 2 k; = L M2 - 
i=l p+ [ (1) 

This "light-front" formalism greatly simplifies relativistic bound state calcula- 
tions since it is very similar to the ordinary non-relativistic many-particle 
theory; essentially all theorems proved in the Schroedinger theory hold for the 
relativissic theory at equal time on the light-cone. The "relativistic kinetic 
energy" (k:+m2)/x plays the role of the non-relativistic kinetic energy z2/2m. 
Although the results are independent of the choice of Lorentz frame, the variable 
x = k+/p+ can be conveniently interpreted as the longitudinal momentum fraction 
kZ/pZ in an "infinite momentum" frame where pz + -. A summary of the calculational 
rules in light-cone perturbation theory, and examples of its use are given in 
ref. 3 and references therein. 

QCD has a renormalizable perturbation theory which is an elegant generaliza- 
tion of QED. In addition to the gs$yII$Au Dirac coupling of the color octet gluon 
to the color triplet and anti-triplet q and ;i, there are also non-Abelian 3-point 
ggg and 4-point gggg couplings of the gluons. The crucial distinction is in the 
net sign of the vacuum polarization: in QED, the effective Coulomb interaction 
o(Q2> increases with the momentum transfer; in QCD the added self-gluon couplings 
causes the effective strength of the quark and gluon interactions to decrease 
logarithmically at large momentum transfer, 
pression (Q2 >> A&D) 

as summarized by the asymptotic ex- 

as(Q2) = (ll- $nf)~~g(Q2/!$,D) . 
(2) 

E;',,;;;z-;:' ‘QCD sets the basic mass scale for QCD, and nf is the number of types 
of quarks with effective mass much smaller than Q. The fact that QCD 

interactions tend to zero at large momentum transfer Q 2 >> A&, ("asymptotic free- 
dom") allows the rigorous perturbative calculation of hadronic interactions at 
short distances. The fact that AQCD is empirically not very large-current esti- 
mates give 

"QCD ' 100- 300 MeV , 

indicates that perturbative QCD calculations may start to become relevant at had- 
ronic and nuclear distances of a fermi or less. In fact, as we shall see in the 
following discussions, QCD dynamics must be taken into account in any nuclear 
process where nucleon structure is relevant. 

2. Short distance processes in QCD 

In a series of recent papers 3,4) we have shown that the predictions of per- 
turbative QCD can be extended to the whole domain of large momentum transfer ex- 
clusive reactions, including the form factors F(Q2) of hadrons as measured in 
large momentum transfer electron scattering reactions eA+eB (Q2=-t), and fixed 
angle scattering processes do/dt (A+B+C+D) for s >> M2 with z = COST,.,. fixed. 
In general A, B, C, and D can be mesons, baryons, photons, and nuclei! The re- 
sults for meson form factors have also been derived using different methods by 
Efremov and-Radyushkin5) and by Duncan and Mueller6). 
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As an example, let us briefly consider the calculation of the nucleon form 
factor3y4). Only the "valence" Iqqq> Fock state needs to be considered to leading 
order in l/Q since (in a physical gauge such as A+= 0) any additional quark or 
gluon forced to absorb large momentum transfer (proportional to Q) yields a power- 
law suppression M/Q to the form factor. Further, because of the spin-l, helicity- 
conserving couplings of the gauge gluon, overall hadronic helicity is conserved, 
hI = hF, again to leading order in l/Q. Thus QCD predicts the suppression of the 
Pauli form factor: F,(Q2)/Fl(Q2) - 8(M2/Q2). 

The calculation of the nuclear form factor thus reduces to a 3-body problem. 
The helicity-conserving form factor GM(Q~) can be written to leading order in l/Q 
in the factorized form [qx = (min Xi)QI: 

1 
1 

GM(Q2) = i I (3) 
0 

CdXI CdYI O+(Yi,~,) TH(X,Y,Q) 9(Xi'~x) ) 
0 

with CdxI=dxldx2dx36(1-x1-x2-x3). Here TH(x,y,Q) is the probability amplitude 
for scattering three quarks collinear with p to the final direction p+q, as 
illustrated in fig. 1. To leading order in as(Q2), a (Q2) 2 

TH(x.y.Q) = s [ 1 Q2 
t(x,y) (4) 

where t(x,y) is a rational function of the light-cone longitudinal momentum frac- 
tions xi and yi. The function @(xi,Q) gives the probability amplitude for finding 
the valence quarks in the nucleon with light-cone fractions x; at small relative 
distances bl-- 0(1/Q): k.<O 

11 . 

O(xi,Q) = J [d2k11 $(xi,zLi) . (5) 

The "distribution amplitude" $(xi,Q) is the fundamental wavefunction which controls 
high-momentum transfer exclusive reactions in QCD; it is the analogue of the wave- 
function at the origin in the non-relativistic theory. The (logarithmic) Q- 
dependence of $ can be completely determined by the operator product expansion at 
short distances7) and the renormalization group, or by "evolution equations" com- 
puted from perturbative quark-quark scattering kernels at large momentum trans- 
fer3y4). The high momentum tail of the wavefunction for each hadron is thus 
controlled by QCD perturbation theory. 

Fig. 1. (a) The general factorized structure of the nucleon 
form factor at large Q2 in QCD. (b) Leading contributions to 
the hard-scattering amplitude TH. 
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The QCD prediction for nucleon form factors at large 92 to leading order in 
as(Q2) is3y4) 

G$Q2) = 

The yz anomalous dimensions are known positive constants determined by the evolu- 
tion equation for the nucleon distribution amplitude. 
varying at large 92, 

Since as(Q2) is slowly 
the most important dynamical behavior is the Qe4 power-law 

dependence of GM(Q*) which reflects the basic scale invariance of quark and gluon 
interactions and the fact that the minimal Fock state of the nucleon contains three 
quarks -- both non-trivial features of QCD. 
with data for 3 ( Q2 5 25 GeV2 provided A 

The prediction (6) for g(Q2) agrees 

detailed discussion is given in ref. 3. 4 
CD ( 300 MeV, as shown in fig. 2. A 
he QCD predictions for weak and electro- 

magnetic elastic and transition baryon form factors and the n/p ratio are given in 
ref. 8. 

The power-law behavior of the QCD predictions for exclusive processes at large 
momentum transfer can be summarized by simple counting and helicity rules. TO 
leading order in l/Q: (i) Total hadron helicity is conserved3). In particular 
this implies that weak and electromagnetic form factors are helicity conserving, 
and independent of total spin. Thedominant form factor corresponds to hI=hF=O 
or hI =hF=&. (ii) Dimensional countingq) predicts the power-law scaling of 
fixed-angle scattering processes: 

s (AB+CD) 1 
----f(ecm> , .n-2 . . 

where n = total number of constituent fields in A,B,C, and D, and the power-law 
fall-off of helicity conserving form factors: 

0 IO 20 30 
C~I Qz (GeV’) ~ . . 

Fig. 2. QCD prediction for Q4G$(Q2) 
for various scale parameters A* (in 
GeV2). The data are from M. D. 
Mestayer, SLAC Report 214 (1978) and 
references therein. 

. I .  

0 2 4 6 

O2 (Cd) I, *. 

Fig. 3. Comparison of the dimen- 
sional counting rule (Q2)n-1~(Q2) -+ 
const. (Q2>>M*) with data. See 
ref. 21 and references therein. 
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FH(Q2) - 
1 

tQ2)nH-l ' (8) 

where nH is the number of constituent fields in H. 
In particular, for the deuteron QCD predictsqy10 

FD(Q2) - 
1 5 

( 1 7 
(9) 

for the helicity zero * helicity zero elastic form factor. The other helicity 
form factors are suppressed by powers. All of these results are modified by 
calculable logarithm corrections, as in eq. (6). The derivations utilize the fact 
that Sudakov factors suppress possible anomalous contributions from end-point 
integration regions and pinch singularities3*6,11). The predictions for the power- 
law behavior reflect the scale-invariance of renormalizable interactions and appear 
to be in accord with large momentum transfer experiments. A recent comparison with 
data is given in fig. 3. 

3. Nuclear applications of quantum chromodynamics 

The deuteron's Fock state structure is much richer in QCD than it would be in 
a theory in which the only degrees of freedom are hadrons. Restricting ourselves 
to the six-quark-valence state, we can readily generate states like 

ID>6 = a/(uud)lC(ddu)lC> + b/(uud)8C(ddu)8C> 

+ cl (uu~)~~(ddd)l~> + dj (uuu)gC(ddd)8C> . (10) 

The first component corresponds to the usual n-p structure of the dueteron. The 
second component corresponds to "hidden color" or "color polarized" configurations 
where the three-quark clusters are in color-octets, but the overall state is a 
color-singlet. The last two components are the corresponding isobar configurations. 
If we suppose that at low relative momentum the deuteron is dominated by the n-p 
configuration, then quark-quark scattering via single gluon exchange generates the 
color polarized states (b) and (d) at high k,; i.e., there must be mixing with 
color-polarized states in the deuteron wavefunction at short distances. 

It is interesting to speculate on whether the existence of these new con- 
figurations in normal nuclei could be related to the repulsive core of the nucleon- 
nucleon potentiall'), and the enhancement13 ) of parity-violating effects in nuclear 
capture reactions. One may also expect that there are resonance states with 
nuclear quantum numbers which are dominantly color-polarized. The mass of these 
states is not known; if in the unlikely case they are nearly degenerate with 
ordinary nucleons then they could be long-lived and lay havoc with detailed 
balance experiments. It has also been speculated14y Y 5)that such long-lived states 
could have an anomonously large interaction cross section, and thus account for 
the Judek16) anomaly in cosmic ray and heavy ion experiments17). Independent of 
these (wild) speculations, it is clearly important that detailed high-resolution 
searches for these states be conducted, particularly in inelastic electron 
scattering and tagged photon nuclear target experiments. 

In analogy with the nuclear form factor calculation, the QCD prediction for 
the leading helicity zero deuteron form factor has the form 

FD(Q2) - [F]5n$odnm [Pn ~~y'Wy' (11) 

where the first factor is computed from the sum of hard-scattering 6q+y* + 6q 
diagrams. [See fig. 4.1 The anomalous dimensions can be calculated from a system 
of evolution equations for the coupled six-quark components of the deuteron form 
factor at short distances'*). 
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Fig. 4. Hard-scattering contribu- 
tions to the deuteron form factor. 
The contribution of diagram (a) 
requires an internal color-polarized 
state. Diagram (b) shows the rela- 
tionship of the nuclear form factor 
to the N-N off-shell scattering 
amplitude. 
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the asymptotic For a genera+of~g'~e;;;Q2) 
power behavior is - (~2) 1-3A, 
reflecting the fact that one must pay a 
penalty of us(Q2)/Q2 to move each quark 
constituent from p to p+q. The fact that 
the momentum transfer must be partitioned 
among the ccnstituents implies that the 
truly asymptotic regime increases with the 
nucleon number A. Nevertheless, the QCD 
perturbative structure is still relevant 
even in the subasymptotic domain where the 
nucleus can still be regarded to first 
approximation as a bound state of nucleons. 

In order to make quantitative predic- 
tions, let us consider elastic electron- 
deuteron scattering in a general Lorentz 
frame. The deuteron form factor FD(Q*) is 
the probability amplitude for the nucleus 
to stay intact after absorbing momentum 
transfer Q. Clearly FD(Q*) must fall at 
least as fast as Fp(Q2/4)Fn(Q2/4) since 
each nucleon must change momentum from -%p 
to -$(p+q) and stay intact. 
consider a 

Thus we2should 
"reduced form factor" f,(Q ) 

defined via1091q,20) 

F (Q*) = F2(Q2/4) f (Q2) . D N D (12) 

Note that fD(Q2) must decrease at large Q2 since it can be identified as the pro- 
bability amplitude for the final n-p system to remain a ground state deuteron. 
In fact, the QCD counting rule eq. (8) predicts fD(Q2) - l/Q2 for a scale invariant 
theory. It is easy to see that a TH diagram such as fig. 4b, where a gluon 
immediately transfers momentum %qu to the other nucleon, gives the form 

FD (Q2) - F;(Q*/4) 
as(Q2) 

l+Q2/m2 . 
(13) 

The mass parameter m can be estimated 10) from the parameters in the meson and 
nucleon form factors and is expected to be small (m2 - 0.3 GeV2). The comparison 
of data'l) for fD(Q*) with the predictionlq) (Q*+o.~ GeV2)fD(Q2) -f const. is given 
in fig. 5. Remarkably, the prediction 
seems to be accurate from Q2 below 0.5 r I I I I I I 
1 GeV2 out to the limits of the ex- 
perimental data. 

In general, we can define re- 
duced nuclear form factorslO) 

I* 
0.4 

F? 0 
P 0.3 

fAtQ2) E 
FA(Q2) 

(14) 
5 

CF (Q2/~2)1A ' 
g 0.2 

N + 
.T 

QCD then predicts the power-behavior 
fD(Q2) - (Q2)lmA (as if the nucleons 
were elementary).? Compafisons with 
the data for D, Hs and Hz are given 0 I 2 3 4 5 6 7 

in ref. 10. 
fexpt(Q2) - T2e Tact that '-'* 

q2 (GeV’) is.*, 
SDUCCeSS for hz,)- is a remarkable 

. We note that the Fig. 5. Comparison of deuteron form factor 
usual nuclear ohvsics formula data with the QCD prediction (l+Q*/m*) x 

1 , 

FA(Q2) = FN(Q2)Fbody(Q2) (15) 
fD(Q2) + const. at large Q z . The data are 
from ref. 21. 
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which is supposed to remove the effects of the struck nucleon's structure is 
invalid in QCD. [A nucleon with momentum 2p L 1-I which absorbs momentum transfer qp 
as in fig. 4c becomes far off-shell and spacelike ($p+Q)' - Jrq2, so that the 
total y*+N+N* off-shell Q2-dependence is not given by FN(Q2).1 The same dynamics 
which controls the nucleon form factor also controls the nuclear physics mechanism 
which transfers momentum to the other constituents in the nucleus. The definition 
of the reduced form factor fA(Q2) takes into account the correct partitioning of 
the nuclear momenta, and thus, to first approximation, represents the nuclear form 
factor in the limit of point-like nuclear constituents. It may be of interest to 
see whether a consistent parameterization of nuclear amplitudes can be obtained if 
in each nuclear scattering process, reduced "point" amplitudes are defined by 
dividing out the nuclear form factors at the correct partitioned momentum"). 

4. QCD and the nucleon -- nucleon interaction 

The asymptotic-freedom property of QCD implies that the nuclear force at short 
distances can be computed directly in terms of perturbative QCD hard-scattering 
diagrams. The basic prediction for the nucleon-nucleon amplitude is (modulo loga- 
rithmic factors)4,q) 

TNN+NN - 
l4 

( i 7 
f(B > c.m. (16) 

where Q 2- --t is the square of the momentum transfer. The predicted fixed angle 
scaling behavior'), 

g (PP+PP) - --L f2(ec.m.) 
SIO 

(17) 

is consistent with the high momentum transfer data. [See fig. 6.1 To actually 
compute the angular distribution of the N-N amplitude is a formidable task since 
even at the Born level there are4) of the order of 3x lo6 connected Feynman 
diagrams in which five gluons interact with six quarks; in addition, Sudakov 

b- 
-o- 

Fig. 6. Differential cross sections for pp-+pp scattering at wide 
center of mass angles. The straight lines correspond to the pre- 
dicted power-law fall-off of l/slO. The data compilation is from 
P. V. Landshoff and J. C. Polkinghorne, Phys. Lett. s, 293 (1973). 
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suppressed pinch singularities must be circumvented4p6). Considerable phenomeno- 
logical progress has, however, been made simply by assuming that the dominant 
diagrams involve quark interchangez3). This ansatz seems to yield a good approxi- 
mation to the observed large-angle baryon and meson angular distributions and 
charge correlations, as well as the observed crossing behavior between amplitudes 
such as pp+pp and pp+pp. Applications to spin correlations are discussed in 
ref. 24. The relation of the scaling behavior of the N-N amplitude to the Q2 
dependence of nucleon form factors (as in fig. 4c) is discussed in detail in 
ref. 10. 

The perturbative structure of QCD at short distances can also be used to 
determine the far off-shell behavior of hadronic and nuclear wavefunctions and 
their momentum distributions. For example, the x near 1 behavior of particle 
distributions in the bound state (at the kinematical end of the Fermi distribution 
where one constituent has nearly all of the available longitudinal momentum) 
requires the far off-shell dependence of the wavefunction. Modulo logarithms, the 
power behavior of perturbative QCD contributions to inclusive distributions is 
given by the "spectator rule "") [x,= (kO,+k;)/(p"+pZ)l 

dN a/A 
- = Ca,A(l-X) 

2n,- I 

dxa Xa-tl 
(18) 

where ns is the number of spectator constituents in the bound state forced to carry 
small light-cone momentum fractions. The rule holds for the case where the heli- 
cities of a and A are identical; otherwise there is additional power-law suppres- 
sion4). Examples of the spectator rule are dN/dx - (l-x)3 for q/p, (l-x)15 for 
q/Hz and (l-x)ll for p/Hz. These rules can be tested in forward inclusive reac- 
tions for particles produced with large longitudinal momenta, and in deep inelastic 
letpon scattering on hadron and nuclei26). In general, the impulse approximation 
implieslO~lg) 

-&.- (eA+eX) = 
dQ2dx 

(19) 

representing the sum of incoherent contributions each of which correspond to 
scattering on one quark or clusters of quarks in the nuclear or hadronic target. 
Further discussions, applications, and tests can be found in the refs. 10, 19, 20, 
21 and 26. The transverse momentum distributions dNa/A/dk? can also be predicted 
from the perturbative QCD processes which control the high momentum tail of the 
bound-state wavefunction4). 

5. The continuity of nuclear physics and quantum chromodynamics 

The synthesis of nuclear dynamics with the quark and gluon processes of 
quantum chromodynamics is clearly a fascinating fundamental problem in hadron 
physics. The short distance behavior of the nucleon-nucleon interaction, which 
is rigorously determined by QCD, must join smoothly and analytically with the large 
distance constraints of nuclear physics. As we have emphasized here, the funda- 
mental mass scale of QCD is comparable with the inverse nuclear radius; it is thus 
difficult to argue that nuclear physics at distances below -1 fm can be studied in 
isolation from QCD. 

The constraints of asymptotic QCD behavior -- especially its power-law scaling 
and helicity selection rules -- have only begun to be exploited. For example, 
dispersion relations and superconvergence relations for the hadronic helicity 
amplitudes should yield sum rules and constraints on hadronic couplings and their 
spectralO). The imposition of duality between the q-q-g and meson-nucleon degrees 
of freedom implies even stronger constraints. However, it should be noted that 
the existence of hidden-color states implies that duality in terms of ordinary 
hadrons cannot be a true identity. Proof of the existence of the color-polarized 
configurations -- whether mixed with ordinary nuclear states or appearing as 
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resonance excitations -- clearly would have dramatic implications for QCD and 
nuclear physics. Speculations on possible phenomena associated with hidden color 
states have been discussed in section 3. 

The most important outstanding problem in the synthesis program is the actual 
derivation of the nucleon-nucleon interaction from first principles in QCD. 
Interesting calculational attempts using the MIT bag model are given in refs. 27 
and 28. The qualitative similarities between quark interchange amplitudes and 
meson exchange processes is also evident 23). 

In this talk we have tried to emphasize the continuity between nuclear and 
elementary particle dynamics. There are many other interesting aspects of the 
interactions of quarks and gluons within the nuclear environment which are reviewed 
in ref. 20. There are also important areas in hadron physics which require solu- 

tions of few-body problems; e.g., the derivation of the baryon spectrum for three 
quarks interacting via a QCD confining potentia12y). It would also be useful to 
have explicit solutions for positronium-positronium scattering (including pinch 
singularities) in analogy with meson-meson scattering processes in QCD. We also 
note that the calculation4) of the meson and baryon form factors at large momentum 
transfer in QCD represents a non-trivial solution of a relativistic few body 
problem. 
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