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ABSTRACT 

Perturbative quantum chromodynamic predictions are given for the 

weak and electromagnetic elastic and transition form factors of baryons 

at large momentum transfer Q. The leading (helicity-conserving) 

octet and decouplet form factors can all be expressed as linear combina- 

tions of the proton and neutron magnetic form factors. The predictions 

for the spin structure and relative normalization of the baryon form 

factors reflect the assumed SU(2)L x U(1) structure of the electromag- 

netic and weak currents, quark and gluon hard-scattering dynamics, and 

the helicity-flavor symmetry of baryon wave-functions at short distance. 

The results hold to all orders in as(Q2) and to leading order in m/Q. 

We also discuss the special features of the contribution of the endpoint 

x ~1 region to baryon form factors. 

Submitted to Physical Review D 

*Work supported by the Department of Energy under contract number 
DE-AC03-76SF00515. 

**Work supported by the National Science Foundation. 



-2- 

1. Introduction 

In this paper we shall show how the electro-weak elastic and inelastic 

form factors of baryons at large momentum transfer can be used to system- 

atically test the dynamics and symmetries of the 'quark currents and 

hadronic wavefunctions at short distances. 

The predictions for the spin structure and relative magnitudes of 

the baryon form factors pertaining to the electromagnetic, neutral, and 

charged currents depend upon the assumed SU(2)L x U(1) structure1 of these 

currents. They also depend in detail upon the dynamics of hard-scattering 

processes involving quarks and gluons and the basic helicity-flavor sym- 

metry of baryon wave functions at short distances. 

As has been shown in Refs. 2-4, hadronic form factors and other 

exclusive processes in quantum chromodynamics are controlled at large 

momentum transfer Q = 4-l q2 by two basic elements -- the hard scattering 

amplitude TU(xi,Q) for the scattering of the valence quarks from the 

initial to final direction, and the hadronic distribution amplitudes, 

+(xi,Q), the probability amplitudes for finding the valence quarks with 

longitudinal momentum fractions xi at small transverse distance -6(1/Q) 

in each hadron. The forms of TU and (p reflect the dynamical and symmetry 

properties of hadrons at the quark level. Detailed perturbative QCD 

predictions for the power law and anomalous logarithmic behavior of meson 

and baryon form factors to leading order in as(Q2) and m/Q are given in 

Refs. 3-4. 
n 

The predictions for the electro-weak baryon form factors G(QL),,+B 

which we discuss in this paper are actually general consequences of QCD 

helicity rules2'4 and spin-flavor symmetry. In particular, form factors 
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for any process in which the baryon helicity is changed (hA # hB) or in 

which the initial or final baryon has non-minimal helicity (IhAl >$) are 

suppressed by factors of m/Q. The results are all independent of the 

detailed form of the hard-scattering amplitude TH(xi,Q) and thus hold to 

all orders in as(Q2). Correction terms of order m/Q will not be considered. 

We discuss the special features of the contribution of the end-point x -1 

region to the baryon factors in the Appendix. The results apply for 

space-like or time-like values of Q2 sufficiently large such that the pre- 

dicted leading power law behavior Q4G(Q2) - const (modulo logarithms) is 

observed. 

An important feature of the perturbative QCD predictions -- again 

true to all orders in os(Q') -- is that all of the helicity-conserving 

electroweak form factors involving only nucleons can be expressed as linear 

combinations of just two basic form factors -- G (Q2) and 2 
II CT (Q > -- 

corresponding to amplitudes in which the current interacts with a valence 

quark with helicity parallel or anti-parallel to the helicity of the 

nucleons, respectively. The coefficients are determined by the corre- 

sponding SU(2)L x U(1) quark charges.6 Thus the nucleon magnetic form 

factors Gz(Q2) and Gi(Q2) are sufficient to predict the weak nucleon form 

factors. The assumption of the standard helicity-flavor symmetry for the 

baryon wavefunctions at short distances then leads to the specification 

of all the leading electroweak octet and decouplet form factors. The 

spatial wavefunctions are assumed to be symmetrical with respect to the 

quarks having the same helicity, a feature which is preserved under per- 

turbative QCD evolution. At Q2 + ~0, the spatial wavefunction becomes 

totally symmetric,4 
'YB 

4B(xi,Q) -f x1x2x3(log Q2/A2) , and thus the 
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helicity-flavor structure of the baryon states satisfies exact SU(6) 

symmetry. The detailed results are given in the next sections. 

2. General Results in QCD 

In perturbation QCD, the dominant contribution to any weak or elec- 

tromagnetic elastic or transition baryon form factor at large momentum 

transfer has the general structure:2-4 

G(Q2)AX*+B =~'~'XI/l[dyI d~(yi,~y) T~(xi,yi,Q) ~A(Xi,~x) [l + ~(~~ (1) 

0 0 

as Q2 = -q2 +-a, where 'i; = min(xi Q), [dx] = fi dxi 6(1 -xx.) and 
i=l 

similarly for - 
j ' 

% 
and [dy]. [The contribution to G(Q2) from the end-point 

integration region where the struck quark has light-cone momentum frac- 

tion x -1 is suppressed at large Q2 due to the QCD Sudakov form factor.738 

This contribution is analyzed separately in the Appendix.1 The quark 

distribution amplitude $A(xi,Q) in Eq. (l), is the probability amplitude 

for finding three valence quarks in baryon A with fractions x. of the 
1 

baryon's longitudinal momentum, and collinear up to scale Q (i.e., kli <, Q): 

$,$,Qj - dF(Q)-3'2 &-- d2k1; 16s362(ckli) $,(xi,kli) . 
i 161~ i (2) 

[The factor d F -3'2 (Q> is due to wavefunction renormalization of the quarks.1 

The hard-scattering amplitude TH(xi,yi,Q) is the amplitude for the 

collinear quarks to scatter from the initial to the final direction. 

This amplitude is defined to be collinear irreducible in that collinear 

mass singularities are removed by explicit subtractions. By definition, 
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the collinear singularities are all absorbed into the distribution ampli- 

tudes $. Consequently all loop momenta are of order kl- Q, and the 

quark and baryon masses are negligible (giving corrections suppressed by 

m/Q). This leads to three important consequences:4 

(1) The hard-scattering amplitude TD falls as l/Q4 for Q large, up 

to logarithmic corrections due to the ultraviolet structure of QCD. This 

follows simply from dimensional arguments9 since Q, and not the quark and 

baryon masses, must determine the scale of TD. Since $(xi,Q) varies only 

logarithmically with Q, all the leading baryon form factors fall essen- 

tially as 1/Q4. 

(2). Quark helicity is conserved along each quark line in TH since 

the quark-gluon vertices and the electroweak vertices are all either 

vector or axial-vector couplings and such couplings conserve quark 

helicity for massless quarks. Only the components of the wave function 

having zero orbital angular momentum along the direction of motion 

(i.e., 2 4 = 0) contribute to (2) because of the angular integrations. 

Thus the baryon helicity equals the sum of quark helicities in TD, and 

hadronic helicity is conserved in all leading form factors G(Q2)AX*+B at 

large Q2; i.e., hA = hB. In particular, form factors which change the 

hadronic helicity, such as the Pauli form factor F2(QL), are suppressed 

by factors of m/Q. 

(3) Initial and final baryon helicities in G(Q2)M*+B must be 

minimal (i.e., lh,l = lhgl = &) since the photon and weak bosons are 

vector particles. This is obvious in the Breit frame (CA = -sB) where 

the change in hadronic angular momentum along the direction of motion 

(i.e., A3 l sA = hA + hB = 2h A ) must equal zero or one. 



Non-trivial relations can be derived among the various form factors 

from the helicity-flavor structure of the wave functions and of the 

electroweak currents, without reference to the explicit form of TH. The 

general distribution amplitude for h = ?i baryons having isospin (1,13) 

has the structure 

fi $&,Q) = 1 13js ~S(xi, Q) + 11 13jA $A(Xi,Q) 
(3) 

+ (1 ++ 2) + (3 f--f 2) 

where the subscript S (A) implies symmetry (anti-symmetry) under the 

exchange of particles 1 and 3. There is no anti-symmetric state jI13)A 

for I = 3/2 baryons. Such a state can exist for I = 4 baryons. However, 

since we expect little asymmetry in ground state wavefunctions (without 

heavy flavor quarks) we shall ignore $, relative to I$~ for the I = $ 

baryons. [Note that the standard quark model assumption that these 

baryon wavefunctions are S-wave states also implies $A = 0.1 This 

approximation becomes exact in the limit Q2 + m since4 (6 = 11 - 5 nf) 

4~,(yQ) 
I$$x~,Q) - (x1 - x3) K 

in QCD. Thus we neglect I$, for all QL in both I = 4 and I = 3/2 dis- 

tribution amplitudes. The isospin wave functions 111~)~ for the baryons 

of interest here are given in Table I. 

Each of the permutations in (3) contributes incoherently and 

equally since helicity is conserved along each quark line in TD. It is 

important to realize that because of helicity conservation there are 

only two dynamical amplitudes which determine each of the leading form 
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factors -- corresponding to whether the struck quark has the same 

opposite helicity as the baryon or opposite helicity. Consequently a form 

factor for AX*+B with hA= +1/2 (= hB) and with X=y, W, or Z has the form 

G(+) (Q2) a*+B= ‘11 
(+)(Ap+B) Gy(Q2) + ei')(AX*+B)Gy(Q2) l (4) 

Here the constants e 
II 

and e, 
II 

are the sum of the electro-weak charges6 

carried by valence quarks in the baryon with helicities parallel and 

antiparallel respectively to the baryon's helicity. They are determined 

solely by the flavor wave functions 111~ )s of the baryons (A and B), 

and by the flavor-spin structure of the electroweak currents: 

e II = s( B(I T3) IQ(l) + Q(3) 1 A(1 I~) )s 
(5) 

eT = s( B(IT3) (Q(2)\ A(TT3) js 

where Q(1) is the electroweak charge operator for quark 1, etc. The QCD 
AB dynamics is contained in the form factors G Al3 
II 

and G IT 
where for example 

Gq;B(q2) = 
161~ as(Q2) 3 

Q2 
[dxl[dyl Oi(y,,Q) T,,(xi,yi,os(Q2)) $,(xi,Q). (6) 

3. Specific Predictions 

The distribution amplitudes $s for protons and neutrons are essen- 

tially identical by isospin symmetry. Consequently all electromagnetic, 

charged, and neutral current form factors involving nucleons alone are 

uniquely determined for large Q 2 given only the two functions 
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G,1(Q2) and G$Q2). The constants e 
II ' eTi 

determining these various 

nucleonic form factors are given in Table II. 

The form factors G(') (Eq. (4)) are defined such that the expecta- 

tion value of the electroweak current between nucleon states is 

(P'IJ,,IP) G(+)(Q2)  + y l - " G(- ) (Q~> 

P 2 u(p) 

In general these form factors dominate as Q2 = -(P' - P)2 -f 00 since only 

these currents conserve hadronic helicity in that limit. All other form 

factors are suppressed by powers of m/Q. Thus for electromagnetic inter- 

actions, G (+) = ,(-> is the usual magnetic form factor GM, and from 

Table II we have 

G; = G,, Gil Gii G;z-~+~ . 

The datalo for magnetic form factors (Q2z1 GeV2) can be roughly pm-am- 

terized as follows 

Gp(Q2) Y -1.46 $(Q2)= 2.79 
M 

1 + Q2/.71 GeV' > 
2 

and therefore 

G,,(92) - G:(Q~) 9 GTi (Q2) 3 -1.05 G$Q2) . (8) 

(7) 

These functions together with the algebraic constants in Table II deter- 

mine all the asymptotic nucleon form factors. For example, the isovector 

axial charge form factor F ;=' (Q2) = %[G+(Q2) -G-tQ2)lic1 large 42 

C case cabi [-$Glj -$G-(J 1 P 2 is predicted to be 2 -,48 GM(Q ) if we use 

Eqs. (7) and (8). The measured value is 2 -.44 G$Q2). 



To the extent that flavor SU(3) is a good symmetry, the same func- 

tions G,, and Gj (Eq. (9)) determine the strangeness-changing transition 

form factors from nucleons to other members of the nucleon octet. The 

algebraic constants (e 
II 

e ,ei)dt ermining these form factors follow 

from the wavefunction given in Table I. The constants are given in 

Table III. 

Finally, the transition to particles in the J=3/2 decuplet (A,...) 

can also be analyzed. Since only helicity +$ baryons interact at large 

Q2, the definition (6) of the form factor G (&I can be retained for these 

transitions even though the decuplet particles have spin 3/2. Again, 

if SU(3) is a good symmetry, all transition form factors are specified 

by only two Q2 dependent functions. Flavor SU(6) symmetry implies that 

the distribution amplitudes for the decuplet are the same as for the 

octet. Consequently the same functions G,, and Gl from Eq. (8) will 

also approximately determine the octet-decuplet form factors. The 

algebraic constants relevant to these transitions are given in Table IV. 

4. Conclusions 

It is increasingly apparent that higher order corrections are very 

important in most QCD processes. Thus it is imperative that we examine 

those features of QCD which are valid to all orders in a 
S’ 

In this 

paper, we have shown that the large Q2 behavior of the electroweak form 

factors of baryons provides a variety of just such "all orders" tests 

of QCD. The l/Q4 fall-off, helicity conservation, and the minimal- 

helicity selection rule for form factors are all valid in every order of 

QCD perturbation theory. 



-lO- 

In Section III we presented a large number of non-trivial relations 

among the different-electroweak form factors. Indeed all electroweak 

form factors involving baryons in the lowest mass octet and decuplet 

are essentially determined by only two independent form factors (Eq. (8)), 

using the purely algebraic constants tabulated in Tables II-IV. These 

relations are again valid to all orders in c1 
S’ 

and critically test the 

spin of the gluon. 

Finally, the properties described here not only test QCD, but provide 

a potentially useful tool for measuring the parameters determining the 

weak interactions of quarks and leptons. 

One of us (S.A.A.Z.) would like to thank the SIAC theory group for 

hospitality and the graduate school of the University of Texas and 

Associated Western Universities for financial support. This work was supported 

in part by the Department of Energy, contract DE-AC03-76SF00515, and by the 

National Science Foundation. 

APPENDIX 

One can distinguish two distinct contributions to baryon form 

factors at large momentum transfer. The "hard-scattering" contribution 

is the dominant perturbative QCD contribution which arises from scattering 

of the three valence quarks -- each carrying a non-negligible fraction 

X i of the baryon's momentum. This is the contribution analyzed in 

Sections 2 and 3 of this paper. The other contribution arises from the 

endpoint x N 1 integration region corresponding to the kinematic 

situation where the spectator quarks are essentially stopped and only 

the struck quark is forced to change direction.7 This region yields 

the usual Drell-Yan-West7 connection between the x N 1 behavior of 

an inelastic structure function and the corresponding end-point 
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contribution to the form factors. However, because the struck quark is 

close to the mass shell for x ~1, this endpoint contribution to the 

baryon form factor is suppressed by the usual Sudakov quark form factor 

-- corresponding to the probability amplitude for a quark to scatter 

without gluon emission. [A detailed discussion is given in Ref. 11.1 

If one analyzes the QCD Sudakov form factor in leading logarithm approxi- 

mation, the end-point contribution to hadron form factors is suppressed 

asymptotically by a power of m/Q relative to the hard scattering 

contribution.l' 

It is conceivable that the end-point x Y 1 contribution could play 

an important phenomenological role at moderate Q2 in the baryon form 

factor. There are certain features of this contribution which distin- 

guish it from the asymptotically-dominant hard scattering contributions. 

We first note that perturbative QCD predicts that the struck quark with 

x -1 has the same helicity as the baryon.13 If we assume that the 

baryon wavefunctions which describe structure functions for x Al 1 are 

the SU(6) valence wavefunctions given in Table I (with no asymmetric $, 

component12 analogous to Eq. (3)), then perturbative QCD predicts13 

Gd/p (x) /Gu,p (x) e l/5 . 
x+-l 

(A.1) 

This prediction is in fact supported by recent deep inelastic lepton 

scattering data at large x.14 

Applying this helicity rule to the x h 1 contribution to the baryon 

form factors leads to the prediction 

G(+) (Q2) AX*+B-+ei(m*+B) cq;B(Q2) (A.21 

[end-point] 



-12- 

in contrast to Eq. (4). In particular, if Eq. (A.2) is applicable, the 

proton to neutron ratio Gi/GL is predicted to be -l/3 in contrast to the 

measured ratio (at low Q2) which is closer to -2/3. 

If both endpoint and hard-scattering contributions are phenomeno- 

logically important, then the form of Eq. (4) holds with an extra contribu- 

tion to GAB 2 (Q ) due to the end-point contribution. However, at large Q2, 

only the hard scattering contributions are predicted to survive. 
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TABLE I 

(1 f--f 3) Symmetric flavor wave functions 
multiplying spin state I+++) in Eq. (3). 

IP) = d(1)u(3) + u(1) d(3) u(2) - a u(l)d(2)u(3) 
b6 

Id = I-Ip) with u-d 
1 

IcO> = - u(l)d(3) + u(3)d(l) s(2) + u(2)d(3) I- u(3) d(2) s (1) 
6 247 

+ u(l) d(2) + ~(2) d(l) sc3j 

26 

1~') = j-in) with u + s 1 

InO) = u(2) d(3) - u(3) d(2) s(l) + d(l)u(2) - d(2)u(l) 
2 2 s(3) 

IA*) = u(l) u(2) u(3) 

IA+) = $ 1 u(l)u(2)d(3) + all permutations 
t 

IA”, = 1 IA+) with u f-t d 
t 

IA-) = ( IA*) with u + d 1 

IyO) = $1 u(l) s(2)d(3) + all permutations 

IY-) = $1 \ d(1) s(2) d(3) + all permutations 
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TABLE II 

Algebraic coefficients determining 
the electro-weak form factors of nucleons. 

e+ 
+ 

AX* +B 
II eTi eII eTi 

PY + P 1 0 1 0 

ny -t n 1 1 1 1 
-- 7 

-- 
3 3 7 

pW' + n 
C 4 0 + 

I 

0 -- 
3 

-C 

nW +p 3 

PZO + P -W -- 1 
6 

--w 2 
3 

0 

nZ" +n lw w 2 J s-T ---$ W  6 3 '7 

(+) 2 (+> 2 
G - (Q )BkjB = eII G,,(Q > + eTi (') G+Q2) 

ICI = lcosecabl = 0.974 2 .003 

w = sin20W = 0.22 + .Ol 
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TABLE III 

Algebraic coefficients determining 
the strangeness changing weak form 

factors of nucleons. 

AX* -t B 

pw- + co 

pw- + A0 

nW- 3 C- 

+ 
e II 

0 

2 --s 3 

eII 
1 --s 

3fi 

3 
q 

-S 2 

-- 
; 

IsI = IsinQcab/ = 0.220 + .003 



-18- 

AX* -f B 

+ 
PY -+ A 

ny -t A0 

pW+ + * A 

* nW- + A- 

pW- + A0 
* nW+ + + A I 

pZ" + A+ 

nZ" -t A0 

pw- + Y0 

nW- + Y- 

TABLE IV 

Algebraic coefficients determining 
the electro-weak transition form 

factors of nucleons. 

+ 
e II 

4F -- 
3 

0 

0 

AZ w 
3 

0 

0 

+ 
‘ii 

fi 3 

2 -d- -C 3 

Gc 
3 

fi 
-y (1 - w> 

5 

es 
3 

ell 

fi -- 
3 

2 d- -C 3 

fi -- c 3 

$ (w - 1) 

-- 
; 

45 -- s 3 

“ii 

fi 
3 

0 

0 

fi -w - 3 

0 

0 

*The coefficients should be multiplied by (-1) for these processes. 


