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ABSTRACT 

We analyze the structure of composite quarks and leptons in the 

framework of chiral subconstituent models of minimal internal symmetry. 

The model of Harari and Shupe contains the correct number of composite 

fields but it cannot sustain an exact color symmetry. An extension of 

the Harari-Shupe model is proposed, with both color and electromagnetic 

properties being realized linearly on the subconstituents. This model 

contains two generations of quarks and leptons; all models of this type 

contain additional quark-like states or lepton-like states of higher 

spin. Problems associated with the implementation of the approximate 

weak-electromagnetic symmetry and with the statistics of subconstituents 

are discussed. 
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1. Introduction 

Subconstituent models of quarks and leptons have received increasing 

attenti0n.l There are several reasons why such models are of interest. 

First, and foremost, it is hard to believe that several generations of 

quarks and leptons -- presumably of increasing masses, but of the same 

internal symmetry pattern -- would all form 'fundamental" constituents of 

matter. Second, there is at least some hope that the nagging problems 

associated with a large number of elementary Higgs bosons in "standard' 

unified theories may be resolved in the framework of such models through 

a dynamical breakdown of some symmetry groups, and thus, Higgs fields 

would no longer have to be regarded as fundamental dynamical variables.2 

-- 

Roughly speaking, two broad classes of subconstituent models can be 

distinguished among those proposed so far. Models of the first class 

("conservative models") incorporate all known symmetries, including approxi- 

mate ones, like weak isospin, at the level of the fundamental dynamical 

variables (subconstituents). Such models are generalizations of standard 

gauge theories and their symmetry structure has been analyzed in detail.3 

Their main drawback is that the symmetry group at the level of subcon- 

stituents is, by necessity, a rather large one; consequently, one is 

plagued by a plethora of 'exotic" (so far unobserved) quark- and lepton- 

like composite fields. Moreover, it seems to be difficult, if not impossible, 

to effectively decouple the unwanted states from the low-lying quarks and 

leptons by giving the former sufficiently high masses. By contrast, pro- 

ponents of models of the second class ("radical models") argue in essence 

that only exact symmetries should be carried by the subconstituents; all 

approximate symmetries (perhaps even weak isospin) should emerge as 
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classifidation groups only at the level of the composite fields. Conse- 

quently, all of the heavy gauge bosons of standard unified models should 

be regarded as bound states. The prototype of such models is the one 

proposed independently by Harari4 and Shupe5: these authors insist that 

only the gauge group of electromagnetism is carried as a local symmetry 

by the subconstituents; all other gauge bosons, including the gluons of 

su(3) color are composite. These models are intuitively appealing, for they 

minimize the number of subconstituents necessary for the description of the 

known quarks and leptons; however, little is known about the structure of, 

a theory within which such ideas can be realized. 

In this paper we carry out a kinematical analysis of subquark models 

of minimal symmetry: obviously, such an analysis must precede any 

dynamical calculation. 

In carrying out the analysis, we assume that some basic algebraic 

properties of quantum field theory continue to hold at the subconstituent 

level. Specifically, we assume that the quantum fields, $,(x) say, generate 

an infinite dimensional algebra. All elements of this algebra can be 

generated by means of a binary product6 which is associative, i.e., 

($A(~) k&y)) $,(‘I = $,(x) (+B(Y) *,c’)) 

Further, all continuous transformations of this algebra (whether or not 

they are symmetries of the theory) are generated by the usual commutators. 

(We do not consider transformations -- "supersymmetries" -- which change 

the symmetry character of an element of the algebra.) The commutator has 

the usual properties, viz. [A,BC] = [A,B]C + B[A,C] and the Jacobi identity. 

(In technical terms, this means that all derivations of the algebra of the 

fields are inner.7) The Lie algebra obtained by considering every possible 
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commutatar is obviously infinite dimensional; it generates the automorphism 

group of the algebra of fields. For practical purposes, we select some 

convenient finite dimensional subgroups; henceforth called classification 

groups, useful in enumerating composite operators and their quantum numbers. 

All composite states of immediate interest ("leptons" and "quarks") are 

triple products of the "elementary" subconstituent fields. Motivated by the __ 

analyses of Shaw, Silverman and Slansky* and of Brodsky and Drellg, we 

approximate the leptons and quarks by triple products taken at the same 

spacetime point: this should be a very good approximation at least for 

the first generation of quarks and leptons. (In any known quantum field 

theory such local products are singular and they have to be appropriately 

defined; however, this fact does not affect the algebraic properties we 

are concerned with.) 

The yardstick of success of subconstituent models at present is 

whether or not they can reproduce the fields present in the SU(5) or SO(10) 

groups of grand unified theories. lo In order to achieve this, we represent 

subconstituents by two independent Weyl spinors (or equivalently,by a single 

Dirac spinor). Throughout this paper, composite fields present in (16) 

of the spin-covering of SO(10) are called "physical;" others are "exotic." 

In the next two Sections we analyze the original Harari-Shupe model and 

one of its possible minimal extensions: the extension is obtained by 

assuming that SU(3)c and the gauge group of electromagnetism are exact 

symmetries and hence they are realized linearly on the subconstituents. 

The results are summarized and discussed in Section 4. 
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2. The 'Harari-Shupe Model 

There are two types of subconstituents, s:(x) and E:(x), where 

A= 1,2 is a Weyl spinor index and a = 0,l labels a reducible representation 

of the electromagnetic gauge group: 

[Q, Sol = $a so 
(2.1) 

[Q, $x) 1 = -$aZI(x) 

Q being the electric charge operator. The left-handed fields st and $ 

can be embedded into the fundamental representation of a classification 

group U(8) 2 U(4) C-3 SUG’)~, where SU(2)X stands for the chiral "rotations" 

of the left-handed fields induced by Lorentz transformations. However, in 

view of the fact that the "physical" leptons and quarks are constructed 

out of triple products of the form (s ss) and (SIZE), it is more convenient 

to choose a classification group which keeps the subconstituents s and S 

separate from each other. Consequently, we choose a subgroup of U(8) as 

an effective classification group in the form of a direct product. The 

direct factors act on the fields s and 5, respectively. A convenient choice 

(in an obvious notation) is 

N41s @ u(41z = u(8) 

This corresponds to the embedding U(2)@ SU(2& C U(4), the internal group 

being U(2)s@ U(2)E. The Lie algebra of both direct factors here is spanned 

by a basis IK,U in the usual way. The electric charge operator is in a 

"diagonal" U(2) subalgebra, viz. 

Q = $Js + 13s) - $(us + I~$ 

The success of the Harari-Shupe model depends on the fact that the 

triple products (s~s~s~) and (Ez"iZE) must span locally eight different 
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states of (chiral) spin l/2. Obviously if spin is ignored, the maximal 

number of internal states is 23 = 8. However, this implies that the 

model is viable only if the fields s and S either do not obey Fermi sta- 

tistics or the model is non-minimal, i.e., it contains some "sub-color" 

group.2'3 Indeed, Fermi statistics implies linear relationships between 

binary products, viz. 

(2.2) 
a 

SA' bc 0 'BSC = 1 
hence the number of independent triple products is less than eight. In 2 

particular, composite lepton fields of the form s ~.s~s~ vanish identically. 

In order to extract the full "quark" and "lepton" contents of the triple 

products, we proceed to reduce out the Kronecker product 

classification group U(4). We have in a straightforward 

cl@U@cl= 

40 40 4 of the 

notation, 

(2.3) 
(4) x (4) x (4) = (4*) + (20) + (20) + (20) 

The irreducible representations on the r.h.s. of (2.3), in turn, are 

decomposed according to U(2)@ SU(2)X; the result is as follows: 

R = (2,2) 

87 = (4,2) 0 (2,4) CD (2,2) (2.4) 

cm = (4,4) 0 (2,‘2) 

The representations of spin l/2 are underlined. It is important to ob- 

serve that the spin 3/2 fields cannot be effectively decoupled2 (sent to 

a higher mass scale) by breaking the U(2) classification group alone; for 

an effective decoupling, the forces binding the subconstituents have to 

have a strong spin dependence. The total number of fields of spin l/2 
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is 16 instead of 8. This fact is the consequence of including spin (which 

was left out of consideration in Refs. 4,5); in considering all represen- 

tations with spin l/2, all possible anti-symmetric pairings of spin indices 

are counted separately. It is easy to see that within an associative 

algebra of the fields, there are no algebraic constraints which would re- 

move the composite fields of spin 3/2 while retaining all physical fields. __ 

In essence, this is a consequence of the fact that all algebraic constraints 

have to be imposed at the level of the binary products. Since the subcom- 

ponent fields transform as (2,2) of U(2)@ SU(2)x, the binary product 

transforms as 

(2,2) 0 (2,2) = (3,3) 0 (1,3) 0 (3,1) 0 (l,l) (2.5) 

Binary constraints consistent with associativity can always be formulated 

in a form which puts at least one of the representations occurring in (2.5) 

equal to zero. However, on doing so, one is never left with the correct 

charge count in the ternary products. 

It is worth noting that the fields of spin l/2 have to be collected 

from representations of different symmetries: hence a conventional 

scheme2 with subcolored Fermi fields (assuming that quarks and leptons 

are singlets of a subcolor group) does 

The basic trouble with this model 

right number of composite fields being 

not work. 

is, however, that -- despite the 

present -- the Lie algebra of the 

color group, SU(3),, cannot be realized as an inner derivation. In 

principle, one could think of two distinct ways of implementing SU(3)c: 

i> The subconstituents are color singlets; SU(3)= acts only on the 

composite quarks. (This is the way envisioned by Harari and Shupe.) 

ii) The generators of SU(3)c act on the subconstituents in a non- 

linear way such that the composite quarks transform linearly under this 
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action. I (A linear action on the composite quarks is necessary in order 

to obtain eight gluons as collective excitations.) Consider the first 

alternative. This means that there exist eight color generators, 

Ci (1 5 i 5 S), all of them homogeneous polynomials of the subconstituent 

fields and their conjugates, such that 

[‘i, ‘~1 = 0 (2.6a) -e 

11 ‘i’ s;s; s”,] # 0 (2.6b) 

However, by assumption, the algebra of fields is associative and the Ci 

are in the derivation algebra of the fields, which implies 

1 ‘i’ ci, 1 ab 
+BSC 

+ s; [Ci, $1 s”c + s;s; [Ci, s”,] z 0 ; 
this contradicts (2.6a). In order to exclude alternative ii), we recall 

that in order to support a nonlinear realization of the Lie algebra of 

SU(3) 
C’ 

the quark fields, as a vector space, have to be isomorphic to 

tangent vectors of a space symmetric under SU(3). All such spaces are 

cosets of SU(3) with respect to one of its subgroups.ll The maximal sub- 

space admitted by the Harari-Shupe model is isomorphic to STJ(3)/SU(2>@ 

U(1) * However, the group SU(2) @ U(1) is realized linearly on this space 

and its representations can be read off from Eq. (2.4). We note that there 

are no composite fields (of any charge) invariant under the action of 

SU(2)@IJ(l). Hence, in physical terms, a nonlinearly realized Lie algebra 

SU(3) cannot be identified with SU(3) 
C’ 

for it does not leave the leptons 

invariant. This proves our assertion. 
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3. An Extended Harari-Shupe Model 

In order to alleviate the difficulty with representing color, one can 

consider a minimal extension of the Harari-Shupe model including all exact 

symmetries at the subconstituent level. To this end, we consider chiral 

subconstituent fields si and Ei, (0 5 CY, 5 3), with internal group 

U(4)@ U(4), where the si ($), (1 5 i I 3) are triplets (antitriplets) 

under SU(3) This 
C 

C U(4), respectively, while sl and Hl are singlets. 

assignment is a simple generalization of the Pati-Salam four-color schemeI 

at the subconstituent level. By a straightforward generalization of the 

Harari-Shupe model, we discover a unique electric charge assignment, viz. 

[Q, $1 = [Q, S;] = 0 

[Q, s;] 1 $ s; , [Q, s;] = -+;; 

(3.1) 

The charge operator obviously commutes with SU(3) 
C’ 

In addition, one can 

define (just as in the original Harari-Shupe model) a conserved global 

quantum number, B-L; the conventional assignments being +1/3 for s1 and 

0 
s , respectively. The fields S carry quantum numbers B-L of opposite sign. 

No separate baryon and lepton numbers can be defined in these models.3 

The complete classification group is U(16). However, as explained in the 

previous Section, we utilize the classification group U(8)s@LJ(8)5 C U(16). 

The quark and lepton contents of the triple products (s s s) and (SSS) are 

extracted by reducing out (8)@ (8)@ (8) with respect to 

u(4) @ SU(2+ C U(8). 

The result of the reduction process is the following: 

(8) 0 (8) 0 (8) = @OS, 4) @ (20M, 2) 0 (4*, 4) 0 (20M' 2) 

+ 9’ a2 0 (20M, 4)20 c4*, 2)20 (20M, 2)2 , 

(3.2) 
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(20)s = (1011 O (6)2/3 @ (3)1/3 O (110 9 

woM = (8)1@ (6)2/3 @ (3*)2/3 @ (3)1/3 3 (3.3) 

(4*) = (1)1@ (3*)2,3 , 

where the subscripts indicate the eigenvalues of the electric charge. 

Altogether, therefore, this model contains two families of the physical 

quarks and leptons, ((U1 0 MO 0 (3*)2/3 @ (3)1,3)2, all of them coming 

from the mixed representation, (2,1,0,0,0,0,0) of U(8). These composite 

fields correspond to (ei, veL, uL, $,)2; the assignment of u L to (3*) of 

SU(3)c is purely a matter of convention. In addition, however, there are 

other, unwanted representations of SU(3)c present, as it can be read off 

from Eqs. (3.2) and (3.3); it is not possible to eliminate those by means 

of algebraic constraints within the framework of an associative algebra 

of the fields, while retaining all the physical composite fields. As in 

the original Harari-Shupe model, the duplication of the states in 

(2,1,0,0,0,0,0) of u(8) is a consequence of two independent spin coupling 

where the two 20-dimensional representations of U(4), corresponding to 

the Young patterns (3,0,0) and (2,1,0), are distinguished by subscripts 

S and M, respectively. The representation (4*) of U(4) corresponds to the 

Young pattern (l,l,l). As before, representations with spin l/2 are under- 

lined. In order to distinguish quarks from leptons, the representations 

of U(4) are further reduced out with respect to SU(3)c. This gives: 

schemes being present, viz. 

((2) 0 (2)) 0 2 = ((3) 0 (1))O (2) 
(3.4) 

= ((2) 0 (4)) Q (2) 

In principle, there exists the possibility of splitting the masses of the 

two families by means of a spin dependence of the binding forces; however, 
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so far, tie have not found a simple and convincing mechanism for doing so. 

Again, similarly to the Harari-Shupe model, all the "physical" states 

come from a representation of mixed symmetry, hence a conventional sub- 

colored Fermi algebra of the subconstituents does not provide us with a 

viable model. 

Given the subconstituent fields, the most general Lagrangian invariant -- 

under a local U(4)@ U(4) symmetry is given by 

(3.5) 

where J&?~ is the kinetic term of the gauge fields and D stands for the 

standard covariant derivative.13 The symmetry U(4) has to be badly broken: 

indeed, on writing U(4) 2 SU(4)@ U(1) we can further decompose SU(4) into 

representations of SU(3)c@ U(1) as follows: 

(15) = (3) 0 (3*) 0 (8) 0 (1) . (3.6) 

The SU(4) singlet and color triplet gauge bosons are responsible for 

proton decay. Indeed, the elementary processes contributing to this decay 

are: 

uu -t e+;i (color triplet boson in the direct channel and exchange 
of a SU(4) singlet) 

ud + e+E (double exchange of color triplets) 

All these bosons can, in principle, be made superheavy if some bilinears 

develop a zero mass condensate': the propagators required to have zero 

mass poles of sufficient strength are the following 

(( ;a s~A,B* sBf39' 
A B 1 > + 

&F 

(( Zis~ASj* soA* 
A A ) > + 

= ,ij,W + G@)i 
j 

(3.7a) 

(3.7b) 
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Whether 'or not the composite propagators can develop poles at zero mass 

is a dynamical question which is beyond the scope of the present analysis; 

however, a severe kinematic constraint imposed by (3.7) is that the 

color octet part of (3.7b) must not contain a zero mass pole, for we want 

to leave SU(3) 
C 

The formal 

are of the form 

intact. 

subconstituent currents corresponding to the gauge symmetry -. 

J-J?’ = cx* B 
AB 'A 'B 

(3.8) 
as Jo = -a* -B 

'A 'B 

and their conjugates. The electromagnetic current is contained in an 

SU(3)c singlet combination of the currents (3.8), viz. 

1 jb = 3 ( 
i* i sA sB - sA sB -i* -i) + (C.C.) (3.9) 

In addition, the Lagrangian (3.5) possesses a global (generalized Giirsey- 

Pauli) symmetry, with the currents 

a8 K~ = Lx* B 
'A 'B 

(3.10) 
Kw3 = a* -8 
AB 'A 'B ' 

(There can be no elementary gauge fields associated with the currents 

(3.10), for that theory would not be free of anomalies.) 

The main difficulty with this model arises on examining the question 

of weak interactions. Since the standard weak-electromagnetic group, 

sumL 0 U(l), is not an exact symmetry, no proof can be given of the 

absence of normal weak interactions (as we, for instance, proved that the 

model discussed in Section 2 does not contain SU(3)c). Nevertheless, 

it is very plausible that this model either does not contain weak 
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interactions or else, their existence depends on some delicate and so far 

completely unforeseen properties of the dynamics. 

In order to see this, we first of all observe that the vector space 

spanned by the bilinears (3.8) and (3.10) does not contain elements with 

the quantum numbers corresponding to the generators of SU(2)L@ U(1). It 

can be easily demonstrated that any quantity carrying the quantum numbers 

of the charged generators must be at least trilinear in the currents (3.8) 

and (3.10). The minimal combination is given by the expressions: 

C-1 = 
TBD 

-k* o 
sEeCFEijk (5 $1 (SE SF> 

+ (z;* * sj ) (zk* so> D EF t 
+ (p-d (3.11) 

T$+) = ,(-$* . 
BD BD 

The electrically neutral generators can be decomposed into the orthogonal 

combinations, 0~ (T3 rt l/2 Y). One of those, the electromagnetic current, 

is exactly conserved and, hence, it must be represented by the bilinear 

expression (3.9) at the level of subconstituents. The combination 

"orthogonal" to this must again be trilinear in (3.8) and (3.10), since 

U(4)@ U(4) does not contain enough diagonal operators to describe both 

T3 + l/2 Y. We have: 

(0) ZBD = EM ECF (S;* SE) (S;* s;) (S;* S;) 

j* $1 (SE $1 E ij k ‘pqk (3.12) 

In the previous formulae, the symbol "(perm)" stands for terms which 

differ from those written out explicitly in permutations of the spinor 
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indices contracted. Equations (3.11) and (3.12) express the fact (first 

noted by Harari, Ref. 4) that weak vector bosons must be composite states 

of (at least) three rishons and three antirishons. 

We observed earlier in this Section that the "physical" composite 

fields come from representations of mixed symmetry in the decomposition 

of trilinear products: this could be realized, for instance, by assuming 

an (associative) parafermi algebra satisfied by the subconstituents. No 

matter what the exact algebraic structure spanned by the subconstituents 

is, the set of currents given by (3.9), (3.11), (3.12) cannot be isomorphic 

to a -local SU(2)L@ U(1). From a physical point of view this means that 

the Glashow-Salam-Weinberg unification of weak and electromagnetic inter- 

actions cannot be formulated in an algebraic language within such a minimal 

subconstituent model: in particular, the Weinberg angle has no simple 

algebraic expression of the usual type, viz. 

Tr (T(O) T(O)) = sin2eW Tr (QQ) 

While we see no logical reason for excluding minimal subconstituent models 

on this ground alone, their failure for providing a simple picture of the 

unification of weak and electromagnetic interactions is somewhat 

discouraging. 

4. Discussion 

There are several features emerging from the previous analysis which 

seem to be of interest for further development of subconstituent models. 

Some of these are the following: 

9 Spin (or, more precisely, the Lorentz group) presents an essential 

complication. In particular, the existence of several ways of contracting 
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three s&constituents into spin l/2 quarks and leptons increases the multi- 

plicity of those states. This is a conclusion resting on rather firm 

group theoretical grounds. Mathematically (but not physically) this 

phenomenon is the same as observed by NelsonI who considered a Harari- 

Shupe model enlarged by an SU(2) "color" group. Whether or not the increased 

multiplicity of "physical" composite fields can be used for the description -0 

of several generations is an open question; it was already commented on in 

the previous Sections. The basic difficulty is, however, that leptons do 

not multiply at the same rate as quarks do, for in all subconstituent models 

considered so far they occur in representations of the highest weight of 

the internal classification group. As a consequence, one invariably ends 

up with some incomplete generations, having more quark-like states than 

leptons. 

ii) In all subconstituent models proposed so far, there exist numerous 

exotic composite fields; some of those can be read off from the reduction 

schemes given in Sections 2 and 3, others, occurring in trilinears like 

(s s S), (SSs) etc. and in higher products have not been analyzed here. 

Although, for instance, Terazawal insists that such exotics should be taken 

seriously, we know of no consistent symmetry breaking scheme which would 

remove the exotic fields (and only those!) from the realm of the known 

light quarks and leptons. 

iii) The question of "statistics" of the subconstituents is still an 

open one. In the original Harari-Shupe model the physical composite fields 

have to be collected from triple products of different symmetries, whereas 

in the extended Harari-Shupe model they all come from a representation of 

mixed symmetry (which, however, also contains some exotic fields). This 



- 16 - 

means that either the triple product is essentially non-local (but then 

where are the orbital excitations?) or that the subconstituents are not 

fermions; they may be parafermions of order two: that's why Nelson's 

modell' seems to be better than the original Harari-Shupe model, cf. the 

celebrated paper by Han and Nambu15 and references quoted there. 

iv) It is possible that quantum theory, as we know it, has to be 

transcended at the level of subconstituents; in particular, the subcon- 

stituents may not obey an associative algebra. In essence, such a possi- 

bility has been advocated in a recent paper by Adler16 and it has been 

considered (at the level of now-familiar quarks) by Giirsey and his collabo- 

rators. l7 The trouble with this approach is that non-associative algebras 

are easy to create18 but difficult to live with.lg All known not- 

associative algebras20 possessing "nice" properties7 are finite dimensional 

and therefore it is hard to see how field variables living on a locally 

Minkowskian continuum could span some "nice" non-associative algebras. 
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