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ABSTRACT 

The superheavy magnetic monopoles predicted by grand unified 
theories would not be produced in significant numbers if electro- 
magnetic gauge invariance is spontaneously broken when the temperature 
T is greater than T, 2 1 TeV. 

Grand unified theories predict the existence of superheavy mag- 
netic monopoles.1-7 These monopoles are of the type discovered by 
't Hooft and Polyakov.6 They exist if a semi-simple group is broken 
down to a subgroup which contains Ul factor. The monopole mass Mm is 
of order MK/a, where a =g2/4T, g is a gauge coupling and MK is a 
typical mass of a gauge boson associated with a broken generator. 
For example, in Georgi-Glashow model Mx * 1014 GeV and Mm 'V lo16 GeV. 

The problem of monopole production and their subsequent annihi- 
lation, in the context of a second order or weak1 first order phase 
transition, Y was analyzed by Zeldovich and Khlopov and by Preskill.2 
In preskill's analysis, it was found that relic monopoles would exceed 
present bounds by roughly 14 orders of magnitude. Since it seems 
difficult to modify the estimated annihilation rate, one must find a 
way which suppresses the production of these monopoles. 

One interesting solution to this problem, suggested by Preskill,2 
Einhom et al.,3 and Guth and Tye4 is that the phase transition at 
which the Ul factor occurs is strongly first order. The problem of 
monopole production in a strongly first order phase transition was 
treated in detail by Guth and Tye. 

In this talk I will describe an alternative scenario for the 
suppression of monopoles, developed in collaboration with P. Langacker;l 
in which the universe undergoes two or more phase transitions (which 
can be second order) 
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is not a subgroup of H,. The critical temperature at which 
appears is T, 2 1 TeV. For example, in SU5 model, 
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Since Tc <<<Mm * 1016 GeV no monopoles will be produced. 
We consider a model which at T=O is the standard SU5 model with 

symmetry breaking 

su5 - sucxsu XTJ EM 
3 2 1 - sucxu 3 1 (3) 
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by an adjoint Higgs representation and three five Higgs representa- 
tions. (It turns out that this is the minimum number of five Higgs 
representations required for our purpose.) The Higgs potential at 
T=Ois 

V 
= v@ + % + v+ (44 

% 
I -Lm2 Tr-2 + 22 

2 ta(TrO ) + ibTrQ4 (4b) 

(4c) 

where Q is an adjoint Higgs representation and pi are five Higgs 
representations. We have imposed discrete symmetries Q-+-Q and 
$i+-$i for simplicity. 

For O<T <<Mx we needconly to consider the SU2 xU1 part of the 
model. (We assume that SU3 is never broken.) Therefore let us first 
consider SU2XUl part of the model with Higgs potential V+, Eq. (4d), 
in which $i are SU2 doublets. 

At T=O we choose the parameters in the potential such that the 
vacuum expectation values (VEV) of the Higgs fields are <@l(O)> = 
(0 v~)~/fi and <412(O)> = <93(O)> = 0. SU2 xU1 symmetry is broken 
down to Uy. We also require the parameters satisfy the sufficient 
conditions for V+ to be bounded below.' 
that when two fields $i and $j 

We also take Pi* > 2lnijl SO 

develo VEV they want to 2 e orthogonal, . I.e., @i = (0 Vi>T/~ and $j = (vj 0) F /fi. We want Uy to be unbroken 
at T=O but broken for T >T,. 

At high temperatures, we have to calculate the finite temperature 
effective potential to study the symmetry behavior of the system.8-10 
For sufficiently high T, the ensemble averages <$i(T)> can be obtained 
by minimizing the effective potentialg,10 

V4 CT) 312 = V&O) -I- c 7 T Fi$;$i 
i=l 

. 

The functions Fi are given by7 

Fi = (3g2+g12)/8 + hi + c[$ + $1 + Yukawa terms . (6) 
jfi 

For small fermion masses Yukawa terms ar 
2 

negli ible. 
5 1 F TThe ;;i;E;;;z mass terms at high temper$ture will be Mi(T)=u, - 4 i . , 

if Fi>O then for T2 2 2u1/F1 SU2 xU1 will be restored. However, if 
Fi< 0 the symmetry will stay broken11,12 or may be further broken 
down to a lower symmetry' at high temperature. We choose parameters 
so that F1,2<0. This turns out to require F3> 0 so that for suffi- 
ciently high T, we may have a phase transition to a phase where 
SU2 xU1 is completely broken. 
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We have found a range of parameters such that at high temperature 
@q(T)> = (0 ~l(T)>~/fi, Q2(T)> = (v2(T) O)T/fi, <$3(T)> = 0 is (at 
least) a local minimum of Vd(T).7 These parameters satify 

xl cI x2 N ' " g4 , IPij( 

-q3 - -a23 = u > 3x + U12 + 3x 

ll$l ’ I$ , 2 2 > U12/X > -1 , A3 > CI /x . (7) 

where X = (3g2+g'2)/8 I 0.16. The condition A<<g4 allows us to 
neglect radiative corrections to V 4)' For a typical set of numbers, 
choose X*-al2 = g2 = 0.4, u 2 1.3, X3 2 4.1. We see that there is 
a range of parameters which satisfy the above conditions, but a rather 
large value for X3 is required. The second order phase transition 
occurs at T, such that v2(T,) = 0. T, is given by 

T, = Aul/q = (246 GeV)A (8) 

where A is a function of the parameters in the potential and is typi- 
cally of order unity, but can be made much larger or smaller by ad- 
justing parameters. We will assume T, 2 1 TeV. We have therefore 
demonstrated the existence of a phase transition in which SU2XUl is 
broken to UFM at T= 0 and SU2 xU1 is completely broken for T > T,. 

Now I would like to describe how to embed our scheme to SU5. 
We study the complete SU5 potential, Eqs. (4a)-(4d). The conditions 
that V is bounded below and have symmetry breaking Eq. (3) at T=O are 

b > 0, 15a+7b > 0, Bi < 0, 5ai+4Bi > 0 

yo, Jhihj+tQj >o. (9) 

For T>MX we have to consider the heavy particle contributions to 
V(T). The effective potential at high temperature, T>MX, are given 
by 

V(T) = 
31 

V@(O) + V$(O) + V@+(O) + + GT2Tro2 + ~-F!T29~$i 
i=12 IL 

where (10) 

6i 
3 

G =- + 94b + 75g2 + c (50ai + 
i=l 

10Si) 1 
F; = 2xi+ c 

j#i 
%Uij ++pij] + $ g2 + Yukawa terms 

G is always positive for the parameters satisfying E 
9 

. (9). Therefore, 
at sufficiently high T, the effective mass of @, -b +%GT2 > 0 so 
that VEV <a(T)> will vanish. The parameters Xi, US* and Pij have been 
already chosen as Eq. (7) f or the phase transitionlit T&l TeV. For 
those Xi, 6-s and Pij and any oi and Bi in Eq. (9) F3 will be always 
positive. $i and F2 may be positive or negative depending upon the 
values of ai and Si. It is very likely that SU5 synnnetry have been 
restored in the very early universe. In this case oi and @i should 
be chosen such that Fl and F2 are also positive. 
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It is a difficult problem to study the effective potential near 
T 5 Mx. There may be intermediate phases between SU5 and SU$ phases 
(for example, su; x su2 x Ul) : 

SU5 T intermediate phases EM yJ; < su;xul . (11) 

There should be essentially no magnetic monopoles in our model. 
Any monopoles produced during intermediate phases at T 5 MK will 
become unstable once the SU: phase is entered. They would presumably 
either decay or be confined in pairs which could subsequently annihi- 
late. Stable monopoles of mass Mm fi: 1016 GeV could, in principle, 
exist for T < T,, but the number r * exp(-Mm/Tc) expected from thermal 
fluctuations when T * T is extremely small. 

%l For T,>T>T, the Ul is spontaneously broken. During this period 
the photon has a mass and electric charge is violated. Charge viola- 
ting reactions are in equilibrium for T 2 Tc.7 If there is a net 
charge density in the present universe left over from fluctuations 
from e uilibrium as T > T, it is far smaller' than the observational 
limit 11 s14 from galaxies and cosmology. 
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