SUPPRESSION OF SUPERHEAVY MAGNETIC MONOPOLES IN GRAND UNIFIED THEORIES*

So-Young Pi Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

The superheavy magnetic monopoles predicted by grand unified theories would not be produced in significant numbers if electromagnetic gauge invariance is spontaneously broken when the temperature T is greater than $T_c \gtrsim 1$ TeV.

Grand unified theories predict the existence of superheavy magnetic monopoles. 1^{-7} These monopoles are of the type discovered by 't Hooft and Polyakov.⁶ They exist if a semi-simple group is broken down to a subgroup which contains ${\rm U}_1$ factor. The monopole mass ${\rm M}_m$ is of order M_X/α , where $\alpha = g^2/4\pi$, g is a gauge coupling and M_X is a typical mass of a gauge boson associated with a broken generator. For example, in Georgi-Glashow model $M_X \simeq 10^{14}$ GeV and $M_m \simeq 10^{16}$ GeV.

The problem of monopole production and their subsequent annihilation, in the context of a second order or weakly first order phase transition, was analyzed by Zeldovich and Khlopov¹ and by Preskill.² In preskill's analysis, it was found that relic monopoles would exceed present bounds by roughly 14 orders of magnitude. Since it seems difficult to modify the estimated annihilation rate, one must find a way which suppresses the production of these monopoles.

One interesting solution to this problem, suggested by Preskill,² Einhorn et al.,³ and Guth and Tye⁴ is that the phase transition at which the U1 factor occurs is strongly first order. The problem of monopole production in a strongly first order phase transition was treated in detail by Guth and Tye.

In this talk I will describe an alternative scenario for the suppression of monopoles, developed in collaboration with P. Langacker, in which the universe undergoes two or more phase transitions (which can be second order)

$$G \xrightarrow{T_1} H_1 \xrightarrow{T_2} H_2 \cdots \xrightarrow{T_n} H_n \xrightarrow{T_c} SU_3^c \times U_1^{EM}$$
, (1)

where U_1^{EM} is not a subgroup of H_n . The critical temperature at which U_1^{EM} appears is $T_c \gtrsim 1$ TeV. For example, in SU₅ model,

$$SU_{5} \xrightarrow{T_{1} \leq M_{X}} SU_{3}^{c} \xrightarrow{T_{c} \geq 1 \text{ TeV}} SU_{3}^{c} \times U_{1}^{EM} \qquad (2)$$

Since T <<< $M_m \simeq 10^{16}$ GeV no monopoles will be produced. We consider a model which at T = 0 is the standard SU₅ model with symmetry breaking

$$SU_5 \rightarrow SU_3^c \times SU_2 \times U_1 \rightarrow SU_3^c \times U_1^{EM}$$
 (3)

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. (Invited talk presented at the XXth International Conference on High Energy Physics, University of Wisconsin, Madison, July 17-23, 1980.)

by an adjoint Higgs representation and three five Higgs representations. (It turns out that this is the minimum number of five Higgs representations required for our purpose.) The Higgs potential at T=0 is

$$V = V_{\phi} + V_{\phi\phi} + V_{\phi}$$
(4a)

$$V_{\phi} = -\frac{1}{2}m^2 \operatorname{Tr} \phi^2 + \frac{1}{4}a(\operatorname{Tr} \phi^2)^2 + \frac{1}{2}b\operatorname{Tr} \phi^4$$
(4b)

$$V_{\Phi\phi} = \sum_{i=1}^{3} \left[\alpha_{i} \phi_{i}^{\dagger} \phi_{i} \operatorname{Tr} \phi^{2} + \beta_{i} \phi_{ia}^{\dagger} \phi_{ab}^{2} \phi_{ib} \right]$$
(4c)

$$V_{\phi} = \sum_{i=1}^{3} \left[-u_{i}^{2} \phi_{i}^{\dagger} \phi_{i} + \lambda_{i} (\phi_{i}^{\dagger} \phi_{i})^{2} \right] + \sum_{i < j} \left[\sigma_{ij} (\phi_{i}^{\dagger} \phi_{i}) (\phi_{j}^{\dagger} \phi_{j}) + \rho_{ij} (\phi_{i}^{\dagger} \phi_{j}) (\phi_{j}^{\dagger} \phi_{i}) + \eta_{ij} (\phi_{i}^{\dagger} \phi_{j})^{2} + \eta_{ij}^{*} (\phi_{j}^{\dagger} \phi_{i})^{2} \right]$$
(4d)

where Φ is an adjoint Higgs representation and ϕ_i are five Higgs representations. We have imposed discrete symmetries $\Phi \rightarrow -\Phi$ and $\phi_i \rightarrow -\phi_i$ for simplicity.

For $0 \le T \le M_X$ we need only to consider the $SU_2 \times U_1$ part of the model. (We assume that SU_3 is never broken.) Therefore let us first consider $SU_2 \times U_1$ part of the model with Higgs potential V_{ϕ} , Eq. (4d), in which ϕ_1 are SU_2 doublets.

At T = 0 we choose the parameters in the potential such that the vacuum expectation values (VEV) of the Higgs fields are $\langle \phi_1(0) \rangle = (0 \ v_1)^T / \sqrt{2}$ and $\langle \phi_2(0) \rangle = \langle \phi_3(0) \rangle = 0$. SU₂ × U₁ symmetry is broken down to U^{EM}. We also require the parameters satisfy the sufficient conditions for V_{ϕ} to be bounded below.⁷ We also take $\rho_{ij} > 2 |\eta_{ij}|$ so that when two fields ϕ_i and ϕ_j develop VEV they want to be orthogonal, i.e., $\phi_i = (0 \ v_i)^T / \sqrt{2}$ and $\phi_j = (v_j \ 0)^T / \sqrt{2}$. We want U^{EM}₁ to be unbroken at T = 0 but broken for T > T_c.

At high temperatures, we have to calculate the finite temperature effective potential to study the symmetry behavior of the system.⁸⁻¹⁰ For sufficiently high T, the ensemble averages $\langle \phi_i(T) \rangle$ can be obtained by minimizing the effective potential^{9,10}

$$V_{\phi}(T) = V_{\phi}(0) + \sum_{i=1}^{3} \frac{1}{2} T^{2} F_{i} \phi_{i}^{\dagger} \phi_{i} \qquad (5)$$

The functions F_i are given by⁷

$$F_{i} = (3g^{2} + g'^{2})/8 + \lambda_{i} + \sum_{j \neq i} \left[\frac{\sigma_{ij}}{3} + \frac{\rho_{ij}}{6} \right] + Yukawa \ terms .$$
(6)

For small fermion masses Yukawa terms are negligible. The effective mass terms at high temperature will be $M_1^2(T) = \mu_1^2 - \frac{1}{2}F_1T^2$. Therefore, if $F_1 > 0$ then for $T^2 \ge 2\mu_1^2/F_1$ SU₂ × U₁ will be restored. However, if $F_1 < 0$ the symmetry will stay broken^{11,12} or may be further broken down to a lower symmetry⁹ at high temperature. We choose parameters so that $F_{1,2} < 0$. This turns out to require $F_3 > 0$ so that for sufficiently high T, we may have a phase transition to a phase where SU₂ × U₁ is completely broken.

We have found a range of parameters such that at high temperature $\langle \phi_1(T) \rangle = (0 \ v_1(T))^T / \sqrt{2}, \langle \phi_2(T) \rangle = (v_2(T) \ 0)^T / \sqrt{2}, \langle \phi_3(T) \rangle = 0$ is (at least) a local minimum of $V_{\phi}(T)$.⁷ These parameters satify

$$\begin{split} \lambda_{1} &\simeq \lambda_{2} \simeq \lambda >> g^{4} , |\rho_{ij}| \\ \sigma_{13} &\simeq -\sigma_{23} \simeq \sigma > 3\lambda + \sigma_{12} + 3X \\ |\mu_{2}^{2}| > \mu_{1}^{2} , 2 > \sigma_{12}/\lambda > -1 , \lambda_{3} > \sigma^{2}/\lambda . \end{split}$$
(7)

where X = $(3g^2 + g'^2)/8 \simeq 0.16$. The condition $\lambda << g^4$ allows us to neglect radiative corrections to V_{ϕ} . For a typical set of numbers, choose $\lambda \simeq -\sigma_{12} \simeq g^2 \simeq 0.4$, $\sigma \gtrsim 1.3$, $\lambda_3 \gtrsim 4.1$. We see that there is a range of parameters which satisfy the above conditions, but a rather large value for λ_3 is required. The second order phase transition occurs at T_c such that $v_2(T_c) = 0$. T_c is given by

$$T_{c} = A\mu_{1}/\sqrt{\lambda_{1}} = (246 \text{ GeV})A \tag{8}$$

where A is a function of the parameters in the potential and is typically of order unity, but can be made much larger or smaller by adjusting parameters. We will assume $T_c \ge 1$ TeV. We have therefore demonstrated the existence of a phase transition in which $SU_2 \times U_1$ is broken to U_1^{EM} at T = 0 and $SU_2 \times U_1$ is completely broken for $T > T_c$.

broken to U_{I}^{EM} at T = 0 and $SU_{2} \times U_{1}$ is completely broken for T > T_{c} . Now I would like to describe how to embed our scheme to SU_{5} . We study the complete SU_{5} potential, Eqs. (4a)-(4d). The conditions that V is bounded below and have symmetry breaking Eq. (3) at T = 0 are

b > 0,
$$15a + 7b > 0$$
, $\beta_{i} < 0$, $5\alpha_{i} + 4\beta_{i} > 0$
 $\lambda_{i} > 0$, $\sqrt{\lambda_{i}\lambda_{j}} + \sigma_{ij} > 0$. (9)

For $T > M_X$ we have to consider the heavy particle contributions to V(T). The effective potential at high temperature, $T > M_X$, are given by $1 - 2 - \frac{3}{2} + \frac{1}{2} + \frac{3}{2} + \frac$

$$V(T) = V_{\phi}(0) + V_{\phi}(0) + V_{\phi\phi}(0) + \frac{1}{2} GT^{2}Tr\phi^{2} + \sum_{i=1}^{\infty} \frac{1}{2} F_{i}^{\prime}T^{2}\phi_{i}^{\dagger}\phi_{i}$$
(10)

where

$$G = \frac{1}{60} \left[13a + 94b + 75g^2 + \sum_{i=1}^{3} (50\alpha_i + 10\beta_i) \right]$$

$$F'_{i} = 2\lambda_{i} + \sum_{i \neq i} \left[\frac{5}{6} \sigma_{ij} + \frac{1}{6} \rho_{ij} \right] + \frac{6}{5} g^2 + Yukawa \text{ terms}$$

G is always positive for the parameters satisfying Eq. (9). Therefore, at sufficiently high T, the effective mass of Φ , $-\frac{1}{2}m^2 + \frac{1}{2}GT^2 > 0$ so that VEV $\langle \Phi(T) \rangle$ will vanish. The parameters λ_i , σ_{ij} and ρ_{ij} have been already chosen as Eq. (7) for the phase transition at $T_c \geq 1$ TeV. For those λ_i , σ_{ij} and ρ_{ij} and any α_i and β_i in Eq. (9) F₃ will be always positive. F₁ and F₂ may be positive or negative depending upon the values of α_i and β_i . It is very likely that SU₅ symmetry have been restored in the very early universe. In this case α_i and β_i should be chosen such that F₁ and F₂ are also positive.

It is a difficult problem to study the effective potential near $T \leq M_X$. There may be intermediate phases between SU_5 and SU_3^C phases (for example, $SU_3^C \times SU_2 \times U_1$):

$$SU_5 \xrightarrow{T_1}$$
 intermediate phases $\xrightarrow{T_n} SU_3^c \xrightarrow{T_c} SU_3^c \times U_1^{EM}$. (11)

There should be essentially no magnetic monopoles in our model. Any monopoles produced during intermediate phases at T $\leq M_X$ will become unstable once the SU^C₃ phase is entered. They would presumably either decay or be confined in pairs which could subsequently annihilate. Stable monopoles of mass $M_m \approx 10^{16}$ GeV could, in principle, exist for T < T_c, but the number r $\simeq \exp(-M_m/T_c)$ expected from thermal fluctuations when T $\simeq T_c$ is extremely small. For T_n > T > T_c the U^{EM}₁ is spontaneously broken. During this period

For $T_n > T > T_c$ the U_1^{LPI} is spontaneously broken. During this period the photon has a mass and electric charge is violated. Charge violating reactions are in equilibrium for $T \gtrsim T_c$.⁷ If there is a net charge density in the present universe left over from fluctuations from equilibrium as $T > T_c$ it is far smaller⁷ than the observational limit¹³,¹⁴ from galaxies and cosmology.

REFERENCES

- 1. Ya. B. Zel'dovich and M. Y. Khlopov, Phys. Lett. 79B, 239 (1979).
- 2. J. P. Preskill, Phys. Rev. Lett. <u>43</u>, 1365 (1979).
- 3. M. B. Einhorn, D. L. Stein and D. Toussaint, Phys. Rev. <u>D21</u>, 3295 (1980).
- 4. A. H. Guth and S.-H. H. Tye, Phys. Rev. Lett. 44, 631, 963 (1980).
- 5. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
- 6. G. 't Hooft, Nucl. Phys. <u>B79</u>, 276 (1974); A. M. Polyakov, Pis'ma Eksp. Teor. Fiz. <u>20</u>, 430 (1974) [JETP Lett. 20, 194 (1974)]. For an introduction, see S. Coleman in <u>New Phenomena in Sub-</u><u>nuclear Physics</u>, Part A, ed. A. Zichichi (Plenum, N.Y., 1977), p. 297.
- 7. P. Langacker and S.-Y. Pi, Phys. Rev. Lett. <u>45</u>, 1 (1980).
- 8. D. A. Kirzhnits and A. D. Linde, Phys. Lett. <u>42B</u>, 471 (1972) and Ann. Phys. <u>101</u>, 195 (1976).
- 9. S. Weinberg, Phys. Rev. D9, 3357 (1974).
- 10. L. Dolan and R. Jackiw, Phys. Rev. <u>D9</u>, 3320 (1974).
- 11. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. <u>42</u>, 1651 (1979), Phys. Rev. <u>D20</u>, 3390 (1979), and CCNY preprint HEP-7916 (1979).
- 12. A. Zee, Phys. Rev. Lett. 44, 703 (1980).
- R. A. Lyttleton and H. Bondi, Proc. R. Soc. Lond. <u>A252</u>, 313 (1959).
- 14. A. Barnes, Astron. J. 227, 1 (1979).