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ABSTRACT 

We consider quantum chromodynamics without quarks, dimensionally 

continued to 2 + e dimensions. Perturbation theory for this model is 

shown to be highly infrared singular, and the theory, order by order, is 

not smoothly connected to the two-dimensional theory. We show that with 

a certain selective resummation of diagrams, one can control these 

divergences, and obtain a structure very similar to that of the 't Hooft 

model for mesons. The model is then in fact equivalent to the large N 

limit of two-dimensional QCD with massless scalar particles in the funda- 

mental representation. The two-gluon bound state equation which we 

obtain, however, is itself infrared singular and possesses no normalizable 

solutions. We discuss this problem in the context of an analog scalar 

model, and speculate on its possible resolution. 
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1. INTRODUCTION 

Quantum chromodynamics (QCD), the theory of quarks and gluons, is 

believed to completely describe the strong interacti0ns.l A derivation 

of the properties of hadrons from QCD will require a detailed understand- 

ing of the interplay of quark and gluon dynamics. The pure Yang-Mills 

theory in the absence of quarks, however, is itself of great interest. 

Confinement of quarks, for example, is believed to arise from the 

properties of the pure gluon theory.2 Moreover, the pure gluon theory 

should possess a perfectly sensible spectrum of states. In the real 

world, many of these states presumably mix strongly with quark-antiquark 

states, but some nearly pure "glueball" states may well exist in nature.3 

The four-dimensional theory, even without quarks, is enormously 

complex. In this paper we consider a significantly simpler model, QCD, 

in the absence of fermions, dimensionally continued to 2 + E dimensions, 

where E is infinitesimal. This theory describes the interactions of 

colored gluons possessing E degrees of freedom. While this model is 

obviously unrealistic, one might expect that its solution /would exhibit 

many of the hoped-for attributes of the four-dimensional theory. For 

example, consider the problem of confinement. This problem can be 

studied by computing the energy of separation of external sources in 

the fundamental representation of the gauge group. In two dimensions 

this potential is linear, a fact that follows from dimensional analysis 

alone. In higher dimensions the situation is more complex. Before the 

gluon self-interaction is considered the potential is Coulombic: 

V(r) - 
1 In(r) in 2 + 1 dimensions and V(r) - 7 in 3 + 1 dimensions. 
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In 'four dimensions, it is widely believed that gluon interactions 

turn this Coulombic potential into a linear one, providing confinement 

of quarks. This is strongly suggested by work in lattice gauge theories.2 

In four or less dimensions, these theories presumably yield a linear 

potential between static sources.4 These statements have recently 

received strong support from the Monte Carlo calculations of Creutz.' 

Polyakov has shown,6 in the example of compact QED in 2 + 1 dimensions, 

that such a phenomenon can sometimes be observed in a continuum theory. 

Here the naive logarithmic potential was transformed by interactions into 

a linear one. 

In 2 + E dimensions, the leading term in the force law behaves as 

E(r) - r'-s. Because the theory possesses non-trividl interactions and 

is very sensitive to the infrared region, higher order effects could 

dramatically alter the force law (for example, giving higher powers of 

r) . On the basis of our discussion above, one might expect that the 

force law which emerges should be strictly linear, E(r)- r. In this 

sense, one might hope to address the problem of confinement in an s 

expansion. 

The spectrum of this theory may also have features in common with 

the four-dimensional theory. In particular, one might expect that the 

spectrum consists of glueballs, color-singlet bound states of pure glue. 

The mass spectrum of these glueballs and the structure of their wave 

functions might be of interest in inferring the properties of the 

corresponding objects in the four-dimensional theory. 

QCD in 2 + E dimensions provides a simple model to study a number 

of other ideas which have been considered in the four-dimensional theories. 
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For example, the properties of the gluon propagator have been the subject 

of much study recently.7 In particular, singular behavior of the gluon 

propagator in the infrared might be responsible for confinement. 

Paradoxes arise, however, when spectral decompositions are applied to 

the propagator. In 2 + E dimensions, the gluon propagator has singular 

infrared behavior ab initio and some of these questions may be addressed 

in low orders of perturbation theory. 

One might also hope to study the structure of the vacuum, and deter- 

mine whether this structure plays a decisive role in the dynamics of the 

theory. Since in two dimensions the vacuum is trivial and contains no 

quanta, it may be possible to study the properties of the vacuum in an 

E expansion. In particular the vacuum in 2 + E dimensions might only 

mix weakly with glueball states, The implication of this mixing for 

confinement is surely of interest. 

Order by order in perturbation theory, QCD in 2 + s dimensions is 

plagued by severe infrared divergences and appears to be quite complex. 

As we shall see, however, it is possible to reorganize the perturbation 

expansion in such a way that a simple picture emerges. With this 

reordering, it becomes evident that creation and destruction of trans- 

verse gluons is suppressed. As a result, the perturbation expansion 

consists of only planar diagrams. The theory is then equivalent to the 

large N limit of QCD of E scalar mesons in the fundamental representa- 

tion of SU(N) in two dimensions (with an appropriate resealing of the 

coupling constants). One can then easily write down a bound state 

equation for a color-singlet gluon pair. 
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The'theory treated in this manner is plagued with difficulties, 

however. In particular, the bound state equation which we derive, while 

it does possess a simple physical interpretation, does not possess 

solutions. That the theory should have difficulties is perhaps not 

completely surprising. For example, the Yang-Mills Hamiltonian, when 

dimensionally continued below two dimensions is not manifestly positive.8 

It is not clear, however, that this is the source of the difficulties 

which we have discovered. 

This paper is organized as follows: In section 2, we study one- 

loop perturbation theory for the gluon propagator. We find that at 

one-loop, the gluon propagator in 2 + s dimensions is not smoothly 

connected to the propagator in two dimensions. This section also contains 

a review of the quantization of gauge theories in light-cone gauge, and 

exhibits the Feynman rules. In section 3, we find a solution to the 

Schwinger-Dyson equations for the gluon propagator in 2 + E dimensions 

which is smoothly connected to the propagator in two dimensions. It is 

in close correspondence to the solution for the gluon and fermion 

propagators in the 't Hooft model.g In section 4, we derive a Bethe- 

Salpeter equation for scalar, color-singlet glueballs. The Feynman 

diagrams which contribute to this equation are planar, and in close 

correspondence to the diagrams which contribute to the bound-state 

equations for mesons in the 't Hooft model. We then proceed to 

demonstrate that this equation has no non-singular solutions. In 

section 5, we conclude by speculating on possible sources of the 

difficulties we have encountered. 
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11. ONE-LOOP PERTURBATION THEORY FOR THE GLUON PROPAGATOR 

We define QCD in 2 + E dimensions to be the sum of the Feynman 

diagrams obtained using the dimensional regularization procedure of 't Hooft 

and Veltman." As an example of this procedure, and of the problems of 

an expansion around two dimensions, we evaluate the one-loop contribution 

to the gluon propagator in Landau gauge, The relevant Feynman diagrams __ 

are shown in Fig. 1. In d dimensions we obtain, for the gluon vacuum 

polarization tensor, 

2 d/2 - 2 

Iv (9) = (guvq2 - q'-'q") 
g2Nc(-q > I'(d/2) T 
(2T)d/22W2 + 1) r(d) sin(F) 

(2.1) 

x {7/2 d2 - 1912 d + 8) . 

In this equation, g is the gluon coupling constant and Nc is the number 

of colors. 

For d = 2 + E, E <C 1, the one-loop polarization tensor becomes 

3 g2N 
IIPV(q) = (gPVq2 - qVqV) ; -$ + . 

4 
(2.2) 

The l/e in this expression is characteristic of the singular infrared 

behavior of this theory. Summing the bubble diagrams of Fig. 2 yields 

for the propagator 

9 -- 
4lTe 

so that the gluon appears to have acquired a mass, 

2 3g2Nc 
m =- 

4Trs l 

(2.3) 

(2.4) 
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This summation of a selected set of Feynman graphs is not the entire 

story, of course. I-F is not a gauge-invariant quantity. Moreover, it 

is clear that because of the singular infrared behavior of this theory, 

we will have to examine many classes of diagrams before we can make 

statements about physical quantities. However, in addition to indicat- 

ing that the perturbation expansion of the propagator may be singular 

near two dimensions, this result also suggests that some of the colored 

degrees of freedom may become very "massive" and, perhaps, decouple. 

QCD in 2 + E dimensions is, unfortunately, quite complex in Lorentz 

gauge. Instead of Lorentz gauge we shall employ light-cone gauge and 

light-cone coordinates in our analysis. The quantization of field 

theories in light-cone variables has been treated by Kogut and Soper.'l 

The necessary formalism for non-Abelian gauge theories has been developed 

by Tomboulis.12 Here we briefly review the results of their analyses. 

We use the metric conventions of the text by Bjorken and Dre11.13 

The light-cone coordinates are 

+1 'c=x ^ z (x0 + x1> 

lL (x0 - xl) x-x s- 
fi 

(2.5) 

(2.6) 

and the d-2 transverse coordinates are s 
I' 

In terms of these variables, 

the scalar product is 

P l q = p+q- + p-q+ -; l ;1 . (2.7) 
1 

With n a light like vector and AZ the Yang-Mills potentials, the light- 

cone gauge condition is 

n* A a = A+" = 0 . (2.8) 
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This condition is imposed on the Yang-Mills Lagrange density 

, 

where 

Fa = a Aa 
l.lv ?Jv 

- avA; + gfabCA;A; . 

(2.9) 

(2.10) 

Perturbation theory may be developed by the canonical procedure of 

Kogut and Soper.ll The theory is quantized on equal-T surfaces. The d-2 

transverse components of x: are treated as dynamical variables. The 

commutation relation of the dynamical variables may be extracted from the 

work of Tomboulis.12 Since no derivatives of Ama with respect to r appear 

in the Lagrangian, A -a is a constrained variable analogous to the 

Coulomb field of radiation gauge electrodynamics. In particular, ABa 

satisfies a "Gauss" law 

-a2p = a iai*ia + j+a 2 y+a 

where 

.+a J = -gf abcA?Fi+c 

(2.11) 

(2.12) 

is the color current. 

Since Ama can be removed from the Lagrangian by Eq. (2.11), the 

existence of d-2 dynamical degrees of freedom is explicit. It is, there- 

fore, worthwhile to briefly study the inversion of Eq. (2.11) for ABa. 

This is accomplished by Fourier transforming to momentum space, with 

the result 

A-a(k+,k-,?$ = 1 
(k+, 2 

r+a(k+,k-,i$ . (2.13) 

In general, + 
the resulting integrals over k are ill-defined unless the 

singularity at k' = 0 is regulated. The regulation of this singularity 
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Ik+j > X 

lk+l < X A ” g l 

(2.14) 

In the 't Hooft model, this regularization prescription has no effect on 

color singlet states, and serves only to regulate intermediate steps in 

the computation of properties of these states. At the end of such 

computations, the limit X + 0 may be taken. 

The Feynman rules may be derived using path integral methods, or 

using the techniques developed by Kogut and Soper. The propagator is 

Dpv= ’ uv - 
k2 + ic 

g (2.15) 

The individual components of the propagator, and our notation for them 

are indicated in Fig. 3. The vertices are indicated in Fig. 4. 

Before attempting to find a solution of'the theory, we first con- 

sider the one-loop contributions to the light cone gauge gluon propagator. 

One might expect, based on counting the number of intermediate states, 

that production of transverse gluons would be suppressed by powers of 

E in perturbation theory. However, as this calculation illustrates, 

the phase space integrals over transverse gluon momenta are infrared 

singular and lead to compensating powers of l/s. As a result, order 

by order in perturbation theory the theory is quite complex. 

Consider, for example, the diagram of Fig. 5 in which a light-cone 

gluon splits into two transverse gluons, and the transverse gluons sub- 

sequently annihilate into a light-cone gluon. This diagram is given by 

the integral 
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ab 
n* = 

isg2NcS 

ab - (2rr)d / 
dk+dk-d"kl 2 (q+ - 2k+)2 

(k + is)((q - k)2 + is) l 

(2.16) 

For definiteness, + we shall assume that q +- 
' 0, 41 = 0, and q2 < 0. The 

factor of E in this equation comes from the polarization sum, as 

advertised. The k- integral is easily carried out, 

j-q-+ = 
ab 

and upon performing the kL integration, we obtain 

eg2Nc6 ab 9+ 
I'(2 - d/2) 

J 
dk+ hi+ - 2k+)2 

2(27i)d-1 + l-&/2 * (2.18) 

0 
q+Pq-k+(k+ - q+)l/s 1 

The endpoints of the k' integration, corresponding to low momentum 

transverse gluons, give a contribution of order l/s. The naive 

expectation that this graph is of order E is incorrect; it is of order 

one. 

The one loop contributions to the transverse gluon propagator are 

shown in Fig. 6. In this figure, we have included appropriate combinatoric 

factors. For simplicity, we again take the incoming momenta, q, to have 

41 = 0 and q2 < 0. Angular averaging the kL integrals gives factors of 

l/c in the individual diagrams of Fig. 6(a). These factors cancel, how- 

ever, in the sum. From these diagrams, we obtain 

k 2{k+ 1 - 4q-2 
i-I ij 

-ig2NcS abgij 
=. 

ab J 
ddk . 

(2x1 d k+k2(k + q)2 
(2.19) 

The kl integration in Eq. (2.19) is ultraviolet divergent. We can 

regulate this divergence by introducing a cutoff at lkl[ = A. This 

procedure is plausible since gauge invariance guaranties that there are 
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no ultraviolet divergences in this theory. In the sum of all diagrams 
. . 

for II:;, the ultraviolet divergences must cancel. Moreover, since the 

divergence is only logarithmic, all cutoff procedures should yield the 

same result. With such a cutoff, 

s dEkl 2 
k12 

k (k + s12 
-E , (2.20) 

_- 

. . 
and the diagrams contributing to lILJ 

ab which involve transverse gluon 

production are suppressed. 

Alternatively, we can regulate the ultraviolet singularities 

dimensionally, using the rule 

(2.21) 

We have verified that such a procedure yields the same results for 

II ij ab as obtained with the cutoff even though the different procedures 

yield different contributions for individual diagrams. For simplicity 

we will use the cutoff procedure throughout the rest of this paper. 
* . 

We must still analyze the contributions to II:: coming from the diagrams 

of Fig. 6(b). We rewrite the light cone propagator appearing in the 

(2.22) 

The second term on the right-hand side yields a contribution very similar 

to that of Eq. (2.19). It is of order E if we use our ultraviolet cut- 

off procedure. The remaining contribution from the diagrams of Fig. 6(b) 

is 
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. . 
II:;(q) = i 

4g2Nc,ij6ab 

w2 s 
dk+dk- q+(k++q+) + @'(E) . 

(k+12(k+d2 
(2.23) 

(The kl integral has again been performed using our cutoff procedure.) 

This integral is precisely the integral for the one-loop contribution to 

the fermion self-energy in the 't Hooft model. Using 't Hooft's 

momentum space infrared cutoff, we obtain 

nijJ(qj = $j,ab n g2Nc (qL - l) . (2.24) 

It is important to note that in the diagrams of Fig. 6(b), trans- 

verse gluons are neither created nor destroyed. We will shortly argue 

that in the solution of the full theory, only diagrams of this type 

survive. 

III. A SELF-CONSISTENT SOLUTION OF THE 
SCHWINGER-DYSON EQUATIONS 

We have seen that, order by order, the perturbation expansion of 

the gluon propagator is quite complicated. In particular, creation and 

absorption of transverse gluons is not suppressed. In this section we 

will show that if one first sums all contributions to the propagator which 

do not involve emission or absorption of transverse quanta, then contri- 

butions to the propagator involving such emissions are suppressed. 

Equivalently, we will show that there is a solution to the Schwinger-Dyson 

equation for which the creation or destruction of transverse gluons is 

down by powers of E and X. 

It is convenient to demonstrate this result using the Schwinger- 

Dyson equations, assuming that they possess a solution of this form, and 

demonstrating that the solution derived with this assumption is 
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self-consistent. Consider first the diagrams for llab *(q) shown in 

Fig. 7. In each of these diagrams, the light cone gluon emits two 

transverse gluons. By assumption, then, these diagrams are suppressed, 

i.e. 

n;w = 0 . (3.1) 

The contributions to II::(q) are shown in Fig. 8. Only those con- 

tributions which do not involve the creation or destruction of gluons 

have been retained in this figure. In order to solve this equation, we 

must know the full light-cone propagator and the full light-cone- 

transverse gluon vertex. Using Eq. (3.1), it is straightforward to 

demonstrate that the light-cone propagator is the free propagator (up 

to terms of order kl 2 , which give vanishing contributions if we use the 

integration rules developed in Section II). Also, one can readily 

demonstrate that all higher order contributions to the vertex involve 

emission and absorption of transverse gluons, and thus vanish, by assump- 

tion. Thus the full vertex is just the bare vertex. The vanishing one- 

loop contributions to this vertex are shown in Fig. 9. 

With the vertices and light-cone propagator replaced by bare 

vertices and propagators, the sum of contributions shown in Fig. 8 become 

those shown in Fig. 10. Upon using Eq. (3.1) for II:, the transverse 

propagator is 

. . . . 
D;;(q) = G=J6ab 1 

q2 - 
, 

TI(q) + is 

where 

l-?-i-(q) = sijgabII(q) . 

(3.2) 

(3.3) 
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Thus the'contributions of Fig. 10 yield a closed, non-linear integral 

equation for II(q), 

4ig2N 
RI(q) = 

C 

(2r> 2 / 
d2k q+(k++q+) 

(kS>2C(k+q)2-fl(k+q)+icl l 

(3.4) 

This equation is almost identical to the equation for the fermion self- 

mass kernel in the 't Hooft model. II is independent of q-, as can be seen 

by a simple change of variables. After the k- integral in Eq. (3.4) is 

performed the resulting k+ integral is independent of II, and yields 

II(q) = - gyc (9 - 1) . (3.5) 

With this result, Eq. (3.5), in hand, one can now examine the 

diagrams which involve emission or absorption of transverse gluons and 

demonstrate that they are all suppressed by powers of X or E. For 

example, a simple calculation, using Eq. (3.5) and (3.2) yields for 

G (Fig. 7) a result proportional to X. It is a straightforward matter 
. s 

to show that all the diagrams contributing to I?' which we have neglected 

up to now are in fact suppressed. This is a consequence of the fact that 

the transverse gluon is effectively very heavy. The verification of this 

result is somewhat tedious, and will not be repeated here. Two subtleties 

in the analysis are worthy of note, however. First, in the contribution 

of Fig. 11, one might worry that a vertex insertion of order X could 

induce a finite result by convolution with a singular light-cone 

propagator. The integration regions k++ 0 and q+ -f 0 might give factors 

of l/h, yielding a contribution of order one for the overall diagram. 

This does not in fact occur since as one can easily verify, the 

corresponding vertex insertion vanishes in these integration regions. 

__ 
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Similar dangerous diagrams appear in higher orders of perturbation 

theory, and we do not have a general proof that they do not give finite 

contributions. We have verified that no such finite terms are generated 

through two loops. If such a finite term did exist, it could generate 

a mass shift in the gluon propagator. 

The second problem concerns the appearance of color-singlet bound 

states among the particles in intermediate states (Fig. 12). One expects 

that these bound states will have finite masses as X + 0 (proportional to 
n 

gL, the only scale in the problem). To determine whether such diagrams 

are suppressed by factors of A, one must know something about the bound 

state spectrum and wave functions. It seems likely that any reasonable 

spectrum will lead to a rapid falloff of the appropriate form factors for 

large mass states, and that such diagrams will be suppressed by powers of 

A. If this is not the case, the propagator could be much more complicated 

than suggested here. We will comment again on this possibility in the 

concluding section. 

Several comments about the gauge invariance of our calculations 

are called for. Using an infrared cutoff as a measure of the contribu- 

tions to Feynman diagrams is particularly dangerous since the infrared 

cutoff is itself gauge dependent. We believe that our calculations 

should be valid as long as all relevant orders in X are retained in the 

calculation of gauge invariant quantities such as the properties of 

glueballs (to which we shall shortly turn). Calculations in another 

gauge would, of course, provide a useful check on our procedure, but 

such calculations appear to be quite difficult. 
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We should point out that the solution to the Schwinger-Dyson 

equations which we have found does satisfy the Ward-Takahashi-Slavnov 

identities. These identities are consequences of the underlying gauge 

invariance of the theory. The relevant identity here is 

k'r;;;(k,q + k,q) = fabC{D;;(q + k) - D;--(q)} . (3.6) 

In particular, if all transverse momenta are set to zero, the requirement 

that the transverse gluon-2 light-cone gluon vertex is bare is equivalent 
. . 

to the requirement that II:; is independent of q-. 

IV. THE BOUND STATE EQUATION FOR GLUEBALLS 

In the previous section, we have made a conjecture for the gluon 

propagator, and have shown that it is self-consistent. We analyze here 

the bound state equation for a scalar, color-singlet gluon pair using 

our solution for the gluon propagator as input. We will see that, 

remarkably, a planar structure emerges which is similar to the planar 

structure in the 't Hooft model. This result follows from the suppression 

of creation and destruction of gluon pairs. 

Our basic tool for the analysis will be the Bethe-Salpeter equation 

for a gluon pair , projected onto spin-zero color-singlet states. This 

equation is represented by the diagram of Fig, 13. The truncated kernel, 

K, is the s-channel two-particle-irreducible scattering amplitude. The 

wavefunction Y(p) is the Fourier transform of 

$;(x) = (OjT(Apa(x/2)AVb(-x/2))jG) , (4.1) 

where T denotes ordering with respect to the light cone variable 2, and 

IG) denotes the two-gluon bound state. The total invariant four momentum 

of the glueball is s = M2 G' where MG is the glueball mass. 
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We first consider various contributions to the kernel, and verify 

the conjecture that only planar diagrams contribute. For simplicity, we 

will not be extremely careful about transverse momenta, pI. We will 

assume that the wavefunction is essentially a delta function in pl centered 

around pI = 0 and set all integrals over pI to 1 in the kernels. The 

errors which result from this approximation in the calculation of the 

kernel can be shown to be of order E. 

As we shall shortly see, the analysis of the various kernels 

+ simplifies enormously if for all the external momenta, pi > 0. This 

will in fact be the case if the kernel, K, is independent of q-. One can 

demonstrate this easily by integrating both sides of the Bethe-Salpeter 

equation (Fig. 13) over p- under this assumption. In the discussion 

which follows, we will proceed in a self-consistent manner. We will 

assume that the only surviving kernels in the Bethe-Salpeter equation 

are independent of q-, + and thus all external lines have p > 0. With 

this assumption, we will in fact demonstrate that all q dependent 

kernels are suppressed by powers of E and X. 

The first class of non-planar diagrams we consider are those which 

involve crossed ladders of Coulomb gluons. Consider for example, the 

diagram of Fig. 14. This contribution is 

(k+)2(k+ + p; - p;')2 -l+is ) 1 
X 

1 

(pl+W2 - 7F 
2 1~;' + k+[ 

. 

x -l+is ) 1 
(4.2) 
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In this equation, P is a polynomial in k+ 
+ 

and pi* We have used equa- 

tions 3.2 and 3.5 for the full gluon propagator. As discussed above, 

+ 
we take the momenta pi to be positive on external lines. Also without 

loss of generality, we will explicitly consider only the case where 

1' f 
p2 > pl, although the analysis of the other case is similar. 

Performing the k'- integral in Eq. 4.2, we obtain 

-P; 

K(2> - / 
dk+ 

p(k+,p:) 

-Pi+ 
(k+)2(k+ + p; - p;+) 

(4.3) 

1 

2(Pi' - P;)(P;+~+)(P;' 
2 (p;+k+)(p;'+k+) 2 

+k+)-+- x 
++;- P;') 1 

Because of our restrictions on the p:, the singularities of the light- 

cone propagators are never encountered in the k+ integral. This diagram 

is thus of order X. 

This result is simply understood physically. If we consider old- 

fashioned perturbation theory in light-cone variables, the Feynman 

diagram of Fig. 14 is the sum of several T-ordered diagrams. One such 

-c-ordering is shown in Fig. 15. (Recall that the light-cone propagator 

is instantaneous in r.) This contribution involves the production of 

transverse gluon pairs, and is suppressed by a power of A. This argu- 

ment can readily be extended to higher order kernels involving crossed 

(non-planar) light-cone gluon exchange. 

Kernels involving exchanges of transverse quanta are even more 

simply dealt with. Consider, for example the diagrams shown in Fig. 16. 

These diagrams are immediately suppressed by a power of X arising from 
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the transverse gluon propagator. Kernels involving multiple transverse 

exchange are suppressed by additional factors of X. (In addition, the 

contributions of Fig. 16 are suppressed by a power of e.) 

The above arguments take care of almost all the contributions to 

the kernel. However , just as in the case of the vacuum polarization 

tensor, there is one class of diagrams which looks particularly 

dangerous, involving vertex corrections to light-cone gluon exchange. 

Consider the diagram of Fig. 17. Again one might worry that even 

though the vertex correction is of order X, the integral over the light- 

cone gluon yields a compensating l/A, giving a finite contribution to 

the Bethe-Salpeter kernel. However, just as before, we are saved by the 

fact that the vertex correction vanishes as q+ -t 0. As in the case of 

P , we have not been able to formulate a proof that there is never a 

pileup of singularities in higher-order diagrams which yields a finite 

contribution to the kernel. A careful study of some dangerous-looking 

higher order diagrams suggests that this is not the case, however. 

Finally, one must worry about the problem of multimeson intermediate 

states (Fig. 18). It seems likely that these diagrams are suppressed by 

powers of E, and it is not difficult to show this for some low order 

diagrams. In general, however, delicate cancellations are involved, 

and we have not been able to formulate a general argument that such 

diagrams are suppressed. For the rest of this discussion, we will 

assume that this is in fact the case. The reader should keep in mind 

the possibility, however, that some multimeson interactions are not 

down by powers of E, and, as a result, the model is much more complex 

than our analysis suggests. 
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One'may readily convince oneself that these arguments are sufficient 

to deal with any kernel in which transverse gluons are created or 

destroyed. We are therefore left with only planar diagrams, a result 

that follows from the absence of creation or destruction of transverse 

quanta. Thus the theory, in lowest non-trivial order in E is a theory 

of E conserved particles interacting by the exchange of instantaneous 

potentials in two dimensions. 

The complete Bethe-Salpeter equation is now quite simple. It is 

shown diagramatically in Fig. 19. Projecting onto spin and color-singlet 

components, the Bethe-Salpeter equation is 

Y(p,s> = 
-iNcg2 

/ 
d2k (2p+ + k+)(2s+ - 2p+ - k+) + 2(k+)2 

(27r) 2 

(4.4) 

’ [p2 p,‘(~- 1) + iE] ~‘(‘+ k’s) 

This equation is almost identical to the meson equation of the 't Hooft 

model. It differs only in the different momentum dependent vertices 

coupling the transverse quanta to the light cone propagator, and the 

contact four-gluon coupling. 

To find a solution to this equation, we define a "Schrodinger" 

wavefunction by 

(P(P+,s> = @p-Y(p-,p+,s) . (4.5) 

Integrating both sides of Eq. (4.4) with respect to p-, and using 

Eq. (4.5), we obtain 

u2q(x)=- l - ' dy 
x(1-x) Pi(X) - f (Y - d 

2 p(y) - ,;,; -“;, f -“” CP(Y) + (4.6) 
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In this equation 

P+ x -7, 
S 

p2 = 2ns+s- 

82Nc 
, 

(4.7) 

(4.8) 

and $ means to integrate with a principle value prescription. As in the 

case of the equation for mesons in the 't Hooft model, all X dependence 

has cancelled, a fact which is a reflection of the color neutrality of 

the system. 

If one calls M2 the operator on the right-hand side of Eq. (4.61, 

it is straightforward to show that M2 is self-adjoint only if the scalar 

product of two wavefunctions Y and 'p is defined as 

(Y,q) = Jdx Y*(x)x(l - x&(x> . (4.9) 

That this is the correct form of the scalar product can also be shown by 

obtaining the normalization condition for cp from the inhomogeneous Rethe- 

Salpeter equation, using standard techniques. Normalizability thus 

requires that cp be less singular than l/x near the origin. 

Armed with this information, it is now possible to study the bound 

state equation. Unfortunately, Eq. (4.6) is quite sick. This can be 

seen by studying the matrix elements of M2 between functions of the form 

cp,(x) = 1,; - E 
1 

X (,-x)1’2-E l 

A straightforward calculation yields 

(4.10) 

(PE,M2vE) = - $ + @Cl> . (4.11) 

In other words, the "spectrum" of this theory contains an infinite well 

of tachyons. 
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A similar bound-state equation for glueballs has been obtained by 

Bardeen, Pearson, and Rabinovici in their studies of the transverse 

lattice.15 Their equation differs from Eq. (4.6) in two respects. First, 

the contact term arising from gluon-gluon scattering is not included. 

This term, however, would only give a contribution of order one to 

Eq. (4.11), and thus its presence or absence does.not alter our dis- 

cussion above of the spectrum. The crucial difference between their equa- 

tion and ours comes from the fact their transverse gluons are "massive." 

Such a mass term, they argue, will in general be induced by the presence 

of the lattice (its effects should disappear in the continuum limit.) 

The presence of this mass leads to the replacement 

1 M2 
x(1 - x) cpw -+ x(l _ x) p(x) (4.12) 

in the first term on 

bound state equation 

very similar to that 
c) 

the right-hand side of Eq. (4.6). For M2 2 0, the 

possesses a spectrum of states, without tachyons, 

of the 't Hooft model. It is interesting to note 

that, for ML = 0, the equation has a zero mass solution, 

cpw = x 
-1/2c1 _ ,)-l/2 . (4.13) 

V. CONCLUSIONS 

The problems which we have encountered can be at least partially 

understood by examining another two-dimensional model: the large N 

limit of QCD with scalar particles in the fundamental representation. 

This model, we will argue, is nearly identical to the model we have 

studied if the scalars are taken to be massless and a (p4 term with an 

appropriate value for the quartic coupling is included. Explicitly, the 

analog model we consider here is described by the Lagrangian 



(5.1) 

Here gu is the usual covariant derivative, 

(g,$ji = #a - Q Ta.Aa)$. , 
u fi 1J1-I J 

(5.2) 

Again we choose the light-cone gauge for the analysis. 

Consider, first, the meson self-energy in this model. In the large 

N limit it is dominated by the diagrams shown in Fig. 20a. Explicitly 

this equation reads 

1 -S(q) = - 
/ 

d2k - g 2(k+ - 2q+)2+A(k+)2 

(27.T) 2 (k+)2 [(k - q12 - II& - q>l l 

(5.3) 

Performing the k- integral assuming, again that II is independent of 

k- yields 

q+ 

l-I(q) = - &- 
/ 

dk+ g2(k+ - 2q+)2 + A(k+j2 - 

x <k+, 2 (k+ - q+) 
. (5.4) 

Note that we have again followed 't Hooft in cutting off the integral 

at k' = X. The integral diverges as k+ -t q+ unless we choose X = -g2. 

This suggests that we define the theory with a negative sign for the 

quartic coupling. As a result, the Hamiltonian of the original field 

theory is not bounded from below. While the resulting expression for 

the scalar self-mass is identical to that for the fermions of the 

massless 't Hooft model, one cannot argue here that the positively of 

the orignal Hamiltonian insures the positively of the spectrum. 

It is a straightforward matter, with this choice of coupling, to 

verify that the bound state equation (Fig. 20b) in this model is 

identical to the glueball equation, Eq. (4.6). Thus this model suffers 



- 24 - 

from difficulties identical to those of 2 + s dimensional QCD, at least 

with the approximations we have used. One should note that had we included 

2 a mass u for the scalars, with u2 2 2 g , the bound state equation would 

have yielded a sensible meson spectrum. It is clear, then that the 

quartic gluon coupling in 2 + s dimensional QCD is, in effect, negative. 

The reader may readily verify, for example, that the contribution of this 

term to the vacuum energy is in fact negative (it is proportional to 

2 
E - E, which changes sign at E = 1). 

If one uses the dimensional regularization procedure very carefully 

as outlined in section II, the quartic coupling does not contribute to 

the gluon self-energy. However, when this procedure is employed, certain 

diagrams which are naively positive and ultraviolet divergent are 

rendered finite and negative, and the same results are obtained. The 

introduction of the regulator, in other words, while banishing the 

dangerous B2 terms, itself destroys the naive positively arguments. 

In the fermion theory, positivity of the Hamiltonian guarantees that 

the appearance of a tachyon at intermediate stages of the calculation can 

be viewed as an artifact of the approximations. This is not so in the 

case of bosons. Moreover, once one accepts the existence of tachyons, 

one can quickly see on "kinematic" grounds that a two-particle state can 

attain arbitrarily low mass by having both constituents nearly "on-shell" 

and letting k+ for each tend to zero. This is precisely what happened 

in the calculation of Eq. (4.11). This doesn't happen for massless 

fermions because the boundary conditions for the bound-state equation 

in that case forbid it. 
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We seem, then, to be faced with the likely possibility that the 

theory we have studied possesses runaway solutions and, as such, does 

not exist as a physical model. Only if some dynamical means of stabiliz- 

ing the theory can be found is it likely that QCD makes sense in the 

interval between two and three dimensions. Perhaps, for example, as 

we noted in the previous section, multimeson interactions are not 

suppressed by powers of E. Or perhaps some non-perturbative mechanism 

generates a mass for the gluon, leading to a sensible bound state equa- 

tion. 
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FIGURE CAPTIONS 

1. Feynman diagrams for the l-loop gluon propagator in Landau gauge. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

Wavy lines denote gluons. Dashed lines denote scalar ghosts. 

Summing the bubble diagrams. 

The components of the free gluon propagator. 

The gluon vertices. 

The one-loop modification of the light-cone gluon propagator. 

The one-loop contributions to the transverse gluon propagator. 

+t 
The Schwinger-Dyson equation for II . 

. . 
The contributions to I'?~ which do not involve the creation or 

destruction of transverse gluons. 

The one-loop contribution to the 2-light-cone gluon-l-transverse 

gluon vertex. 
. . 

The contributions to lIIJ. 
. . 

A noteworthy contribution to IIiJ. k and q denote the momenta 

running through the light-cone propagator. 

A contribution to nij with a color-singlet particle in the 

intermediate state. 

The Bethe-Salpeter equation for the glueball wavefunction. 

A contribution to K involving crossed ladders of Coulomb gluons. 

A r-ordered contribution to K 
(2) l 

Contributions to the kernel involving transverse gluon exchange. 

A frightening contribution to the kernel. 

Diagrams involving two-meson intermediate states. 

The Bethe-Salpeter equation for the glueball wavefunction. 
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20. D&grams for scalar QCD in large-N limit in 2 dimensions: 

(a) propagator, (b) two-particle Bethe-Salpeter kernel. Solid 

lines denote mesons. 
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