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ABSTRACT 

We present1 the theoretical and empirical constraints on the 
hadronic wavefunction and hadronic structure functions. In particular, 
we obtain a new type of low energy theorem for the pion wavefunction 
from the ro+yy. Thus we can get the probability of finding the 
valence Iq{> state. All these constraints allow us to construct a 
possible model which describes hadronic wavefunctions, probability 
amplitudes, and distributions. 

The underlying link between hadronic phenomena in quantum chro- 
modynamics at large and small distance is the hadronic wavefunction. 
By studying the wavefunctions themselves, one could in principle un- 
derstand not only the origin of the standard structure functions, but 
also the nature of multiparticle longitudinal and transverse momentum 
distribution and helicity dependence, as well as the effects of coher- 
ence. In this talk, we will discuss the theoretical and experimental 
constraints on the hadronic wavefunction and structure functions and 
construct a simple model to implement these constraints. 

We define the states at equal T= 
light-cone gauge A+=A"+A3= 0. 

t+ z on the light-cone using the 
The amplitude to find n (on-mass- 

shell)quarks and gluons in a hadron with 4-momentum P directed along 

The state is off the light-cone energy shell. 
6 - 80 3817Al For each fermion or antifermion constituent 

Fig. 1. The amplitude $$"' (x z i,kli,si) multiplies the spin factor 
to find n(on-mass-shell) u(ci)/qor v(%i)/v'!$. The wavefunction 
quarks and gluons in a normalization condition is 
hadron. 

C $ /0S~n)(Xi,k~i,Si)12 [d2k~][dx] = 1 . 
b> (S-i> 

(1) 
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We will discuss the following theoretical and experimental 
constraints on the wavefunctions and the structure functions. 
(a) The predictions of perturbative QCD for the large transverse 
momentum tail of the Fock state $(xi,kli). For the case of inclusive 
reactions, the standard quark and gluon structure functions, which 
control large momentum transfer inclusive reactions at the large 
scale Q2 can be found 9 ? 

Ga,H(xa,Q2) - d,'(Q2) c 
nys iysZ 

.fkIa' Q" [d2k1]k] 

Xi,kli,Si)12 6(X-xa) y (2) 

where da1(Q2) is due to the wavefunction renormalization of the 
constituent a. Note that only terms which fall-off 1$12-(k:a)-1 
(modulo logs) contribute to the Q2 dependence of the integral; in 
general, unless x is close to 1, all Fock states in the hadron con- 
tribute to G,/H. These contributions are analyzable by the renormal- 
ization group and correspond in perturbative QCD to quark or gluon 
pair production or fragmentation processes associated with the struck 
constituent a. Multiparticle probability distributions are simple 
generalizations of Eq. (2). 

Recently, it has been shown that exclusive processes such as 
form factors and large angle elastic scattering can be systematically 
analyzed in perturbative QCD.2 For example, the (helicity conserv- 
ing) hadronic form factors to leading order in m2/Q2 and to all or- 
ders in as(Q2> take the form 

F(Q2) = $ [dx][dy] +f(x,6@) TH(x,y,Q) @J(Y,~~,s) y (3) 

where qx= ( 
m+n 

virtual photin 
X- 
t,' 

> Q, TH is the hard scattering amplitude for the 
scatter the valence quarks from p to p+q; it can 

be expanded in powers of as(Q2). The quantity $(x,Q) is the "dis- 
tribution amplitude" for finding the valence quark with light-cone 
fraction xi in the hadron at relative separation b:,w O(l/Q2). - 
$(xi,Q,Si) ' I! 

i=l [ 1 di1(Q2) ' JkficQ2[d2kL] $(n)(Xi,kLi,si) , (4) 

The large Q2 dependence of $(i.e., the large kL tail of #) is in fact 
completely determined by the operator product expansion near the 
light-cone,3 and in QCD can be calculated from the perturbative ex- 
pansion in the irreducible kernel for the quark constituents.' To 
order as(Q2) one only requires single gluon exchange, and we find 

cF 
4(Xi,Q2) = ~(Xi,Q~) + B $ 

Qii 
(5) 
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where 

V(X,Y) = 2{x1y2e (yl--x4 (6h1s2 +$& + (l- 2)) = v(Y,x) l (6) 

This result4 is derived in the region where R:/Cyl(l-yl)l is large 
compared to the off-shell energy <&> in the wavefunction. 
(b) Exact boundary conditions for the valence Fock state meson 
wavefunctions from the meson decay amplitudes. The leptonic decays 
of mesons give an important constraint on the valence lq<> wavefunc- 
tion at the origin,2 

3 
- fTrx1x2 

for x 
G 

Q l+fff $,(xi,Q2)= aOx1x2 = (7) 
3fi 
z foX1X2 for pL , 

where f xry93MeVis the pion decay constant for ~+-+uv and f,r107 MeV 
is the leptonic decay constant from p'+e+e-. The analogous result 
holds for all zero helicity mesons. Because the Q+a distribution 
amplitude has zero anomalous dimension, this constraint is independ- 
ent of gluon radiative correction and can be applied directly to the 
non-perturbative wavefunction 

a0 = fj J’ [dx] [d2kl ] $rnmpert ( xi,kl) . (8) 
0 

On the other hand we can also obtain an exact low-energy con- 
straint on Jl(xi,kl= 0) for the pion in the chiral limit mq+O. The 
y*.rr+y vertex defines the x0 -y transition form factor Fny(Q2) 

(Fig. 2a) 

Fig. 2. (a) The T-y transition 
from factor FTy(Q2); (b) the 
lowest order diagram which 
contributes to Fry(Q2). 

In fact, gauge-invariance requires that the valence Iq{> state should 
give exactly % of the total decay amplitudes at q2+0.5 Thus from 
the x+yy decay rate and Eq. (lo), we find 

f Cdxl $("l,kTO) = $ dxlJl(xl,kl=O) =e . 
0 0 IT 

(11) 
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This is a new type of low-energy theorem for the pion wavefunction 
which is consis,tent with chiral symmetry and the triangle anomaly 
for the axial vector current. This large-distance result, together 
with the constraint on the valence wavefunction at short distance 
from the IT+-+~ leptonic decay amplitude, leads to a number of new 
results for the parametrization of the pion wavefunction, which we 
discuss below. 
(c) We can show that the evolution equations which specify the large 
Q2 behavior of the distribution amplitudes and incoherent distribu- 
tion functions G are correctly applied for Q2 2 <b>, where <&> is 
the mean value of the off-shell energy in the Fock state wavefunc- 

tion,d:&E; E ~~=1((~~+m2)/x)i i.e., <&> is a measure of the 
"starting point" for evolution due to perturbative effects in QCD* 

In order to organize the predictions for hadronic matrix 
elements and all of the distribution functions and amplitudes, we 
shall make the following prescription: 
(i) We assume the Fock state wavefunction IJJ(~) for the 2-quark state 
in the non-perturbative domain depends only on the off-shell energy 
variable 8. [This ansatz, which is true for non-relativistic theo- 
ries, can be justified, if we use the Bethe-Salpeter equation with 
an instantaneous energy independent kerne1.6l For the n-particle 
case, we shall assume the Fock sta e wavefunction J,fn) is a symmetric 
function of the &is i.e., $(")=JI n)( &i). F Although we have no 
strong argument for this form, we shall use it as an illustration of 
the effect of the non-perturbative wavefunction. Thus we find 

G non-pert x 
a/H ( ) 

a X (l-xajns-l g coin) ) I (12) 
a 

where ns=min(nH- na) is the minimum number of spectator constituents 
in the hadron H after removing the particle (or subcomposite) a, and 
gi min = rnf /xi is the minimum value of &'i.7 Notice that if we can 

neglect the quark masses [i.e., 
spectator rule* 

for (l-xa)>>m2/<k:>] we obtain the 

G non-pert 2ns-1 

a/H ( > xa = 'a/H(lBxa) ' (13) 

For example, ns= 1, for the meson case; ns= 2 for the baryon case. t 

We can see that the non-perturbative contribution can dominate the 
perturbative predication in the x-l d0main.l 
(ii) An (approximate) connection between the equal-time wavefunc- 
tion in the rest frame and in the infinite momentum frame wavefunc- 
tion can be established by equating the energy propagator 

M2- &'=M2-(~~=lk~)2 in the two frames. 

* The actual limit of the kz integration is k:/Cz(l-z)l 2 <Q>, 
where z is the fraction of the radiated gluon. The correct argu- 
ment of as is a,(kf/(y-z)). Cy is the fraction of the quark.1 

t In addition, QCD evolution increases the exponent of Eq. (13).l 
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If we kinematically identify 

b”+q3)1 
n 

k; -% - k 
T 4; 

-x. E-p 1 P q1i li ' (14) 

Then the rest frame wavifunition $,(<i) which controls binding and 
hadronic spectroscopy implies a form for the IMF wavefunction 
$ Im(xiskli) l 

For two particle state there is a possible connection' 

$,&i2) - t& ($+< - m2) . (15) 

In order to implement these constraints it is convenient to 
construct a simple model of the hadronic wavefunction. By using 
the connection (15) from the harmonic oscillator model6 we can get 
the wavefunction at the infinite momentum frame 

$(2)(xi,kl,si) = Aexp -R2 "zlrn2 + k2:2m2 
I( )3 . (16) 

It is certainly a function of 8. 
obtain (m2R2 << 1) 

From Eqs (7), (11) and (16)we can 
4 1 

R=41Tf?l* 
0.17 fm, A y F . (17) 

IT 
The probability of finding the valence Iqy> state in the pion is thus 

p (qi) = $[dx][d2kl]l$(xi,kl)12 = l/4 * (18) 

Alternatively, if we use a power law form A 

0.1 - 

0 I I I I I I I 

I 2 4 8 16 32 64 I28 256 

6-80 Q2 (GeV2) 3abl.r 

Fig. 3. QCD prediction for the 
meson form factor for the distri- 
bution function $(xi)." 

*(xiYkl) = k2+m2a 

( ) 

a ’ (lg) 

1 q +v2 
x(1-x) 

we find (m:cc u2) 
1 a-l 

Jxd =T 2aY (20) 

which again leads to l./4 for 
large a. For the linear po- 
tential case, where a= 3, we 
have P(q{) = l/5. The distribu- 
tion amplitude for the Gauss- 
ian form depends only upon the 
quark mass. In Fig. 3 we give 
the prediction of the pertur- 
bative QCD'O for the pion form 
factor. Note that <&'>-0.7 
GeV2 is reasonable compared to 

the QCD h2. For the multiparticle case, perhaps the simplest genera- 
tion for the Fock state wavefunctions in the non-perturbative domain 
is the Gaussian form 

) = An exp(-Re)= Anexp [-R;$ (+m2)i]- . (21) 
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The parametrization is taken to be independent of spin. This ansatz 
for the wavefunction has the additional analytic simplicity of (a) 
factorizing in the kinematics of each constituent and (b) satisfying 
a "cluster" property. 

A similar analysis has been applied to the baryon wavefunction; 
we find 

+(Xi,$) = x1x2x3exp lR2($+$+$)] . (22) 

In addition, we can consider the sea quark effects and the high twist 
effects. These results will be given elsewhere. 

We conclude that theoretical and empirical constraints on wave- 
functions and structure functions have been presented. In particular 
we obtain a new type of low-energy theorem and the probability of 
finding the valence Iqq> state in the total pion wavefunction is -0.2 
to 0.25, for a broad range of confining potentials. This work repre- 
sents a first attempt to construct a model of hadronic wavefunction 
and 
and 

for 
ity 

hadronic structure which is consistent with data and QCD at large 
small distances. 

I would like to thank S. J. Brodsky, G. P. Lepage and M. Barnett 
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1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

REFERENCES 
S. J. Brodsky, T. Huang and G. P. Lepage, SLAC-PUB-2540. 
G. P. Lepage and S. J. Brodsky, Phys. Rev. D (to be published); 
Phys. Lett. 87B, 359 (1979); Phys. Rev. Lett, 43 545 (1979); 
Erratum ibid., 43, 1625 (1979); SLAC-PUB-2447.- 
S. J. Brodsky, Y. Frishman, G. P. Lepage and C. Sachradja, Phys. 
Lett. s, 239 (1980); A. V. Efremov and A. V. Radyushkin, Dubna 
preprints JINR-E2-11535,-11983 and -12384; A. Duncan and A. H. 
Mueller, Phys. Lett. E, 159 (1980); Phys. Rev. D21,1636 (1980). 
Higher order kernels entering the evolution equation include all 
two-particle irreducible amplitudes for qG+qi. However, these 
corrections to V(xiyyi) are all suppressed by powers of as(Q2), 
because they are irreducible. 
J. Schwinger, Phys. Rev. 82, 664 (1951); S. L. Adler, Phys. Rev. 
177, 2426 (1969); J. S. Bell and R. Jackiw, Nuovo Cimento e, 
47 (1969); R. Jackiw, Lectures on a Current Algebra and its 
Applications, Princeton University Press, 1972, pp. 97-230. 
For example, see Elementary Particle Theory Group, Beijing Uni- 
versity, Acta Physics Sinica 25, 415 (1976). 
Examples of this result for Gq/M and G /B have recently been 
given by A. De Rujula and F. Martin, M?T preprint CTP SSl(1980). 
S. J. Brodsky and R. Blankenbecler, Phys. Rev. E, 2973 (1974). 
An equivalent result was also obtained by V. A. Karmanov, 
ITEP-8, Moscow (1980). 
The Q2++ asymptotic result was first obtained by G. R. Farrar 
and D. R. Jackson, Phys. Rev. Lett. 43, 246 (1979). 
The data are from C. Bebek et al., Phys. Rev. D13, 25 (1976). 


