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ABSTRACT 

A relativistic quantum field theory at finite temperature I 
. 

‘JJ = a-’ is equivalent to the same field theory at zero tempera- 

ture but with one spatial dimension of finite length B. This 

equivalence is discussed for scalars, for fermions and for 

gauge theories. The relationship is checked for free field 

theory. The translation of correlation functions between the 

two formulations is described with special emphasis on the non- 

local order parameters of gauge theories. Possible applications 

are mentioned. 
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It is well known that quantum field theory in n spatial dimensions is 

related to the statistical mechanics of a classical n + 1 dimensional 

system [l]. This "equivalence" has proven useful in studying properties 

of both systems [l]. The analysis of the statistical mechanics of a quantum 

system has traditionally been more difficult than either a zero temperature 
__ 

quantum system or a finite temperature classical system [2]. This paper 

discusses the "equivalence" of a relativistic quantum field theory in n 

spatial dimensions at finite temperature T = B -1 to the same field theory, 

at zero temperature but with one of the n spatial dimensions (say the z 

direction) finite and of length 8, (0 I z 16). (We shall call this a "finite 

volume system"). 

Scalar Theories 

As an example consider a scalar theory in n + 1 dimensions with fields 

443, and with canonically conjugate fields IT(;) and with a Hamiltonian, H 

given by 

Where V($) is a 

eigenstates and 

temperature T = 

polynomial in $. Let us denote by {in), E~} the set of 

eigenvalues of H. Suppose the system is heated to a 

-1 
B . Then all states of the system are excited, each with 

probability of e -BEn . The partition function is given by: 

Z(B) = eBBFcB) = C eBBEn = C (nleeBHjn) 
n n 

(2) 

where F(B) is the free energy of the system. The basis &an be charged from 

eigenstates In) of H to eigenstates [c$) of field operators 4(z). Equation 

(2) then becomes: 
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(3) 

$ 
Equation (3) is now written in a path integral form [3]: 

Z(B) = eBBFcB) =N 
J- 

+n d+(z,t) exp [-( dTj- 9% gE] (4) 

$di,O) xyt 
=$J G,B) 

where N is a normalization factor' and where 2E is the Euclidean Lagrangian 

+ * + v(4) (5) 

Thus the partition function is evaluated via a Euclidean path integral over 

finite time 0 I r 5 f3 with periodic boundary conditions. 

It is clear that as T +- 0, equation (4) becomes the Euclidean generating 

functional for the zero temperature theory: 

Z = N/d+ exp[-/_=drJd"x yE] (6) 

Notice that 2 and T are dummy variables of integration in equation (4). 

Let us define 
-t 
xl = (xl, . . . xnwl) and z = xn (7) 

then interchange r and z and interchange $I(;~, z, r) with $(gl, r, z) in 

equation (4). We then find: 

Z(B) = N 
s 

oL~cB d+(z,r> exp 
$(z=O) - 

[ -fjn-lx df :z cFE] (8) 

= 4 (z=B) 

Equation (8) is (apart from a normalization factorl) precisely the Euclidean 

path integral for a field theory at zero temperature (-m < r <~ m) but in 

"finite spatial volume" (-a < xl < m, 0 f z <_ B) with periodic boundary 

conditions. 
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Free Scalars 

The above analysis could be applied to free scalars at temperature T. 

We would conclude that the free energy density of an ideal base gas at 

temperature T = B -1 is equal to the ground state energy density of a free 

scalar theory (at zero temperature) but in "finite volume" (i.e., with one 

dimension of length 6). Let us see how this works. __ 

The free energy per unit volume of an ideal base gas of mass m at 

inverse temperature B is given by [4]: 

b) _ 1 - - Eldnk Rn(1 - emBwk) V (9) 

Here V represents the volume of space. This is not identical to the free 

energy appearing in equation (4). F(B) differs from F(f3) by an overall 

additive constant due to normal ordering. The point is that 

ewBF = T (nlexp [-@Idnx($ + $ + $~]ln) 

= C (nlexp[-8/dnk(a'(k)a(k) + +)ak]ln) 

= elp[-Sldnk 5 uk]G (nlexp [-f3Sd"k at(k)a(k)wkj\n) 

(10) 

where In) are Fock states for H and at(k), a(k) are the usual creation and 

annihilation operators for these states. 

It is F(B)/V that is equal to the energy density, ~~ of the "finite 

volume" system; 

~~(131 = 9 sd"-'k nz $ w(kl, n) 
--m 

where 

w(kl, n) = (kf + (T)2 + m2)1'2 

(11) 

(12) 
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is the frequency corresponding to the momentum 

itn = kl, . . . kn 1, (13) 

Setting F(B)/V equal to &O and using equation (9) and (10) for F we obtain' 

iJdnk Rn(l - e -Bwk) = tjdnmlk c w(kl, n) - +jclnk ak (14) 
n -_ 

The left-hand side of equation (14) is finite. The right-hand side 

is the difference of two infinite quantities; E 
0 

(6) - E 
0 

(a). To check the 

validity of (14) we can regularize it by taking a2/a(m2)2 of both sides. 

(This works for n = 1 and 2. For n > 2 higher derivatives are required.) 

As a result: 

1 dnk BWk 

-- 
4 

/ U: (eBwk - 1) 
1+ 

1 - e -bk 
f 

(15) 

= J dnB1k c (kf + (y)' + m2)-3'2 + tJdnk (k2 + m2)-3'2 
n 

If equation (14) is valid then equation (15) must also be correct. For 

n = 1, 2 both sides of equation (15) converge. I have checked numerically 

that for a very large range of values for Sm equation (15) does, in fact 

hold. It is interesting to note that the left-hand side of equation (15) 

converges more rapidly for large B whereas the right-hand side converges 

better for small 8. 

Fermions 

Formally we have only shown the above equivalence for scalar theories. 

For photons and for massive spin 1 particles we expect the formalism to 

work since both the free energy of the infinite temperature system and the 

energy density of the "finite volume" system are multiplied by the same 

overall factor --the number of degrees of freedom. However for Fermions we 
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must be dareful. The energy density of the finite volume system is multi- 

plied by a factor of 4 (in 3 + 1 dimensions) but the free energy of the 

finite temperature Fermi gas is entirely different (see equation (17) below). 

Thus we must rethink our equivalence for Fermi systems. 

Consider a Fermion field theory with fields q(z), conjugate fields 

$'(G) and a Hamiltonian H($, +?). The partition function for this system 

at temperature T = $ -' is given by [5] 

Z(B) = eDBFcB) = s ," d$(z,-c) d$+(z,r) exp dnx gE($ ,Q') 

lJJ($,O) X,T 
(16) 

1 =-l&3) 
where LYE is the Euclidean action for the system. The key point is that 

$ must have antiperiodic rather than periodic boundary conditions. The 

O(n) invariance of the YE assures that we can interchange r and z as we 

did for the scalar case. As a result a Fermion field theory at finite 

temperature T = is equivalent to the same theory at zero temperature 

with one direction of finite length 6 but with antiperiodic boundary condi- 

tions. 

Free Fermions 

We can now see what happens for free fermions. The free energy per 

unit volume of an ideal Fermi gas is given by: 

“F(B) n -=- 
v B s dnk Rn(1 + e -auk) (17) 

where n is the number of fermi degrees of freedom. Note the + sign in 

equation (17). The "finite volume" system with antiperiodic boundary 

conditions allows momenta: 
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Z' ZL, ( 

27r(n +$) 

B ) n = 0, +l, . . . (18) 

. I.e., half integer momenta in the z direction. This leads to an energy 

density 

EO(B) = - $ld"'k Em; ;(kl,n) 

where 

L.?(kl,n) = kl + 
( 2 (y+ $)z + m2)l’2 

Note the minus sign in equation (19) and the sum over half integers. 

analogy with equation (10) we can relate F(f3) to ^F(B) and then equate 

F(B)/V to so. The result is: 

1 
F s 

dnk Rn(1 + e -Bwk) = 1 $jd"-'kxii(kl,n) + iJdnk uk 

We now take a2/a(m2)2 of both 

the scalar case the resulting 

Gauge Theories 

n 

sides of equation (21) and, in analogy 

equality has been numerically checked. 

h 
We discussed earlier that the equivalence of co to F/V seems to F rork 

(19) 
-- 

(20) 

In 

(21) 

Lth 

for photons and for free massive spin 1 particles. It is straightforward 

to generalize the formal equivalence to the massive spin 1 case. For 

photons and for interacting gauge theories in general, the proof is more 

tricky due to gauge fixing problems. 

At zero temperature it is well known that the generating functional 

for a gauge theory can be written as 

Z = $ dA; exp [-jdn'l'x t F;v F:v] (22) 
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Here A;(zk~) are the gauge potentials with field strengths Fa and 
I.lV 

l/4 $ FFv denotes the Euclidean Iagrangian: 

LFa a 
4 )Jv Fllv = 3 (E2 + B2) (23) 

To calculate the finite temperature partition function [3, 61 we can work 

in A 
0 

= 0 gauge. In this gauge [7] A:(x) and E;(x) are canonically conjugate 
__ 

variables; and we work only in the gauge invariant sector of the Hilbert 

space, 2 i.e., we deal only with states which satisfy Gauss' Law: 

D&l+) = 0 (24) 

Any state Ix) can be projected onto this gauge invariant subspace via: 

Ix, invariant = c exp [i/d'x DEaAa]/x) s plx) (25) 

Aa 

Where the sum is over all gauge functions Aa($ which vanish at spatial 

infinity. The Hamiltonian is given by 

H= 
/ 

d3x E2 + B2 
2 with B2 = LF F 2 ij ij (26) 

The partition function is calculated by summing only over the gauge 

invariant states: 

Z(B) = c (nle+Iln) 
n 

gauge 
invariant 

= 
c m 

(mleWBH c exp [i/d?x DEaAa]lm) 

all Xa (3 

states 

(Only one projection P is needed since P2 = P and P commutes with H.) 

(27) 

Equation (27) can be written as: 
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Z(B) = J dam dh,(g) (ATIe -'$A;) (284 

Where 

fJ= iDEa(;) 1 
Note that Aa is strictly a function of g. It is time independent. 

Z(B) can now be written in path integral form. Letting 

G’8b) 

(29) 

We find, apart from an overall normalization1 

+n dAi(%,-c) I7 dA (z) exp ~ o [-(k-j-d'- gE] (30) 

where gE is the Euclidean action 

(a A - 
0 i aiAo + A0 x Ai) + B2 > 

The path integral is over all A;(;,?) which are periodic in time and over 

A:($) which is constant in time. Due to gauge invariance the integral can 

be extended to all periodic functions Az(z,r), keeping At(s,'r) periodic.3 

Thus, apart from an overall factor: 

Z(B) = I- ," dAt(z,r) exp 

Ap,O) x'= 

[%I"-/"x gE] (32) 

=A;&@) 

Z(B) is now in a manifestly O(4) invariant form. Thus at this stage we 

can interchange 'c and z and find that Z(B) is equivalent to the generating 

functional for the zero temperature theory in finite spatial volume in one 

direction, and with periodic boundary conditions. 
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Correlation Functions and Order Parameters in Gauge Theories 

Let us consider the theory of free photons at a temperature T = i3 
-1 . 

Suppose we put two static external sources into the system and ask for 

their interaction energy V 
B 

(r) as a function of their separation r. The 

answer is well known: 

(33) -- 

We have shown above that this theory is equivalent to the zero temperature 

theory with one spatial direction (say z) of length B. Let us suppose 

r >> B and ask for the separation energy of two static sources in this 

system. The situation is shown in Fig. l(a). If we use periodicity to 

make the system infinite in the z direction, we have two "lines" of charge 

consisting of charges separated by a distance 8, and the two lines separated 

by a distance r. The situation is shown in Fig. l(b). 

For r >> B we have two line charges separated by a distance r and 

V(r) - Rn r (34) 

in contrast with equation (35). 

From this simple example it is clear that to calculate the energy of 

separation in the two formulations of the theory is not the same thing. 

To straighten out this situation let us ask how one calculates the finite 

temperature separation energy V,(r) in the usual (finite imaginary time) 

formulation of the theory. (The following remarks apply to all gauge 

theories-- abelian and non-abelian.) 

At zero temperature one considers a Wilson loop of large time T and 

of spatial length r and one evaluates: 

W = (OITrP exp [i$A=dk]lO) (35) 
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Where TrP denotes the trace of the path ordered exponential and $ is a 

loop integral around the Wilson Loop. The energy of separation is evaluated 

from the formula. 

W-e -W(r) (36) 

Due to Euclidean invariance, this Wilson loop may be taken totally as a 

spatial Wilson loop, with the same result. 

At finite temperature equation (35) must be modified. 

a single source at position ': is obtained by evaluating the Loop variable 

f 
dA eDSB 

lJ 
L= 

TrP exp [$" dr Ao(z,r)] 

/ 
dAl, ems6 

The energy of 

(37) 

where 

d3x S?P 

and A0 2 Azra where r a are the generating matrices for the group. L is 

invariant under periodic gauge transformations. L is a useful order param- 

eter for the gauge theory [8]. In fact 

L = eeBE (38) 

where E is the energy of a single source. L = 0 corresponds to the con- 

fining situation where E is infinite.4 The energy of separation of two 

sources at Z 1 and 2 2 is obtained by evaluating 

s d$ ems6 TrP exp 

w= 
[i~'Ao$,') dT] TrP exp[$'Ao(z2,r) d-1 

/ 
dAV eBSB (39) 

W is the correlation function for 2 loops at spatial positions zl and z2 

__ 

with r = jZ1 - Z2j. If L is non-zero then 
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W 
,2= e 

-W(r) (40) 

To evaluate V(r) using the "finite spatial volume" approach we must 

therefore evaluate the same quantity as (39) but with T and z interchanged. 

In other words we must evaluate the correlation function of two spatial 

periodic loops in the z direction, from 0 to B. 

It is clear from the simple example of free abelian electrodynamics 

discussed above that this is not the same as evaluating the potential energy 

V(r) of two static sources in finite spatial volume. This would correspond 

to evaluating a temporal Wilson loop for T >> r rather than a Wilson loop 

in z. Figure 2 shows the two situations. It is clear from our simple ex- 

ample that at finite temperature the spatial and temporal Wilson loops are 

not equivalent order parameters. 

The lesson to be learned from this example is quite general. Although 

the "finite time" and the "finite spatial volume" approaches are equivalent, 

one must carefully translate all physical quantities from one formulation 

to the other. This is done by expressing any physical quantity in the path 

integral language, interchanging z and 'c and performing the required trans- 

formation on the fields (e.g., A0 + A3 in the above example). 

__ 

Summary 

I have discussed the equivalence of a finite temperature field theory 

to a zero temperature, "finite volume" theory. The ultimate utility of 

such an approach is in one's ability to use it to calculate quantities 

which cannot be calculated in the standard approach. I know of no such 

cases at present. However, over the years much folklore and intuition has 

developed for understanding zero temperature Hamiltonian systems. Symmetries 
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are particularly useful to study in a Hamiltonian formulation. I thus feel 

that in the least, this approach should be useful for using our understand- 

ing of Hamiltonian systems to further our understanding of finite temperature 

systems.5 
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FOOTNOTES 

1. The normalization factor, N is temperature dependent. In fact the 

usual derivation of the path integral formulation shows that for a 

system with time T and spatial volume V, N is given by: N - n 
T *VT 

where n and A are infinite. In equation (4) N - n a *L% with V = L3 

whereas the partition function for the "finite volume system" has a 
A 

normalization factor N - n L ,L% . Thus the finite temperature and 

finite volume partition functions are equivalent only up to a total 

normalization factor. It is easy to show that for spatial dimensions 

n > 1 this fact is irrelevant whereas for n = 1, F(B)/V and ~~ of 

equations (9) and (11) are only equal up to an additive constant: 

e/v = EO + Const/B (for n = 1). Derivatives of f/V and ~~ with respect 

to m2 are unchanged and thus the analysis of equation (15) holds for 

n = 1 as well. 

2. We shall ignore the issue of 6 states which are discussed in detail 

in Ref. [6]. 

3. This is proved by noting that for any periodic A0 and for all periodic 

Ai one can find a time-dependent A, such that the gauge transformation 

<a, Ai> -f (Ao, ii) keeps Ai periodic. The resulting Jacobion is one; 

and only an overall a factor multiplies the integral. 

4. This is certainly the case on a lattice. In any case, there is a 

symmetry (Z(n) for SIT(n)> in the action which implies that L = 0. The 

case L # 0 corresponds to spontaneous breaking of this symmetry. This 

situation is being studied in more detail. Further results on L are 

given in Refs. [6] and [8]. 
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5. A lattice quantum Statistical Mechanics problem near a critical point 

can be approximated by a finite temperature field theory. This 

approach may then also be useful for studying these theories. 
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FIGURE CAPTIONS 

Fig. l(a) Two sources separated by a distance r >> B in finite spatial 

volume. (b) The situation in Fig. l(a) is extended, by periodicity to 

--oo<z<m. 

Fig. 2 Two types of Wilson loops in finite volume: (WlW2) and (W). 
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