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ABSTRACT 

The second-order achromat principle is used to correct the chromatic 
aberrations in a representative 75 GeV/c storage ring using four 
families of sextupoles. The ring chosen to illustrate the essential 
principles of the design procedure has the following general 
characteristics : 

Beam Energy = 75 GeV 
Beta*(x) = 1.6 m 
Beta*(y) = 0.1 m 

Circumference = 25 loll 

INTRODUCTION 

Beam transport systems containing only linear elements (dipoles and quadrupoles) have 
chromatic aberrations. These aberrations have two undesirable effects in storage rings. 

(a) They can lead to a substantial degradation in the quality of the beam spot at the 
interaction regions. And (b) the tune shift as a function of momentum in a linear lattice 
limits the useful momentum pass band of the accelerator. 

In principle these chromatic effects may be reduced to acceptable values by introducing 
families of sextupoles in regions where momentum dispersion exists. Furthermore if the 
sextupole strengths and positions are correctly chosen, all of the second-order geometric 

and chromatic aberrations can be made to vanish. We have named such systems ’ second-order 
achromats’. ’ p2) The sextupoles, however, will introduce third and higher-order geometric 
and chromatic aberrations. These third and higher-order aberrations must then be minimized 
to achieve the optimum lattice design. This is accomplished by placing the sextupoles in 
regions of high beta and by choosing the momentum dispersion at the correcting elements 
such that the residual geometric and chromatic aberrations are approximately equal. This 
equality occurs when the chromatic beam size is approximately equal to the monoenergetic 
beam size at the correcting sextupoles, i.e. , when 

Two general types of second-order achromats have been devised. Those which have 

unity masgnification and those which magnify or demagnify the beta function. Combinations 

of these two types of achromats can be used to design composite systems free of all second 
order aberrations. This basic principle has been adopted in this report to explore the 
phase space limits of stability of storage rings. 
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BASIC DESIGN OF THE LATTICE 

A modular section of a storage ring lattice based on the above principles is the 
following 

X--------A--------B---------C----M 

X is an interaction region (I.R.) in the lattice and M is a symmetry reflection point 
midway between two interaction regions. X--A is a magnifying achromat. A---B is a 

matching section needed to match the magnifying achromat to the main lattice. A--B is 
required because the magnifying achromat has the same magnification in both transverse 
planes and the ratio of the beta functions at the I.R. is not necessarily equal to their 
ratio in the main lattice. B---C represents the main lattice. It consists of a repetition 
of identical unit cells structured as a series of unity magnifying achromats. C--M is a 

phase shift network to make fine tune adjustments to the lattice. It may or may not be 

needed in any given design. 

Each achromatic segment has a total phase shift of 360 degrees in both transverse 

planes because all of the second-order geometric and chromatic aberrations vanish simultane- 
ously only at the 360 degree phase shift points. Regions A---B and C---M must consist 

only of quadrupole components if the second-order integrity of the system is to be strictly 

preserved. 

MAIN LATTICE STRUCTURE AND CHARACIERISTICS 

In the example studied, the main lattice B---C contains 30 unit cells each of which 
has the following optical configuration. 

QF--SF-----BB ____ SD--QD--SD----BB ____ SF--QF 

Table I gives the characteristic parameters of each main lattice unit cell. The phase 
shift/cell for the main lattice is not a critical parameter in this design. 60 deg/cell 

was chosen for the test case but a 90 deg/cell system has also been studied and found to 
function equally well. 

All SF sextupoles in the main lattice are tied together as one family and all SD 
sextupoles are tied together as a second family. With the proper adjustment of these two 

families all second-order chromatic aberrations in the main lattice will vanish. 

Table I 

Main Lattice Cell Parameters 

Phase advance/cell x plane 60 deg 

Y plane 60 deg 
Total phase advance in B--C 5*360 deg 

Beta max 138 m 

Beta min 46 m 

Total bend angle/cell 1 deg 

Radius of curvature 3km 

Total length of a cell 80.36 m 



THE MAGNIFYINGACKROMAT 

Section X---A is a magnifying achromat. It is similar in characteristics to the main 
lattice achromat except that each successive cell is a 'magnified' copy of the preceding 
cell according to the scaling laws shown below in Table II. In the example studied the 
magnifying achromat has the following optical cell structure 

J---first cell----)-------second cell--------/ 

.B---QD-SD---QF-SF.B------QD--SD-------QF--SF. etc. 

I_ _____________ half wavelength---------------( 

where all components in the second cell are M times longer than in the first cell. The 
third cell is M times longer than the second and the fourth cell is M times longer than 
the third. For the system studied in this report, M= 3 was chosen. Thus each half wave- 
length has an optical magnification of 3. This gives a total magnification of M*M= 9 for 
the four cells comprising the magnifying achromat with a corresponding magnification of 81 
for the beta functions. Section X---A has a total phase shift of 360 deg. 

All lengths scale like M. The strength K(n) of a multipole is defined here as 

K(n) = B(o)L 
BR an 

where n= 0 is a dipole, n=l is a quadrupole, and n= 2 is a sextupole. B(o) is the field 
at the pole of the multipole. a is the radius of the aperture. L is the length of the 
multipole, and BR is the magnetic rigidity of the particles. 

Table II 

Scaling Laws for a Magnifying Achromat 

MULTIPOLE STRENGIH LENGIH 

Dipole M-1/2 

Quadrupole M-l M 

Sextupole M-3/2 M 

MATCHING SECTIONS 

Both matching sections A---B and C---M contain a succession of quadrupoles and drift 
spaces. These sections introduce some chromatic distortions but they are small if the 
sections are designed to have small excursions in the betatron oscillation amplitudes. 
These residual chromatic aberrations are easily corrected by a slight perturbation to the 
main lattice sextupoles in the achromat (six cells) immediately adjacent to the matching 
section being corrected. 

IMPLEMENTATION FOR A 75 GeV STORAGE RING 

The above principles have been applied to design a test lattice for a storage ring 

at 75 GeV/c. Since the objective was to explore the limits of validity of the chromatic 
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correction, other pragmatic problems such as the effects of synchrotron radiation upon the 
beam emittance have been ignored. The magnifying achromat used for the test case contains 
bending magnets in every cell including the interaction region so as to explore the maximum 
available phase space limits for stability in storage rings. Magnifying achromats having 
the first bending magnets located two or four unit cells away from the I.R., as is required 
for efe- storage rings, have been explored but further work is required to achieve a 
satisfacotry solution in this configuration. 

Figures 1, 2 and 3 show the resulting tune-shift diagrams, the beta function variations 
at the I.R., and the stability diagrams as a function of momentum. These results were 
obtained by tracking test particles for 240 super-periods using the program DIMATS.3) 
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Fig. 2. Beta function variations at an inter- 
action region. Fig. 3. Stability diagrams. 

Further diagnostic tests were made by exploring the optical distortions introduced 
by the sextupoles. 5000 rays were traced, using the program TURTLE ,4) from the beginning 
of a magnifying achromat through the I.R. to the end of the next magnifying achromat. The 
central core of the beam, corresponding to a monoenergetic linear lattice, is displayed by 

the $ signs. The ‘noise’ surrounding the central core of the beam is clearly illustrated 
by the numerals and alphabet. This noise represents the optical distortions introduced by 

the sextupoles. Results, corresponding to the phase space points A, B, and C in Fig. 3, 



5 

are shown in Figs. 4 (a), 4(b) and 4 (c) . For point A [Fig. 4(a) 1 no significant optical 
distortion is present and the beam is completely stable. For point B [Fig. 4(b)] the 
emittance and the momentum spread of the beam have been increased by a factor of 1.4. 
The noise level has increased but the beam is still observed to be stable. In Fig. 4(c) 
(point C) the emittance and momentum spread have been increased by a factor of 2 from that 
at point A. The noise has become significant and the resulting system is found to be 
unstable. By unstable we mean that particles are observed to be lost while tracking them 
for 240 super-periods using the DIMATS programs. 

Fig. 4. Results of 5000 rays traced from the main lattice through 
an interaction region back to the main lattice. The $ 
signs display the results for a perfectly linear lattice. 
The numbers and alphabet show the non-linear optical dis- 
tortions caused by the introduction of sextupoles. 

CONCLUSIONS 

It is the conviction of the authors that the principles of the unity magnification 
achromat combined with the magnifying achromat can be used successfully to design lattices 
for colliding beam machines at high energy. Work should now proceed to investigate more 
pragmatic solutions and to explore possible applications to smaller machines. 
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