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Abstract-A new class of separable variables is 
found which allows one to find an approximate analy- 
tical solution of the Maxwell equations for axial 
symmetric waveguides with slow (but not necessarily 
small) varying boundary surfaces. Two examples of 
the solution are given. Possible applications and 
limitations of this approach are discussed. 

Introduction 

There are many problems the solution of which 
can be reduced to a much simpler one if only the 
eigenfunction of the corresponding equations were 
known. Numerous examples of such problems arise by 
investigation of the interaction of a bunch of parti- 
cles with the electromagnetic field in an axial 
symmetric waveguide. Particularly in application to 
the accelerator theory, one needs to know how much 
energy is lost by the bunch in a vacuum chamber, its 
different tanks and cavities, the distribution of the 
higher mode fields induced by a bunch in the surround- 
ings, the interaction between the particles in the 
same bunch or in different bunches through the wake 
fields induced by themselves and so on. All these 
problems can be reduced to some sort of summation 
over the field eigenfunctions for the given wall 
geometry of the vacuum chamber. 

The only one known analytical solution of the 
Maxwell equations for the space inside an axial 
symmetric waveguide is the solution for the waveguide 
with a constant circular cross section. The solutions 
for a stepwise constant cross section waveguide can be 
obtained by properly matching the solutions for indi- 
vidual steps. This procedure is time and labor con- 
suming. The example of such an approach for a step- 
wise periodic structure is given in work Cl]. 

Exact analytical solution for a waveguide with 
variable cross section is not known. For the case when 
the corrugations of the cylindrical wall are smooth 
and small, the solution can be obtained by means of 
perturbation theory C2,31. This method was recently 
applied to problems of finding the wake fields in- 
duced by a current moving on axis [4] and off axis [5] 
of a corrugated pipe. 

In this paper another method is 
developed. It allows one to find an 
approximate analytical solution in a 
waveguide with quite arbitrary wall 
shape, satisfying certain conditions. 
The central idea of the method is a 
conform transformation to coordinates 
in which the boundary curve appears to 
be a straight line (Section 1). The 
limitations of this method and the 
area of its applicability are dis- 
cussed in Section 2. The main part of 
the work is then devoted to the solu- 
tion of the homogenous Maxwell equa- 
tions in the new orthogonal curvilin- 
ear coordinates (Sections 3-6). As it 
is shown here in a certain approxima- 
tion, the variables are separable even 
in the vector wave equation. Analo- 
gously to cylindric waveguide with 
constant cross section TM and TE modes 
are introduced. 

Next step (Section 7) is then to satisfy the 
boundary conditions for the electromagnetic field in- 
side the pipe and to find the eigenvalues (the frequen- 
cies and the propagation functions). 

Two examples of the application of the derived 
method are given in Section 8. One can find here also 
the comparison of the calculations with the results of 
measurements taken from the paper C21. 

I. Coordinates 

Let us consider the following dependencies of the 
rectangular coordinates x, y, z. on curvilinear coordin- 
ates p, 8, 6: 

x = A(;+ c an shnp cosno)cose n 

Y a A (P+ c an shnp cosno)sin8 

a = A(o+ & an chnp sinno)+ z. 

From (1.1) and (1.2) we get for the radius in the plane 
z= const 

r=A pf ( Tan shnp cosno) (1.4) 

Symbol c n means either summation or integration over 
n. Generally speaking, one needs to distinguish be- 
tween cgvariant and contravariant components of any 
vector F. To avoid this, I will use only projections 
Fl, F2, 53 of anf vector * on a base system of unit 
vectors 11, 2, 3. 
?i(i=1,2,3) d 

Figure 1 shows the three vectors 
rawn in the directions of increasing co- 

ordinates p, f3 and u, such as to constitute a right- 
hand base system. 

Using Equations (1.1, 1.2, 1.31, it is easy to 
find the metric tensor gij 

gij = O i+j 
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g11 - g33 - A '[(l + c a,nch np cosno)2 

+ (G annshnosinno)2] 

g22 = A2 (p +, c a shnpcosno)2 
n .n 

Equation (1.5) proves the orthogonality of the coordin- 
ate system, p, 8, u: 

liZj = 6 
ij (1.8) 

From (1.4) follows that r= 0 for p= 0. Constant z. in 
(1.3) allows the choice of any plane z-const for 
placing there the origin p= u= 0. If we put so= 0, 
then the origin will be in the plane where the cross 
section has the maximum. 

The constant A is an arbitrary scale factor with 
the dimension of the length. The p, 8 and u are dimen- 
sionless. In the limit a,+ 0, p, 8 and u go into 
usual cylindrical coordinates r, 8, z. The constants 
an are dimensionless arbitrary quantities limited only 
by a natural condition r> 0 everywhere. The case r= 0 
at some value of u should be considered separately 
(it represents a closed axial symmetric cavity of an 
arbitrary shape). 

II. Main Approximation 

The metric coefficients hi= Jbii, which one finds 
from equations (1.6) and (1.7) are very complicated and 
do not give the possibility to solve the corresponding 
Maxwell equations. They became much simpler in the 
limit 

NP<~ , (2.1) 

where N is the most sufficient harmonic number in the 
expansion (1.4). If (2.1) is fulfilled, then 

hl = h3 = h(u) , (2.2) 

h2 = ph(u) , (2.3) 

where 

h(u) = A (1 + & arm cosnu) (2.4) 

For the coordinate transformation we get 

r = ph(o) (2.5) 

(2.6) 

or excluding u from (2.5) 

r = pf(z) (2.6a) 

If one chooses the.function f(z) in such a way as 
to describe the shape of the wall in the plane 
e= const, then p= pmax= const on the boundary. 

The physical meaning.df the condition (2.1) de- 
pends on the actual value of the coefficients an (or, 
in other words, on actual shape of the boundary). But, 
in the case where all a, are small, the meaning can be 
understood easily. In this case, Z-AU, 

rboundary = ‘max f(z) = P,, h(dA) 

= Apmax(l + c arm cosn s/A) (2.7) 

and we see that A-L/2n, where L is the characteristic 
length of the change of the function f(z) (the period 
for a periodic function). Now, take the average of 

equati,on (2.7) over z; 

<r> boundary 

or 

where b has the 
condition (2.1) 

Since p changes 

P QZLX 
= 2nb/L , (2.9) 

meaning of the average pipe radius. The 

- AP max = LP maxi2= 

now gives 

b < L/2rN 

in the limits 

(2.10) 

OSPSP max 

the condition (2.1) is fulfilled for all the values of 
p, and the approximation (2.2)-(2.4) is valid every- 
where inside the pipe. 

Before we go further, I will mention another limi- 
tation of this method. Since expansion (2.4) contains 
only cosines, not all shapes of the boundary can be 
treated in this way. Namely, we can consider only such 
b&ndary curves r-r(z), which allow the representation 
in the form (2.5), (2.6) with h(u) syamretric 

h(-u) - h(u) (2.12) 

For the sake of completeness, it is useful to mention 
also the restriction of the method by axial symmetric 
waveguides only. 

III. The Maxwell Equations 

Let us confine ,ourselves to the case when the me' 
dia inside the waveguide is a vacuum. The generaliza- 
tion to a homogeneous dielectric media is straightfor- 
ward. In the absence of charges and currents, the 
fieldsAan be defined in terms of two vector functions, 
B and B (the Hertz vectors); each one of them satis- 
fies homogeneous vector wave equation. Since the co- 
efficients of this equation are constant it+is poQible 
to deal with each time Fourier harmonic of II and II 
separately: 

3 = s %u emiwt dw 
ii” = / x; .-lwt &,, 

Then, $U and pU satisfy the equations: 

V2 $U + k2 $R, = 0 , 

V2if*w+k2?$=0 , 

(3.3) 

(3.4) 

where 
k = w/c . 

The differential operator V2 here is defined by: 

In all the further formulae, I omit the subscript 
w by Fourier components of the vector functions. 

The fields can be found, provided 3 and if* are 
known: $1) = vxvxji (3.6) 

$1) = -ikV$ 

p> = ikvxitk (3.8) 
if(2) +* = vxvxn (3.9) 
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Vectors g(lp2) and $(lp2) also satisfy equation analo- 
gous to (343). 

In coordinates p, 8, u and with the metric co- 
efficients (2.2). (2.3) the projections of the equa- 
tion (3.3) on axes xi have the following form (all the 
appropriate formulae for differential operators, in 
these coordinates one can find in the Appendix): 

0 
1 a i -- 

z ap P 

(?,lO) 

=O (3.11) 

+ k2n3 + r a 1 .s?- pn 
ph a0 h ap 1 

an 
+l?mim>.mL-hfl ~0 a2 

hp a0 h ae ph3 aeao 2 (3.12) 

The same system of equations holds also for the vector 
II" . 

IV. Cylindrically Symmetric Field 

It is useful to find first the solution of the 
Maxwell equation for cylindrically symmetric case when 
neither 8 nor 8 d epend on 0. From physical considera- 
tions it is clear that in this case, d should have only 
one component, H2. 
V21f+k2$ 

The projections of the equation 
= 0 on the axes, $1 and ?3, are zero. The 

second component gives: 

.a 1 
aa T; $$hH,+$, $ $pH2+k2h2H2 = 0 (4.1) 

The variables in this equation can be separated, and 
the solution is easy to find 

Hl = 0, H2 = -ikX J1(Xp) Fe(u), H3 = 0 (4.2) 

where Jl(Xp) is the first order Bessel function of the 
first kind, X is a separation constant, and FO(u) is a 
solution of the following equation: 

h' F; + ?;- F;, + F. h" h12 k - T + k2h2 - X2 = 0 (4.3) 

Prime here means differentiation with respest to u. 
By means of the Maxwell equation, E=(i/k)VxH, one finds 
now the electric field: 

(hFo)' 
E~=-XJ~OP) - , 

h2 
E2= 0, 2 FO E3="oJo&~)h (4.4) 

JO,Jl here are the zero and the first order Bessel func- 
tions. The fields (4.2) and (4.4) satisfy also the 
boundary conditions. 

E2(Pmax ) = E3(prnax) - H2(pmax) - 0 , (4.5) 

if we choose the constant, X, such that 

Jo(Apmax) - 0 (4.6) 

We get infinite sequence of Xok: 

'Ok m VOk/Pmax ' (4.7) 

where vOk is the kth root of equation Jo(x)= 0. 

V. TM Modes 

We are now ready to solve equations (3.10)-(3.12). 
To do this, we look for the solution in the following 
form: 

5 
ime 

w J:(~P) Fl(u) e (5.1) 

B2 

B3 

A Prime from now on means the differentiation with re- 
spect to p if it is applied to a function of p or with 

J (a~> 
- imm 

P 
F2(u) eime 

= XJm(Ap) F3(u) e ime 

respect to U if it iS applied to a function of u. 
Jm(Xp) IS the mth order Bessel function, h is an arbi- 
trary constant, and m is any positive or negative inte- 
ger including zero. 

The function Fl, F2, F3 is unknown up to this time 
and should be chosen in such a way that the functions 
(5.1)-(5.3) satisfy equations (3.10)-(3.12). 

Substituting (5.1)-(5.3) into (3.10)-(3.12) we 
find, after some algebra, that the first two equations 
give Fl=F2, where Fl is a solution of the following 
equation: 

-& ;$ hFl + (k2h2- h2) Fl + 2 z XF3 = 0 (5.4) 

The third equation gives: 

h & 5 -$ h2F3 + (k2h2- X2) F3 + F XFl = 0 (5.5) 

Equations (5.4) and (5.5) constitute a system of two 
coupled second-order ordinary differential equations 
for two functions, Fl $nd F3. 

The Hertz vector II (5.1)-(5.3) allows one to find 
the electric Z(1) and magnetic if(l)fie from expres- 
sions (3.6) and (3.7). Using the expressions for dif- 
ferential operators in our coordinates p, 8, u, (see 
Appendix) one gets: 

E(1) = J, (hF)' imB 
1 m h2 e 

(5.6) 

(1) 
E2 

i im > (hF;' elm8 
(5.7) 

h 
E;l) = A2 J E eime 

mh (5.8) 

II(l) Jm =mkpFe ime 
1 (5.9) 

H$l) = ik j' F eirne ' 
m (5.10) 

Hil) I 0 (5.11) 
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The function, F, is defined as 4011~~s; back from the q variable to the z variable, 

F = (XhF3 - (hF1)' )'/h2 (5.12) 

First of all, q(yf e that the third component of 
the magnetic field, H 

is zerO 
. Analogousl+fp cy- 

coordinates we can call the fields E 
transverse magnetic modes (TM mod 

f 
s). One should 

remember, of course, that the field Tfi( ) is transverse 

dZ = hda (7.1) 

h'=hdh 
dz (7.2) 

It is convenient at the same time to change the func- 
tion F(u) to a new function u: 

to the direction 13, but it is not transverse to the 
axis of the waveguide Is, 

-+(l) Further, all the factors in E -+(I) depending 
on u do not depend on m (see equation: 75.4) and (5.5)) 
That means that the function F in expressions (5.6)- 
(5.11), which are valid also for the case m= 0, must 
';; ;;e same as the function FO in expressions (4.2), 

. . (All the other factors coinside in correspond- 
ing expressions.) Hence F=FO and must satisfy equa- 
tion (4.3). Indeed, substituting (5.12) into (4.3) 
after some algebra and with the help of equations (5.4) 
and (5.5) one f&nds tQat it is the case. 

The field E(l), H(l) should satisfy also the 
boundary conditions (4.5). That can be achieved by 
proper choosing of the value of the constant A. 
Namely, it implies: 

u(z) = F(a) * h(u) , (7.3) 

where it is understood that in the right-hand side of 
expression (7.3) u should be substituted by the func- 
tion a(z) from (2.6). Then, from the equation (4.3) 
we get the following equation for the function u: 

d2u/dz2 + (k2- v2/r2)u = 0 , (7.4) 

where r b -rb(z) is the boundary curve. For TM modes, 
we get now: 

- (1) p vJt d ,imS 
El m rb ' 

JmOPmax) - 0 (5.13) 

or 
x mk 'V mk/omax (5.14) 

where vmk is the kth root of equation J,(x)- 0. 

VI. TE Modes 

The second independent set of electromagnetic 
fields inside the waveguide can be obtained from the 
same vector if (5.1)-(5.3) by means of equations (3.8), 
(3.9). In this case, one gets: 

(2) 
El 

=mk>F eime‘ (6.1) 

E(2) 
2 = ik J m' F eime (6.2) 

E3 
(2) = () (6.3) 

(6.4) 

(1) Jm 
E2 = imru' e ime 

, 

(1) 

E3 
= v2 5 u ,h8 

2 , (7.7) 
'b 

(1) 
H1 

'rn imB =mklue , (7.8) 

(1) 
H2 = ik g JA u eime , (7.9) 

(1) zm 0 
H3 , (7.10) 

and analogous expressions for TE modes. In expres- 
sions (7.4)-(7.10) Jm=Jm(vr/rb), V= V& (See 5.141, 

u=u(z) and prime means derivative over whole argu- 
ment of corresponding function. 

In the limit of the constant cross section wave- 
guide rb=pmax and the solution of equation (7.4) is: 

(6.5) 

H(2) = h2 J 
3 

E eimO 
mh (6.6) 

We can call these modes transverse electric modes 
(TE modes) since E$') = 0. To satisfy the boundary 
conditions for the TE modes, the value of the constant 
X should be chosen in such a way that 

U’ exp(+- @Y?-z) (7.11) 

we Can Call U(Z) a propagation fUnCttOn. When q,(Z) 

is a periodic function, equation (7.4) becomes the 
Hill equation. The solution of it defines positions 
and widths of stopbands as well as the phase velocity 
of the wave in passbands. More detailed investigation 
of the behavior of the propagation function can be 
done only for a given function rb(z). 

J,h(bmax) = 0 (6.7) 

or 
xm;nk = ~mk/Pmax > (6.8) 

where -&k is the kth root of equation J;(x)= 0. 

VIII. Examples 

I present here two examples of the application 
of the derived theory. In the first one, the propa- 
gation function u(z) (See Section 7)'is calculated 
for the wave guide with the following boundary: 

rb = b(l+acos 2nz/L) , (8.1) 

VII. Propagation Function 

Let us+look 2ore closely on the u-dependence of 
the fields E and H. It is described by the function 
F which satisfied equation (4.3) :the subscript 0 can 
be omitted from now on). Since, according to expres- 
sion (2.6), a is the function of u only, we can come 

-4- 

where b is the average radius of the pipe's cross 
section, a and L are the amplitude and the period of 
the boundary variation. The applicability of the 
theory limits the values of b and L by the condition 
pmax= 2nb/L< 1. 

The general solution of equation (7.4) in re- 
gions of its existance ("passbands") can be expressed 
in terms of the corresponding B-function of this 
equation C61: 

U(Z) = uo4GT e i@(z)-iwt. 
, (8.2) 

(7.5) 



where 2srz/L 

(8.3) 

and the function c(z) = JB(z) is the solution of the 
following nonlinear equation: 

~"+(k2-v2/r~)s = l/c3 . (8.4) 

Outside of the passbands there is no solution of equa- 
tion (7.4) ("stopbands"). The electromagnetic wave 
with corresponding frequencies (or values k) can not 
propagate in the wavcguide under consideration. 

Inside one of the passbands we can determine the 
phase velocity vph of the wave. From (8.2) one finds 

vph/c = (kL/2r) B(z) . (8.5) 

The phase velocity is not constant, but it is modula- 
ted with the frequency 2x/L. 

Fig. 2. The phase velocity of the TMOl(v=2.405) mode 
versus longitudinal 
coordinate y=?az/L. 
The waveguide param- 25 

eters are pmax=0.3, 
a=O.lll. The param- g 20 
eter K=9.02 (propor- $ ,5 
tional to the field y 
frequency w) is cho- 
sen on the left side 

2 IO 

of the stopband 2 
a 5 

(compare Fig. 8).v,v 
is the average rela- 0 
tive phase velocity 0 2 4 6 

<vph/c>=8.30. 4.0 Y aa.2 

6 

Fig. 5. The same as t 
on Fig. 4, but for 3 4 
the value of K in y 
between the stopbands g 
(see Fig. 9). 
K=4.60, v,=2.90. 

2" 

0 
0 2 4 6 

,.*o Y nm.1 

Figures 2-7 illustrate the dependence of the phase vel- 
ocity versus the longitudinal coordinate y=2nz/L for 
different values of the parameters K=kL/Zr, Pmax=Zxb/L 
and a. For some problems the average (over z)‘phase 
velocity is of interest. This quantity is relevant for 
example to a problem of the coupling between the elec- 
tromagnetic wave propagating in the waveguide and a 
particle moving along its axis. The relative average 
phase velocity <Vph/C> is also given on these figures. 

4 
Fig. 3. The same as 
on Fig. 2, but the 
parameter K lies 
above the stopband 
(See Fig. 8). 
K-9.40, vav=2.22. 

Fig. 4. The same as 
on Fig. 2, but for 
the waveguide with 
the parameters 
pmax=l.O, a=0.5. 
K lies below both 
stopbands 
(see Fig. 9). 
K~4.23, ~~~~7.75. 

0. 2 4 6 
Y 

0 
0 2 4 6 

Figs. 8-10 show dependencies of the average phase 
velocity on the parameter K as well as positions and 
widths of the stopbands. 

The case Pmax =2.87 is far outside the validity of 
the described method. It was calculated here for the 
sake of the comparison with known results. The cross- 
es on Fig. 10 represent the results of calculations 

'according to second order perturbation theory and of 
the measurements and are taken from the work r21. 

Fig. 6. The same as on Fig. 4 
but for the value of K above 
both stopbands (see Fig. 9). 
K=5.21, vav=1.46. 

Fig. 7. The same as on Fig. 2 Fig. 8. The average relative phase velo- 
but-for the waveguide with the city of the TM01 mode versus parameter 
parameters Pmax'2.87, a=0.111. K=kL/2r. The waveguide parameters are 
K is above the stopband shown p,,x=O.3, a=O.lll. The position and the 
on Fig. 10. Kz1.03, ~,,=3.04. width of the stopband is also shown. 

3.0 
z 
ij 2.5 
ii 
> 2.0 

0- 
0 2 4 6 

.-.a Y mm.. 

5 

0 2 4 6 
6." Y E.&w, 

-5- 



Fig. 9, The same as 
on Fig. 8 but for the 
waveguide'with the 
parameters pmax= 1.0, 
a=0.5. One can in- 
terpret this picture 
as widening of the' 
stopband with in- 
creasing amplitude 
of the boundary 
modulation and 
appearing of a narrow 
passband inside it. 

4.5 5.0 5.5 
* -a# K "o... 

AS the second example, I present here the approx- 
imate solution of the Maxwell equations for the cavity 
buildout of two hyperboloid surfaces: 

rb = b2/ IzI (8.6) 

Equation (7.4) in this case looks like: 

u" + 
( 
k2 - ?.v z 2 2 

b4 > 
u =o (8.7) 

This equation describes the wave function of a 
quantum mechanic harmonic oscillator and its solution 
is well known. The fields fade away at lzl+- only 
for the following values of the parameter k: 

kn = 4(2n+l)v /b , h=O,l, 2 . . . (8.8) 

The corresponding solution u,(z) of (8.7) is 

U n =u e 0 -c2'2 H n (6) (8.9) 

where c= (J;)z/b, Hn is the Hermite polynome of the 
nth order. 

The main assumption pm < 1 is not fulfilled here 
since omax= 1 for (8.6). Hence the solution (8.8), 
(8.9) is only an approximate one. 
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Fig. 10. The same as 
on Fig. 8 but for the 
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a= 0.111. The crosses 
represent the results 
of the calculations and 
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work C2l. Although 
this case is outside 
the applicability 
region of this work 
method, the correspon- 
dence is not at all bad. 
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Appendix 

Differential operators in coordinates p 0, uI 
For any vector function F(P, 0, u) =Flzl+F2?2+F3i3: 

03 = 1 
[ 

h2 $ (pFl) + h2 & F2 + o -& 
ph3 - 

(h2F3) 
I 

(Vx?), =+ 
ph 

h$ o $- (hF2) 1 
(A.11 

(A.21 

(A.4) 

(A-5) 
aF2 1 a $ $ (oFl)+-$- =+- - (h2F3) h3 ao 

-- -$--$ (hF2)+& (pF2)+$--> 

(A.61 

(pF$+-& 2 + i -?- (h2F3) h3 ao 

1 1 a2F3 
-2 P aoae 1 

--- &;$ (hF2) - $-f$ (pF2) 

+ aa. 
ap P ae 

For a scalar function $(P, 8, 0) 

(A.7) 

(A.8) 
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