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ABSTRACT 

An anomaly free model of strong and electro-weak interactions involv- 

ing leptons and quarks in the SU(4) x Slam x U(1) gauge theory is 
C 

constructed. After spontaneous symmetry breaking, it reduces itself into 

the quantum chromodynamics for strong interactions and a broken 

SU(3) x U(1) model for electro-weak interactions. As a limiting case 

it gives the same results as those of the Weinberg-Salam model in the low 

energy region. The Weinberg angle is bounded by sin2eW < l/4 and becomes 

slightly less than 30' in the limiting case. Below the mass scale.of 

SU(4)c breaking there exists an inequality between Weinberg angle and 

the strong coupling constant, which is consistent with experiments. A 

correction to the neutral current of Weinberg-Salam model is suggested. 
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A new conserved quantum number is introduced in this model and there 

should exist several new fermions with masses lighter than 160 GeV. The 

Kobayashi-Maskawa expression of Cabibbo mixing for quarks may be obtained 

in the model generalized to include several generations of fermions. 

I INTRODUCTION 

Recent neutrino induced neutral current experiments are in agree- 

ment with the expectations based on the Weinberg-Salam model.' The 

'Weinberg angle Bw is found to be sin20 W 
= 0.230 L 0.009 by the experi- 

menters.2 Beyond the Weinberg-Salam model one may ask: 

(1) Is there any symmetry higher than SU(2)L x U(1) for the 

electro-weak interaction? 

(2) Whether sin2ew being slightly less than one fourth has special 

physical meaning? 

(3) How to unify the Weinberg-Salam 

tion? 

model with the strong interac- 

If the answer to the first question is "no," the next problem to 

be solved is the grand unification of the Weinberg-Salam model with the 

strong interaction. In this way one may construct a model of grand 

unification, such as the SU(5) model suggested by Georgi and Glashow.3 

If one thinks that the answer to the first question is "yes,It this 

leads to another question: What kind of group is the higher symmetry? 

There are several considerations which may become the motivations to 

choose it: 

(1) It must ensure left-right symmetry before spontaneous symmetry 

breaking. 

(2) It must include both leptons and quarks in a single model. 
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(3) It must give some restriction to the Weinberg angle. 

There are many possibilities. One of them is the SU(3) X U(1) 

group for the electro-weak interactions. In a previous paper4 a model 

with the SU(3) x U(1) gauge group was proposed. This model is left- 

right symmetric before spontaneous symmetry breaking and anomaly free. 

It gives the same results as those of the Weinberg-Salam model in the 

low energy region for a limiting case. The Weinberg angle is bounded 

by sin2ew < l/4 in this model and sin2eW becomes slightly less than l/4 

in the limiting case. 

In this paper we discuss a way of unifying the strong and electro- 

weak interactions by embedding this SU(3) x U(1) model into a larger 

one, SU(4) 
C 

x SU(3) x U(l), where the main results of Ref. 4, including 

the interesting property of sin2ew s l/4, are preserved and several 

further consequences are obtained. 

Before discussing this model we will briefly analyze the construc- 

tion of the SU(3) x U(1) group, which will be helpful in understanding 

the motivation of an extension to SU(4) x SLJ(3) x U(1). 

When one wants to embed the SU(2)L x U(1) model into an SU(3) x U(1) 

model, a naive requirement is that v 
L and eL will correspond to the first 

two components of a left-handed triplet and e R will correspond to the 

third component of the right-handed triplet of the SU(3) group. There 

are two possibilities. 

Case A: vL and eL belong to the representation LL and eR belongs 

to the representation AR of the SU(3) group. This case is investigated 

by B. W. Lee, S. Weinberg, R. E. Shrock, G. Segre, J. Weleys and many 

others' in details. 
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Case B: vL and eL belong to the representation 3., while eR belongs 
* 

to the representation 3 --, the conjugate representation of 2. This 

case is investigated in Ref. 4. 

These two cases lead to different consequences summarized in 

Table I. 

In the expressions for the charge operator, i and ?g are the third 
-3 

and the eighth generators of the Su(3) group respectively while Y is the 

generator of the U(1) group. Of course the Y assignment of the fermion 

multiplets are different in these twc~ cases. In case B, there exists an 

additional conserved quantum number called the weak strangeness, SW, 

coming from an unbroken U(1) symmetry after spontaneous symmetry break- 

ing. There are several heavy particles to be discovered in this case 

too. However, most of them have non-vanishing values of SW while the 

known particles in the Weinberg-Salam model have SW = 0. We may call 

these particles with SW # 0 the weak strange particles. Some of them 

have "exotic" values of charge, for example, Q = 2 for a heavy vector 

boson and Q = 5/3 for a heavy quark. 

The most interesting character of the case B is that the upper 

bound on the Weinberg angle is close to ,the measured value. .Of course the 

existence of the conservation of weak strangeness gives many new physical 

predictions for the high energy electro-weak interactions and is interest- 

ing too. However, because the left-handed and right-handed fermions 

belong to different kinds of the representations of the SU(3) group, 

this kind of model cannot easily be embedded into a simple SU(6) model 

of grand unification. So we have to study other ways of connecting this 

kind of model with the strong interaction. One attractive idea is that 
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the color group may be an SU(4) group and the lepton number may be 

treated as the fourth color as suggested by Pati and Salam. Adopting 

this idea, we will extend this kind of SU(3) x U(1) model to an 

SU(4)c x SU(3) x U(1) model. 

II FUNDAMENTAL STRUCTURE OF THE-MODEL 

The local gauge groups considered in this model are the SU(4) 

color group, the SU(3) flavor group and the U(1) group. Their generators, 

the corresponding gauge fields and the coupling constants are denoted by 

. 
i!, cJ 

J p' J 
* = 1, . . . , 15, g" for SU(4) 

ii At, i = 1, . . . , 8, g for SU(3) 

;, B 
Ft' g' for U(1) 

respectively. Besides the local symmetry there is another global U(1) 

symmetry whose generator will be denoted by S. This global U(1) will 

combine with an Abelian subgroup in SU(4) x SU(3) x U(1) to give a new 

conserved quantum number S w after spontaneous symmetry breaking. We will 

use four numbers in a bracket (m, n, F, S) to denote the representations 

for these four groups respectively. For example, (4, 2, -1, 1) means the 

representation 5 for the SU(4), the representation 2 for the SU(3), 

F= -1 for the local U(1) and S = 1 for the global U(1) groups. 

For simplicity we discuss the model involving only one generation 

of fermions. It can easily be extended to the case involving several 

generations. The fermions form four left-handed multiplets and four 

right-handed multiplets. 



$,: (2, 2, 1, 1) 9,: (5, 2, 1, -1) 

sL: (5, _c, 1, -3) sR: (A, &, 1, 3) 
(2.1) 

1cI ': L (k, 2, -1, -1) $: (5, 3, -1, l) 

s;: <k, 2, -1, 3) s;: (5, &, -1, -3) 

After spontaneous symmetry breaking one SU(3). symmetry, one local 

U(1) symmetry and one global U(1) symmetry remain unbroken. The unbroken 

SU(3) group is a subgroup on the first three dimensions of the SU(4) 

group and becomes the color gauge group for quarks. The generators of 

the local U(1) and the global U(1) groups are the charge 

~ = ;3 - ~ i, + 3 ii5 + ~ ~ J (2.2) 

and the weak strangeness 

SW = 2 f, Ii (2.3 
6 

-$i.+6 

respectively. 
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Since quarks are degenerate for three colors and the color index is 

unimportant in many discussions, we may omit it and express the fermion 

multiplets as 

4JL = 

gR 

hR 

dR 
- 

K 

ER 

eR 

XR 

"R 

% 
==I 

<R 

5, 

"R'. 

(2.4) 

(2.5) 
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where the symbols above the double lines denote three colors of quarks 

while the symbols under the double lines denote leptons. 

The quantum number assignments of various states are listed in 

Table II. 

This model is anomaly free. The proof can be done in the similar 

way as in Ref. 4. 

III SPONTANEOUS SYMMETRY BREAKING 

Six multiplets of the Higgs fields are introduced to realize the 

spontaneous symmetry breaking, Their transformation properties are 

aA: (A, 3, 0, -2)) QD: Q, 3, -2, -2) 

QB: Q, 6*, 0, -2) , QE: (5, E3 19 3) 

Qc: (15, 3, 0, -21, aF: CL, 3, 2, 4) 

respectively. 

The self interaction potential of the Higgs fields is chosen to 

be 
F 

(3.1) 

(3.2) 

where a’s, b’s, C, d, e and f > 0, $Ai, ~~~~~~~ $c,,vi3 ~Di’ ~Ei and ~Fi 

are the components of @ A' 'B, 'C' 'D' aE and QF respectively. As shown 

in Appendix A, it leads to a stable minimum for V. The vacuum expecta- 

tion values of the Higgs fields may be taken to be 
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respectively, where all v's are positive and determined by the coefficients 

in V. Owing to the stability of the minimum, no pseudo-goldstone appears 

after spontaneous symmetry breaking and all the remaining Higgs particles 

are massive. They may be rather heavy by a suitable chaise of the coef- 

ficients in the self interaction potential. One may easily verify that 

the color SU(3) symmetry, the electromagnetic U(1) symmetry and the 

weak strange U(1) symmetry remain unbroken after spontaneous symmetry 

breaking. 

There are 24 gauge bosons in this model. After spontaneous 

symmetry breaking all gauge bosons other than eight gluons and the 

photon get masses. The mass terms of the vector bosons have the form 

+,~+v~)w+~-+~g2(v~+~~ c D + v2 -I- v2>v+v- 

3 

+ v;,uTJ-- 

2 (3.4) 

++g2(v;+v;+v;)1A3+LA81 
&i 

++g2v2 lLA8+ 
D J?; 

+A 2 2 LB- 
2 

4' VEIg 
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where 

W'- = i (AIF iA2), 

+2/3 1 
c2 = JZ (CL1 7 iC12), 

The masses of these particles are 

$= IL z (A4 + u5)’ 

r ic14) l 

4 = $ g2(vi + v; + vi + vi) , 

vi) , 

, 
2 

mC =$g"2($v; +v;, , 

respectively. From (3.6) we get the inequalities 

(3.6) 

Three neutral gauge bosons will get masses from the last four terms 

in (3.4), we denote them by Zl, Z2 and Z3 respectively. Eight gluons 

and the photon remain massless. The electromagnetic field is 

A=J2-g$ ( $ A3 

where 

(3.8) 

(3.9) 

The quantum numbers of these bosons are listed in Table III. The bosons 

with a star are new particles introduced in this model. The six C +2/3 
i 
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are so-called lepto-quarks. They have fractional charges and couple 

quarks to leptons. The V and U bosons have non-vanishing weak strange- 

ness. We will call this kind of particles the weak strange particles. 

An interesting limiting case is 

g2 ,2 <‘Ei,g ..x,lJ ,J i e 2 2 >> 1 

2 2 2 2. 
VF -c-c vi + VB + v; << v D' VE 

(3.10) 

The physical meaning of the limiting case is that the coupling constant 

of the SU(3) group is much smaller than those of the SU(4) color group 

and the U(1) group; the mass scales of SU(4)c and SU(3)f breaking are 

much higher than that for the secondary SU(2)f breaking. 

Ln this limiting case the masses of the three massive neutral 

bosons are approximately 

2 

mzl 
= 4 g2 vi + v; 

( + v:) [l - + ($ + $1 

2 

mZ2 
= $ g2 p2v; + 

[ 
A2 + l.12 2 

4 "E 

-J( v2v; + A2 ; lJ2 v;)2 - ?p2v;v;] 
2 ,L 2 

mZ3 4g [ 
A2 + p2 2 

v2v; + 4 VE 

f 
Jc 

l12v; + A2 ; p2 v;) - h2p2v;v; 1 
Zl can be expressed as 

(3.11) 

zp z '(,A3 +A8) -g(+B ++C") + &(++$)(i? - +A8)(3.12) 
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Its dominant component is just Z = $6 A3 + As>, so it may be treated 

as the particle corresponding to the Z boson in the Weinberg-Salam model. 

Comparing with the mass formula in the Weinberg-Salam model 

M; = M,$cos~L'~ 

we obtain to the first order of approxjmation forthe l/h2 and l/v2 

expansion that 

2 sin0 =& l- w 4 [ 

The limiting condition (3.10) ensures that sin2eW is slightly less than 

($ + $1 

(3.13) 

(3.14) 

L and is consistent with experiment. 4 
Both Z2 and Z3 are much heavier than Zl. Their dominant components 

are B and C 15 . For two special cases they get simple expressions. 

Case A: When p"vi >> $(X2 + p2)vi, we get 

2 lL g2u2v2 mZ M y 
3 D' 

15 z2=c , Z3=B . 

Case B: When p'vi << $A2 + p2)vi, we get 

2 L 2 g2 x2u2 2 2 mz2= 

A2 + p 2VD ' mZ3= 8 1 g2(h2 + p2)v; , 

z2 ziA2 : 112 (XB + pc15) , Z3= \/h2: ~2 (-PB + xC15) 

(3.15) 

(3.16) 

(3.17) 

, (3.18) 

The masses of gauge bosons are shown in Fig. 1. It manifests the existence 

of three mass scales. They relate themselves to the breaking of SU(4)=, 

SU(3)f and SU(2)f respectively. 
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The interaction Lagrangian among the fermions and the Higgs fields 

has the form 

grn = i-zc [fi(iRmi’L + ‘L@f’R) 
, , 

+ C sLyR + qRQZSL) 
i=A,C 

where Cp A and (PC in the first terms are expressed in the matrix form 

(3.19) 

(3.20) 

After spontaneous symmetry breaking the mass terms of the fermions are 

derived from (3.3), (3.19) and (3.20). They have the form 
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2-fAvA + fBVB - - &fcvc) 'dLdR + 

+ +-fpA + f.B7B - - 
Jz 

&f&l GLWR 

(3.21) 

+ 2-fAvA + fBvB + 3f v 
JiTcc 

)(gLeR + ZReL) 

+ $GfiVA + f;vB + -+'v 
mcc 

)(5,5, + YES,) 

+ -+f fi AvA + fBvB + m C C 1, v )(shR+zR\) 

+ L(f% 
h- AA 

+ -+f v -tfv JZAA BB - 3f v 
mcc 

)(qEE + TEE,) 

+ l'f% + fI;VB 
fi AA 

- Lf'v 
mcc 

qv1; + Q) 

+ (hAlvA + 1, v 
6 c1 c 

)(ur;uR + LRu.& -I- (hhvA + 1,' v 
m c1 c 

)$xR + zEx$ 

+ (hAlvA - 3, v )(TLvR + TRvL) + (hhvA 
Jys- c1 c 

- -J--h, v 
m c1 c 

) (SLrR + TRGL) 

+ (hA2vA + 1, v )(-%g, 
m c2 c 

+ iRgL) + (hi2vA + -&I' v 
4i-T c2 c 

)(x;d; + x;d;) 

+ (hA2VA - 3, v 
J1T c2 c 

)(ifLNR + GRNL) + (hi2vA - 3-h' v 
m c2 c 

)($ei + +$) 

+ hFvF(d,di + xidL + gLeA + zpL) + h;vF(LpR + zR~ + TpR + TRvi) 

The terms involving vF lead to the mixing between JI, S and $', S'. 

For the masses of fermions the following remarks may be made: 

1. In each generation of fermions, there are eight weak strange 

fermions and eight ordinary fermions. One may assume that the choice 
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of coefficients ensures the weak strange fermions to be much heavier 

than the ordinary ones, thus in the low energy region only the fermions 

with S W = 0 can be observed. Eight ordinary fermions are doublet 

degenerate. In general, one generation of fermions in this model includes 

two generations of fermions in ordinary classification. The existence of 

T lepton and b quark implies that there are at least two generations 

existing in this model. This means that one may expect the existence of 

the fourth generation of fermions in ordinary classification. 

2. We will discuss the generalized Cabibbo mixing of fermions. 

If we have n degenerate states di, i=l, . . . . n. The mass term of these 

states can be expressed as 

diL m.. d. f d. * diL 
iJ JR JR mji (3.22) 

From mass matrix M = (mij>, one may construct two Hermitian matrices 

MM+ and M+M and diagonalize them by means of certain unitary transforma- 

tions U and V 

IJMM+u+ = VM+MV+ = (rnt . . . rni) 

This implies that the transformation 

dL--+ U +dL dR - V+dR 

(3.23) 

(3.24) 

will diagonalize the mass matrix M. Since the charged weak current is 

left-handed, only U relates itself to the generalized Cabibbo mixing. 

If one use U-l,3 and U2,3 to denote the U matrices for -l/3 charged and 

2/3 charged quarks respectively, then the unitary matrix U = U-l,3 Ul,3 

describe the Cabibbo mixing among quarks. There are n2 parameters 

appearing in the U matrix. 2n-1 of them can be eliminated by the choice 

of relative phases and n(n-1)/2 of them can be related to the rotation 
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angles in an n-dimensional space. SO, there are n(n-3)/2 + 1 phases 

appearing in the general expression of mixing, which may lead to the 

CP violation in weak interaction for n 2 3 and is just the description 

given by Kobayashi-Maskawa.7 

In this model n is an even number. For n = 2 if one denotes the 

mass matrix as 

m= fo2 + (Y + a2 1 l (3.26) 

and the mixing angles have the forms 

3 
tan-8 = 2(a6 + BY) 2(ay + IQ9 

L a2 - B2 + y2 - 62 ' 
tan2eR = 

a2 - #32 - y2 + 62 
, (3.27) 

(3.25) M=;; , 
( ) 

then the eigenvalues of mass matrix are 

If one relates four ordinary quarks in this case as u, d, c and s, the 

Cabbibo angle Bc can be expressed as 

ec = eL-l/3 - eL2/3 
(3.28) 

In this model, 6 = 0 holds and ~1, B, y's can be obtained from 

(3.21). Since there exist at least two generations in this model, so 

the mixing should happen for n = 4 case in this model. 

3. There exist right-handed neutrinos in this model. Since they 

do not couple with charged leptons via W boson, there is no contradiction 

to the experiment. Since the massive neutrinos are permited in this 

model, in general, there may be the Cabbibo type mixing among neutrinos, 

which will manifest itself as the phenomenon of neutrino oscillation. 

This model predicts that the oscillation among different flavors of 
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neutrinos may happen while the oscillation between v and 7i.s forbidden. 

This prediction is consistent with the recent experiments.8 

IV INTERACTIONS BETWEEN THE FERMIONS 
AND THE GAUGE BOSONS 

The gauge interaction Lagrangian for fermions can be written as 

. 

+ FR &aP + ig" ;; Ci + ig "B )S 
2 ‘cc R 

+J1;. &all - ig 'T * 
. 

At + ig” f! CJ - igrAB )$' 
3 1-I 2 l-l L 

. . 
-f- Fi y'(ap + ig zi Ai + ig" f! CJ - ig" 

J 1-I 2 Bpz; 

+ ?Q &au + ig" i! Cj - igtL 
J Fc 2 BpL 

(4.1) 

. 
+ Zi yFL(all + ig" ?! CJ - igqJ- 

3 P 2 Bp; 

We shall discuss the interactions between the SW = 0 fermions and the 

gauge vector bosons first. For this purpose, the terms involving 

SW # 0 fermions are neglected and the following substitutions are made 

in (4.1). 
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4J ,- L 

“L 

dL 
-- 

= 

vL 

eL 
-- 

, $,- 

-- 

-- 

dR 
- - 
-a 

-- 

eR 

d;, 
u;, -- 
- - 
ei 
Vi -- 

, v--c R 

-- 
-- 
ui = -- 
-- 
“A 

SL--+ [;I, sRjy ) + , s;-p] , 

, 

(4.2) 

Only the W boson appears in the charged weak interaction, this is 

reasonable on account of the conservation of the weak strangeness. The 

charged weak interactions has the form 

(4.3) 
+ i X- U y'W+e 

ll Jz L FiL 
+ GLy%-U - TLy'W+e' 

PL ?JL 
- z;ypw-v 1 ?JL 

where the terms involving quarks imply the sum over three colors. 
. 

The interactions involving CJ, j=l, 
P 

.m., 8 are just the color SU(3) 
. 

interactions of QCD. The interactions involving CJ, j=9, 
lJ 

. . . , 14 give 

the transition between quarks and leptons. +2/3 Since the masses of Ci 

are very heavy, they can appear only at rather high energies. 

The neutral interactions consist of four terms involving photon, 

Zl, Z2 and Z3 respectively. The interaction involving the photon gives 

the electric charge to be 

(4.4) 
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Comparing with another definition of the Weinberg angle in the Weinberg- 

Salam model 

e = g sinew (4.5) 

we obtain 

(4.6) 

in contrast to (3.16). We can treat (3.15) and (4.5) as two definitions 

of the Weinberg angle. In the limiting case, when Z 1 is much lighter 

than Z2, they lead to the same expression of sinew as shown in (3.16) 

and (4.6). 

From the expression (4.6) of Bw, a lower bound on the strong cou- 

pling constant may be obtained: 

2 a >- 
c1 (4.7) 

S 
3 (1 - 4 sin2eW) 

However, cs is a running constant. It decreases as Q2 increases, the 

inequality (4.7) should hold for any energy below the mass scale of the 

SU(4) breaking. Using the experimental value sin2ew = 0.230 2 0.009, it 

becomes 

as > 0.06 (4.8) 

and is consistent with the experimental estimation of us. 

We may use the inequality (4.8) to estimate the mass scale of SU(4) 

breaking. If we use the estimation of cs M 0.23 for Q ~30 GeV in the 

formula 

a,(Q2) = 12n (4.9) 

(33 
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the upper limit of this mass scale may be estimated as &lo5 GeV .and 

~10~ GeV for Nf = 5 and 6 respectively. Of course, the estimation value 

will increase as the number of flavors increases. 

Now we discuss the neutral currents in this model. The interaction 

involving Z 1 manifests itself very much like the usual neutral current. 

In the limiting case of (3.10), to lowest order it can be expressed as 

2 eff = 4%J J” 
Jz llJ IL 

(4.10) 

where 

3 Jill M JP - sin 2 e.m. Bw JP (4.11) 

It is just the well-known formula in the Weinberg-Salam model. To the 

next order of approximation Jl becomes 

J J3 2 e.m. 1u = 1-I - sin Bw JU 

2 
2 "A + v; + v2 C a- 
3 2 

VD 
x2: uz;($$J;" -:$J;) (4.11a) 

Since (vi + vi + vE)/vE M m$4 << 1 and h2 >> 1, the correction term in 

(4.lla) is smaller in magnitude than the main terms. 

The effective Lagrangian involving Z2 and Z3 can'be expressed as 

‘!z = 4 GF (r2 J2P Ji + r J ' eff 45 3 311 J3) (4.12) 

with r 3 << r 2 << 1. 
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Wheh v2vi >> -+ ,(A2 + u2)vi, and J 2!.l' '2y J3P 
and r 3 take the forms 

L (4.13) 

JF J3U = 1-I ' r3 
24 4 . +--2-C 

mz3 _ 
166 

Since r3 << r2, the Z2 interaction is more important than the Z3 interac- 

tion. Owing to that the effective Z1 charge and Z2 charge of neutrino 

are l/2 and -l/2 respectively, the contribution of Z2 interaction to the 

neutrino induced neutral current experiment can be described effectively 

as a correction for the J 
111 

current 

JllJ - JllA - '2 J2p = Jlp - '2 
15 (4.14) 

One may note that the correction term in (4.11a) is much smaller than 

that from Z2 current and only the Z2 correction should be considered. Since 

the effective Z2 charges of quarks and leptons are l/6 and -l/2 respectively, 

this correction is easy to be observed in more accurate experiments. 

When u2vi << $(X2 + p2)vi we get 

=$J;+ , 

J31-r = 

(4.15) 

The correction term in (4.11a) is much smaller than that from Z2 current 

too in this case. Since the effective Z2 charge is of the form 

=$F+ 15 (4.16) 
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which gives different values to two kinds of fermions, we may use them to 

distinguish these two kinds of fermions $J, S and JI', S'. The effective 

Z2 charges for different fermions are given in Table IV. Owing to the 

mixing between these two kinds of fermions, this effect might not be 

explicit. However, one may expect the existence of some difference between 

them. 

Two interesting remarks may be made: 

1. Under the tree approximation there is no restriction about the 

fermion masses. If one calculate the radiative correction, the stability 

of vacuum will give a bound to fermion masses. ga1o Using the formula 

given in Ref. 9 one finds that the masses of E, 5, h and w are bounded by 

m< 2 x [$(I+ 4 colgL8w111'4 sz160 GeV (4.17) 

The masses of other weak strange fermions are bounded by 

mg9 mx < [+ f + 4 c~s4eJ]"4 "w ,+ ($--'4 2]sin0,/$$ % . 

These estimations depend on the value of c1 
S* 

If one takes csX 0.20 in 

(4.18) and (4.19), the upper limits become m 
N' ml; 

< 210 GeV and 

m , m g x 
< 440 GeV respectively. However, (4.17) means that there exist 

at least four weak strange fennions in one generation lighter than 160 GeV. 

This prediction can be verified experimentally. 

2. Because the quantum number F for JI and S is different to that 

for JI' and S', the radiative decay between two degenerate states is allowed 
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in this kodel. For example if e and e' mix with each other and form two 

leptons el and e2, me < me , one may calculate the partial width of the 
1 2 

decay mode e2 -f el f y. In the tree approximation it is forbidden. But 

in the one loop approximation, it is allowed. Using the method given 

. in911 one may obtain the branching ratio to be 

RE 
De2 + elyl 4 

dL?K-q 
r(e2 + el Fl v2) ( ) Tr2 “G (4.20) 

where n is a function of the mixing angles. For the case B discussed last 

section, n can be expressed as 

n =(~s++c+s++c/3~)2+(s~+&J++~c+.~)2 , (4.21) 

where 

% 
= $(sin2eL + sin2eR) , s = $(sin2eL - sin2eR) , 

(4.22) 

l( c+ = 3 ~0~20~ + c0s2eR) , c = &0s2eL - c0s2eR) , 

BL and OR are the left-handed and the right-handed mixing angles respec- 

tively. For several special values of mixing angles, n may vanish. But 

in general n is of the order of unity, If one takes T-I - 1 and identifies 

e2 and el as muon and electron respectively, the lower limit of 9 can 

be obtained as 

“v > 28 % (4.23) 

from the experimental upper limit R c 3.6 x 10 -9 . This estimation is 

consistent with the requirement of the limiting case discussed above 
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If one identifies e2 as r instead of 1-1, the lower limit of mV will be 

much lighter than that obtained from LI. 

V ADDITIONAL CONSERVATION LAWS 

In this model there exist several additional conservation laws. We 

discuss them separately. 

1. The Conservation of the Quark Number _ 

Many models of the grand unification predict that the proton decays. 

But in this model the proton may be stable. We will give a simple 

proof of this. One may introduce a new global U(1) symmetry in this 

model. Whose generator is denoted by 6 and the R-assignments of various 

multiplets are 

R=l for Q, s, $', s', QE 
. 

R=O for A:, B CJ aA, oB, ac, QiD, QF . 
!J' lJ' 

One may easily verify that the invariance of this global symmetry 

holds before spontaneous symmetry breaking. After spontaneous sym- 

metry breaking it is broken too. But it will combine with ?i5 and 

form a new global U(1) symmetry, whose generator is the quark 

number 

2 is conserved after spontaneous symmetry breaking. Since the particles 

with non-vanishing N are: 

N = 1: 213 quarks, Ci , several particles in @c and (PB , 

N= -2/3 -1, anti-quarks, C. + 
1 , several particles in @C and QE , 

and all these bosons with non-vanishing N are heavy, the proton may be 

stable. 
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One may note that the global U(1) symmetry R is not an original 

one. The possibility of introducing such a symmetry depends on the 

existence of the U(1) symmetries S and F, which rules out the existence 

of terms involving s pvaa structure in the Higgs potential. So the 

stability of proton depends on the U(1) symmetries S and F. If, for 

example, S is partially conserved, proton may be long lived. 

2. The Conservation of Weak Strangeness 

In this model there exist four weak strange vector bosons and eight 

weak strange fermions in each generation. They are listed below: 

SW = -1 SW = 1 

vector boson v+, u* v-, u-- 
lepton No, E+ 5 -2 t 5 -1 

quark 
g 

2/3 , h5'3 -413 w .,X -l/3 

All of them are massive and probably heavier than the known particles. 

The conservation of weak strangeness requires that: 

(1) Weak strange particles can be produced only in pair. 

(2) They are weakly decaying and the decay chains end in a final 

state with the lightest weak strange particle. 

(3) The lightest weak strange particle is stable. 

(4) The weak strange bosons do not couple directly with ordinary 

fermion pair. 

Since the weak strange vector bosons are much heavier than W boson 

while some of the weak strange fermions are lighter than 160 GeV, the 

lightest weak strange particle should be a fermion. It may be produced 

in high energy e+e- collision and manifests itself as either a stable 

lepton or a stable hadron. The weak strange fermions interact with 
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each other via the right-handed current coupling with the W boson. The 

transition between weak strange quark and lepton will be suppressed by 

the propagator of V or U. This means that, for example, if the lightest 

weak strange particle is a lepton, the width of the lightest weak strange 

quark ought to be smaller than that estimated in ordinary way. 

It is interesting that the masses of all weak strange fermions with 

exotic charges (C--, h 513 md ,-413 - ) are bounded by m < 160 GeV, the 

existence of these particles can be observed significantly in the e+e- 

experiment. However, owing to the weak strangeness conservation, the 

existence of weak strange particles will not give significant influence 

to the weak interaction processes below the threshold of the weak strange 

particles. 

In addition, there is another possibility that the existence of the 

global U(1) symmetry is not original and is derived from special structure 

of the Lagrangian. In this case there might be several terms violating 

the weak strangeness conservation, which will then become partial. 

VI SUMMARYANDREMARKS 

The main results of this model can be summarized as: 

(1) The electro-weak interaction can be connected to the strong 

interaction via the SU(4) x SU(3) x U(1) model. In this model there 

exist the same number of left-handed and right-handed multiplets of the 

fermions before spontaneous symmetry breaking. 

(2) This model is anomaly free. 

(3) As a limiting case, it gives the same results as those of the 

Weinberg-Salam model and is in agreement with experiment. The Weinberg 

angle ew is bound by the relation sin20 < l/4 and the neutral W- 
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current for ordinary fermions reduces to that of the Weinberg-Salam 

model in the limiting case. 

(4) There are some deviation from the Weinberg-Salam model concern- 

ing the predictions in neutral currents. They are colorless and flavor- 

less but possibly different between the two kinds of fermions and can be 

verified by more accurate experiments. 

(5) A new conserved quantum number S W' called the weak strangeness, 

is introduced in the present model. The model predicts many particles 

with non-vanishing weak strangeness. All of them are likely to be 

heavier than known fermions. They can be produced only in pairs and 

the lightest weak strange particle is stable. Some of the weak strange 

particles have unusual charges and can easily be identified experimentally. 

(6) There exists a relation between Weinberg angle and the strong 

coupling constant. A more accurate value of the Weinberg angle can be 

used to get the bound of the strong coupling constant and to estimate 

the upper limit for the mass scale of symmetry breaking. 

(7) Quark number may be conserved and proton may be stable in this 

model. 

(8) There are two types of fermions introduced in this model. They 

will mix with each other after spontaneous symmetry breaking. It mani- 

fests itself as the Cabibbo-type mixing of fermions. 

(9) The neutrinos may be massive and there may exist the oscillation 

between different kinds of neutrinos, The oscillation between neutrino 

and anti-neutrino is excluded in this model. 
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APPENDIX A 

The Form af the Higgs Potential 

There are six Higgs multiplets introduced in this model. Their 

transformation properties are 

QA: (1, 2, 0, -2) , 

OB: C&6*, 0, -2) , 

Q: (154, 0, -2) , 

QD: CL, 3, -2, -2) , 

QE: (5, ,, 1, 3) , 

QF: CL, 2, 2, 4) l 

(A. 1) 

We will discuss the form of the Higgs potential which can realize the 

spontaneous symmetry breaking and the stability of the breaking. 

The potential will have the standard potentials for every Higgs 

multiplet. 

v = v. f VI 

(A.21 

v. = tr Bl aR + bR tr aR @)R ( + )‘I 
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where a' R, bR ' 0. In Eq. (A.2) the minimum of V. takes place at 
+ tr 4% Qfi = aR/2bR. 

For simplicity, we will introduce the following notation. If 5 is 

a n-vector in an n-dimensional complex space with the components Ci, 

i=l, . . . . n. R(S) is used to denote 

R (s> ~~~: Si l _ (A.3) 

For two vectors 5 and < in the same linear space, the scalar product of 

them can be expressed as 

ts,c.> = 51 Ci = R(S) R(5) ei' c0se . (A-4) 

We will use the indices i, j, k, . . . for the SU(3) group and the 

indices up v, X, . . . for the SU(4) group. 

In order to remove the degeneracy of spontaneous symmetry breaking 

the additional term VI of the Higgs potential must be introduced. We 

introduce a correlation term of QA and QD as 

c(tr @t; cPD)(tr GE oA) (11.5) 

According to (A.4) it becomes 

2 2 c R2(QA) R2(@,) cos28 = c vA vD cos2e 

If c > 0 the minimum takes 'place at cos2e = 0. This means that the non- 

vanishing vacuum expectation values of @ A and IPU should take place at 

different components. We may use a transformation to ensure that the 

non-vanishing vacuum expectation values take place at the i = 1 and i = 3 

components of QA and QD respectively. We make both vA and vD be positive 

by suitable choice of the phases. 
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We further introduce an additional term as 

(A.61 

where d > 0. Since the minimum takes place at ($Di)O = vD di3 and 

(oAi)O = "A 'il' it becomes effectively 

2 
= -2d VD VA Re$B(32) _ 

It becomes a minimum as Re$B1321 > 0. However, the self potential V. 

makes the restriction that the components of aB agree: 

+ 2 
tr QB OB = vB 

This means that the minimum takes place at 

'BC32) = VB >O 

which is just adopted in the model. 

Now we introduce the additional term involving QA, Qc and aE as 

e[4* Ev 'Ev 'Czvi 'Ai + 'Ep $:v 'Cud. 'ii1 (A.71 

with the coefficient e > 0. Using a transformation in the SU(4) group 

to ensure that ($Ell)o = vE 6u4 with vE > 0 it becomes 

3 
2e VE "A Re4C441 

The components of ipc can also be denoted by the index ~1, . . . . 15 

instead of P and v. We change the notation as 9 

45 
uvi -t +(a) i, then we 

have 9c441+ - 2 9,(15)1 and this additional term becomes 

- J-e v; VA Re4c(15)1 
Using the same argument discussed above we obtain that the minimum takes 

place at 

%(15)1 = vc ' O l 
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The additional term involving oA, aD and aF is chosen to be 

(A-8) 

where f > 0. Since the minimum takes place at ($Ai)O = vA gil and 

(4Di) = VD 'i3' it becomes effectively 

-2f VA VD Re+F2 _ 

and becomes a minimum at Re$F2 = vF > 0. 

In summary, if the self interaction potential of the Higgs fields 

has the form 

V = f [-aa 
R=A 

tr 0: QR + bL(tr @: 0,12] 

(A.91 

with a's, b's, c, d, e and f > 0, then it leads to a minimum capable of 

generating the spontaneous symmetry breaking adopted in this model. 

Now we discuss the stability of the spontaneous symmetry breaking. 

There are 8, 6 and 4 dimensional degeneracies appearing in the choice 

of the breaking components for aE, oD and aA respectively. These 

7 + 5 -I- 3 = 15 superfluous components can be removed by the choice of 

gauge and make 15 gauge bosons massive. So no pseudo-goldstone will 

appear after the spontaneous symmetry breaking and all remaining 

components of Higgs fields will get masses. In other words, the spontan- 

eous symmetry breaking is stable. 
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One may note that under the symmetries discussed above the terms like 

. . . etc. can also be introduced in the Higgs potential. However, the 

existence of such terms will not alter the results obtained above and 

the only remark should be mentioned is that the values of the coefficents 

of these terms are bounded by the requirement of the stability of the 

breaking. 
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Table I 

Case A Case B 

Charge operator 6 =i3+-Lig+Y _ ;=I,-G,+i 
6 

2 
sin 8 3 

1+l$ 

1 1 
W 4 z 

1+$ 
g g 

1 Boundary <- 
2 

<- 
4 

New conserved 
quantum number No Weak strangeness 

Additional heavy 
particles Yes Yes 

With exotic charges No Some of them 

To be embedded into 
an SU(6) model Easily Can not 
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Table II 

$9 s q’s S’ 

veNEu d g h v' e' 5 5 u' d' w X 

Q 0 -1 0 1 213 -l/3 2/3 5/3 0 -1 -2 --1 213 -l/3 -413 -l/3 

0 0 -1 -1 0 0 -1 -10 0 11 0 0 1 ‘1 
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Table III 

/Q 
IS 1 w 

Gluons c2/3 -213 
i ci Y zl z2 z3 

Q 0 2/3 -2/3 0 -0 0 0 

:Sw 0 0 0 0 0 0 0 

QCD w-s w-s * 

W" 

1 

0 

w-s 

W- 

-1 

0 

w-s 

V+ 

1 

-1 

* 

V- 

-1 

1 

* 

U* 

2 

-1 

* 

-- 
U 

-2 

1 

* 
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Table IV 



Case A Case B 

23 

23 

-\ 
\ 

\ 

v 

/’ c 

(SU(4), 

/ 
// 1 

I breaking 

-/ 

c ‘f’ 

\ 
\ ZZ 

‘- 
l 
I 
1 breaking 

U I 

W y,gluons 
SW) 
breaking 

6-W 3878Al 

Fig. 1 


