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ABSTRACT 

The underlying link between hadronic phenomena in quantum chromo- 

dynamics at large and small distance is the hadronic wavefunction. We 

present' the theoretical and empirical constraints on the hadronic wave- 

function and hadronic structure functions; the predictions of perturbative 

QCD for the large transverse momentum tail of the Fock state infinite 

momentum wavefunction $(kli,xi,si); the valence Fock state meson wave- 

functions from the meson decay; the evolution equations of the distribu- 

tion amplitudes; and a simplified model for the basic wavefunctions. 

In particular we obtain a new type of low energy theorem for the pion 

wavefunction from the ITO -+ yy. This result together with the constraint 

on the valence wavefunction from the 7~' -+ uv decay, leads to the prob- 

ability of finding the valence Iqq> state. All these constraints allow 

us to construct a possible model which describes hadronic wavefunctions, 

probability amplitudes, and distributions. We compare our results with 

data for form factors and the deep inelastic processes. This work repre- 

sents a first attempt to construct a model of hadronic structure which 

is consistent with data and QCD at large and small distances. 
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1. GENERAL CONSIDERATIONS 

-The underlying link between hadronic phenomena in quantum chromo- 

dynamics at large and small distance is the hadronic wavefunction. In 

this paper we will discuss the theoretical and empirical constraints on 

the structure of the Fock state wavefunctions of mesons and nucleons. 

We define the states at equal r = t + z on the light-cone using the 

light-cone gauge A+ =A"+A3= 0. The amplitude to find n (on-mass- 

shell) quarks and gluons in a hadron with 4-momentum P directed along 

the Z-direction and spin projection Sz is defined (k' = k" + k3) (see 

Fig. 1) 
. 

k: 
) x.-L, 

1 P+ 

n n 
where by momentum conservation xxi = 1 and ztli = O.- The si specify 

i=l i=l 

the spin-projection of the constituents. The state is off the light-cone 

energy shell, 

n 2fi 
M2 - c 

P- - 2 k: = i=l 
i=l 1 

p+ xi < 0 . 

The valence Fock states (which in fact dominate large momentum transfer 

exclusive reactions) are the Iqi> (n=2) and [qqq> (n=3) components of 

the meson and baryon. For each fermion or anti-fermion constituent 

$in) (k s liYxi’ i ) multiplies the spin factor - or - 
Z 

function normalization condition is 

c $ b$% 
(4-d (si) 

li,xi,si) ~2[d2k,l [dxl = 1 , 
Z 

(1) 



where 

-h 
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[d'k,] 2 161~~ 8(*) xk 
( > 

n d2kli 

i li n - 
i=l 16a3 

, 

and 

ii dx 
i=l i' 

By studying the wavefunctions themselves, one could in principle 

understand not only the origin of the standard structure functions, but 

also the nature of multi-particle longitudinal and transverse momentum 

distributions, helicity dependences, as well as the effects of coherence. 

For example, the standard quark and gluon structure functions (probability 

distributions) which control large momentum transfer inclusive reactions 

at the scale Q2 are 

where d ,?Q*) is due to the wavefunction renormalization of the con- 

stituent a. Note that only terms which fall-off as 1$12 y (kfa)-l 

(modulo logs) contribute to the Q2 dependence of the integral. These 

contributions are analyzable by the renormalization group and correspond 

in perturbative QCD to quark or gluon pair production or fragmentation 

processes associated with the struck constituent a. In general, unless 

x is close to 1, all Fock states in the hadron contribute to G a/H' 

Multi-particle probability distributions are simple generalizations of 

Eq. (2). 
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Recently, it has been shown that exclusive processes such as form 

fae+ors and large angle elastic scattering can be 

in perturbative QCD. 293 For example, the.(helicity 

form factors to leading order in m2/Q2 and to all 

the form 

systematically analyzed 

conserving) hadronic 

orders in a,(Q') take 

with 

F(Q2) = $ [dxl [dyl 4’ b,S1,~x) TH (X,Y,?> + (Y,s,~~) , 
(3) 

6, = Q*min(xi) , 
i 

where T H is the hard scattering amplitude for the virtual photon to 

scatter the valence quarks from p to p+q;" it can be expanded in powers 

of n,(Q*), 

TH - fn(w> [l + O(os(Q2))] , 

where n is the number of valence constituents. The quantity $(x,Q) is 

the "distribution amplitude" for finding the valence quark with light- 

cone fraction Xi 
2 in the hadron at relative separation bl - 0(1/Q'). In 

fact, 

~(xi,si’ Q) z i%l[d;1(Q2)]4 lkficQ2 [d2k,]$(n) (kil,xi,si) (4) 

Although the complete specification of hadronic wavefunctions clearly 

will require a solution of the non-perturbative bound state problem in 

QCD, there is a large number of properties of the wavefunctions which 

"Note that because TH conserves hadronic helicity s! = s.. Further, to 
leading order in l/Q2 only the terms with Cs = s icontsibute in $I. ii z 
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can be derived from the theory and experimental phenomena. In this 

pawr we will discuss the following constraints: 

(a) The predictions of perturbative QCD for the large transverse 

momentum tail of the Fock state infinite momentum wavefunction $(kIi,xi). 

These results, which also follow from the operator product expansion near 

the light-cone, * lead to evolution equations for the process-independent 

distribution amplitudes $(xi,Q) which control large transverse momentum 

exclusive reactions such as form factors, and for the distribution functions 

G q/H(Xi,Q) and GgiH i, (x Q) which control large transverse momentum in- 

elusive reactions. 4 

(b) Exact boundary conditions for the valence Fock state meson 

wavefunctions from the meson decay amplitudes. In particular we show 

how the r0 -t yy decay amplitude for massless quarks specifies the pion 

wavefunction at zero k - I' This is a new type of low energy theorem for 

the pion wavefunction which is consistent with chiral symmetry and the 

triangle anomaly for the axial vector current. 5 This large-distance 

result, together with the constraint on the valence wavefunction at short 

distance from the v + ~.lv leptonic decay amplitude, leads to a number of 

new results for the parametrization of the pion wavefunction. In par- 

ticular, we show that the probability of finding the valence Iqi> state 

in the total pion wavefunction is -0.2 to 0.25, for a broad range of 

confining potentials. 

(c) As noted above the wavefunction for the Fock states of the 

hadrons on the light-cone (or at infinite momentum frame) $J~ (n)(k 
Z 

li'xi'si) 

completely specify the quark and gluon particle content of the hadrons. 

The coherent aspects of the wavefunction are required for constructing 
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the distribution amplitudes which are not only necessary for exclusive 

processes, but also for the multi-particle, high twist subprocesses which 
-r, 

enter inclusive reactions and control transverse momentum smearing 

effects. We show that the evolution equations which specify the large 

Q* behavior of the distribution amplitudes and of incoherent distribution 

functions G are correctly applied for Q2 L <8>, where <8> is the 

mean value of the off-shell (light-cone/infinite momentum frame) energy 

in the Fock state wavefunction 

+2 
&xc&z~ k1+m2 ' 

i i=l ( ) 
X 

i 

To first approximation,<&>is the "starting point" Qi for evolution due 

to perturbative effects in QCD. A more detailed discussion is given in 

Section II. 

In order to organize the predictions for hadronic matrix elements 

and all of the distribution functions and amplitudes, it is very con- 

venient to assume a simplified model for the basic wavefunctions. We 

shall make the following prescription: 

(i) We assume the Fock state wavefunction $ (2) for the Z-quark 

state in the non-perturbative domain depends only on the off-shell energy 

variable 8. [This ansatz, which is true for non-relativistic theories, 

can be justified, if we utilize the Bethe-Salpeter equation with an in- 

stantaneous energy independent kernel. ? F or the n-particle state, weshall 

assume the Fock state wavefunction $ (4 is a symmetric function of the 

Ei, i.e., VJ (n) = lp( Gi'. Although we have no strong argument for 

this form, we shall use it as an illustration of the effect of the non- 

perturbative wavefunction. 
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(ii) An (approximate) connection between the equal-time wave- 

fumtion in the center of mass frame and the infinite momentum frame 

wavefunction can be established by equating the energy propagator 

in the two frames: 

( M2m($l qyi))2 $l~f,=o lCMl 
M2 -&z 

r 

M2 - 2 
i=l 

+2 kI + m2 

X 

CZLi = 0 
i 

[IMFI , 
xx =.. 
i i 

(5) 

Thus the rest frame wavefunction I# 
CM('(i) ) which controls binding and 

hadronic spectroscopy implies a form for the IMF wavefunction +IMF(xi,kli) 

if we kinematically identify 

k; (cl0 + S3ji 
X =-+.+ 

i- P+ 

and 

For a two particle state, there.is thus a possible connection; 

'IMP - $,M(;;') , 

(x = x1-x2) . 

(6) 

(7) 

An equivalent result was also obtained recently by Karmonov' using a 

different method. 



-8- 

Before we discuss a concrete model, we will give results which 

are-insensitive to the specific form of $. For example, if $ Z $( ei) 

we find 

G z;;-pert(x,) xl (1 - xa)2ns-1F(&m;n) , 
a 

(8) 

where n 
S 

= min(n -n > Ha is the minimum number of spectator constituents in 

the hadron H after removing the particle (or subcomposite) a, and 

2 
2 

min = mi/x i is the minimum value of 8.. 
1 This result which follows 

from the definition Eq. (2) by changing variables from d2kli to d2kli/xi 

is independent of the form of +(ei) as long as it is square-integrable 

under [d'k,]. Examples of this result for G 
q/M 

and G have recently 
q/B 

been given by de Rujula and Martin.8 Notice that if we can neglect the 

quark masses (i.e., for (1 - xa) >> m2 

<k;> 
) we obtain the spectator rule 

proposed in Ref. 9, 

Gnon-peryxa) = c 2n,-1 
a/H a,H(1 - Xa> 9 

(9) 

X -1 a , (1 - Xa> >> ~ 

2 
In fact if we neglect m 

<k?> 
the non-perturbative contribution can domi- 

nate the perturbative prediction in the x W 1 domain! For example, the 

perturbative power-law behavior is 

nGPert 
q/M x 7 1 ‘; c1 - x> 

2 
, (10) 

*GPert 4 (1 - x>~ parallel q and B helicity 

q/B x : 1% 
(1 - x)5 

(11) 
anti-parallel q and B helicity 
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C In addition QCD evolution increases the exponent of Eqs. (9), (10) and 

(1s by 5 4CF 5(9') where (CF = $-, B = 11 - Zj nf, for nc = 3 

z f log log Q2/fi2 

log Q;/A' * 1 

Since flavor and spin are correlated in the baryon wavefunction, per- 

turbative QCD predicts AG u/P + 2AGdfP' In fact if we assume the baryon 

wavefunction satisfies SU(6) symmetry (which is a rigorous result for 
10 

$D(xi,Q), (Q -f m), we have AGU,p = 5AGd,p for x + 1. The question of 

whether the non-perturbative or perturbative contribution dominates the 

structure functions at x + 1 can thus be studied using spin and flavor 

correlations. In the case of meson structure function, perturbative QCD 

also predicts a contribution to the longitudinal structure function 

+d2) 
10,ll 

x ; 1 W- x)~F,(Q~). Evidence for the presence of the perturba- 

tive term has recently been given from measurement of the angular dis- 

tribution at large x; in the reaction nN + u+p-X. 
12 

II. GENERAL CONSTRAINTS ON MESON WAVEFUN'CTIONS AND 
THEIR APPLICATION TO A SIMPLE MODEL 

In this section we will discuss the constraints on meson wavefunc- 

tions imposed by their decay constants. The leptonic decays of the 

mesons give an important constraint on the valence Iqa> wavefunction at 

the origin. As shown in Ref. 2 
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-c, 

,‘p,! cP,(x,,Q) = aOX1X2 = 

3 for n 

II 
- flTxlx2 n 

C 

(12) 
’ 342 

-fxx 

d- 

for pL , 
n P 12 

C 

where f, 2 93 MeV is the pion decay constant for rrr+ + p'v and fo =" 107 MeV 

is the leptonic decay constant from p 0 +- -tee. The analogous result holds 
2 

for all zero helicity mesons. Because the Q + 03 distribution amplitude 

has zero anomalous dimension, this constraint is independent of gluon 

radiative correction and can be applied directly to the non-perturbative 

wavefunction: 

ao = 61[dx][d2kl] $rn-pert(ki,x) (13) 

On the other hand we can also obtain an exact low energy constraint on 

$(kl = 0,x) for the pion in the chiral limit mq + 0. The Y*TT' + y vertex 

defines the T“ - y transition form factor Fn,(Q2) (q2 = -Q2, see Fig. 2a) 

r = -ie2 Fny(Q2) ~~~~~ P;Eoqo , (14) !J 

where 

Fry(O) = 1 n 
47r2 c 

(15) 

This result, derived by the Schwinger, Adler, Bell and .Jackiw,5gives for 

nC = 3 the no + yy decay rate, I' Tra 2 3 2 
T O-).y-f = - rnT Fry(O) = 7.63 eV compared 

2 

to r expt = (7.95 4 0.55) eV. 
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If mq -t 0, then the valence 144) contribution to F ny (9’) 

is @ig. Zb, see Ref. 2) 

l J1 [dx] $ d2kl $( 
0 16~~ 

xi,kli) 

(16) 

i 

. (17) 

In fact, as shown in Ref. 13, gauge-invariance requires that the valence 

/qy> state should give exactly % of the total decay amplitude,for 

q2 + 0. Thus from Eqs. (15) and (17), we find 

I 1 IL- 
n 

0 
dxl x1 $J(O,X~) = 2f,C - 

Therefore the pion wavefunction is constrained both at large and small 

distances. 

(18) 

In order to implement these constraints it is convenient to con- 

struct a simple model of the hadronic wavefunction. By using the con- 

nection (7) for the two particle state from the harmonic oscillator 

model 6 we can get the wavefunction in the infinite momentum.frame 

$(')(k l,xi,si) = A exp [-R2rtrnt+ ";m:)l . (19) 

Perhaps the simplest generalization for the n-particle Fock state wave- 

functions in the non-perturbative domain is the Gaussian form: 



-h 

- 12 - 

iin)(kLi,xi,si) = An exp [-~2n8 ] 
Z 

= An exp[-R2n &fg)i] 

(20) 

The parametrization is taken to be independent of spin. The full wave- 
- 

function is the $, (n) (kli,Xi, 1 s.) multiplied by the free spinor 

u(ki,si)/@ or v;ki,si)/fi. The Gaussian model corresponds to a 

harmonic oscillator-confining potential V 0~ T2 in the CM frame. This 

ansatz for the wavefunction has the additional analytic simplicity of 

(a) factorizing in the kinematics of each constituent and (b) satisfying 

a "cluster" property when the constituents are grouped into any rearrange- 

ment of subcomposites A,B,..., e.g., for two subcomposites 

,(n) = A e-Ri 'A .-";?1 'B , _ 
n 

where 

c;, + M; 
= XA , 

(21) 

c xi = XA , 
i(A 

and 



- 13 - 

The actual form of the non-perturbative wavefunction in QCD is 

undo%tedly more complicated than the form Eq. (20). The only clear 

constraint is that the non-perturbative wavefunction falls-off faster at 

large ki than the perturbative contributions A$ w 0 in order that 

the operator product expansion at short distances and near the light-cone 

dominates large momentum transfer reaction. A model. based on a linear 

confining potential V = r in the CM frame would give a non-perturbative 

wavefunction $ 

If we adopt the Gaussian form for the meson wavefunction Eq. (19) 

then constrains ( 13) and ( 18) imply (miR2 << 1, n 
C 

= 3) 

1 - N 0.17 fm , R = 4nf, 

(22) 

Al- 3 2m2R2 
A= -T-ye q . 

The probability of finding the valence qy state in the pion is thus 

P(qq) = $ [dx][d2k,11$(kl,xi)j2 = + . (23) 

Alternatively, if we use a power law form 

we find (rnz << u2) 

(24) 

(25) 
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which again leads to a for large ~1. For the linear potential case, where 

- a 63, we have P(qq) = l/5. 

Let us consider the implications of these results for exclusive 

large momentum transfer processes. As seen in Eq. (3) we require the 

behavior of the distribution amplitude $(xi,si,Q2) defined in Eq. (41, 

which is the probability for finding valence quarksat relative transverse 

separation bl - 0(1/Q). The large QL dependence of 4 (i.e., the large kI 

tail of +) is in fact completely determined by the operator product 

expansion near the light-cone, and in QCD can be calculated from the 

perturbative expansion in the irreducible kernel for the quark constitu- 

ents. To order as(Q2) one only requires single gluon exchange, and we 

find, using the evolution equation of Ref. 2 

‘(Xi,Q2) = '(Xi'Q~) + %l - / [dy] as 

Q2 dR; 

Q2 R: 
0 

l 

(26) 

l W(Xi,Yi> - s(x-yY)l a(yi, ~:) ) 

where 
14 

V(X,Y) 

= 2 X1Y2UYl - x1> 
t ( 

Ehl~2+ylhxl)+(1c--t 2)/ (27) 

= V(Y,X> . 

2 
This result is derived in the region where Rl 

Yp - Y,) 
is large com- 

pared to the off-shell energy <&> in the wavefunction. Thus the natural 
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starting point for the evolution of the distribution amplitude is 
0 

% 
Xl(l - x1> 

- <a>, i.e., to the first approximation we can identify 

$(xi,Q2) = @non-pyt(xi) + $ j- 
Q2 de: 

--- 
xl(l-xl)<~> R; 

s [dyl a 

(28) 

l [V(X,Y> - Sh-YY)l4 cYi,+ , 

where 

4 non-pert(xi) = ~[d2kl]~non-pert(d;,xi) . (29) 

Assuming the wavefunction given by Eqs. (19) and (22), the shape 

and the normalization of 4 non-pert(xi) depends only upon the quark mass. 

This dependence is illustrated in Fig. 3. The pion form factolr5in QCD 

is then as shown in Fig. 4, for values of the quark mass and of the QCD 

scale parameter Ai,, The application of perturbative QCD for 

c 2 <&> is reasonable here, since <&> - 0.7 GeV 2 
Yp - Y,) 

for this 

wavefunction is much larger than QCD Atff. 

A similar analysis is being applied to the baryon wavefunction and 

its structure distribution function. These results will be given 

elsewhere. 
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FIGURE CAPTIONS 

1. The amplitude to find n (on-mass-shell) quarks and gluons in a hadron. 

2. (a) The n-y transition form factor F ny (Q2) - 

(b) The lowest order diagram which contributes to Fny(Q2). 

3. The distribution amplitude $non-pert(xi) for a Gaussian wave 

function with the different values of the quark-mass m . 
4 

4. QCD prediction for the meson form factor. 
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