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- ABSTRACT 

The scaling of damping rings for colliding linear 
accelerator beams is discussed. It was found that low 
repetition rates should be used to achieve the highest 
luminosity. Only for very high values of the repetition 
rate above lo4 set-’ we find the luminosity to increase 
again with pulse repetition rate. In this regime, how- 
ever, damping rings are not useful anymore and the oper- 
ating cost for the facility is very high without gain in 
luminosity as compared to low repetition rates. There- 
fore for reasons of economics as well as performance low 
pulse repetition rates should be chosen and research and 
development should be denoted to solve tolerance problems 
encountered at these low pulse rates. 

INTRODUCTION 

In recent years much effort has been spent to evaluate the feasibility 
of colliding linac beams as a means to reach high center of mass energies 
for research in high ‘energy physics’-‘+). The concept of electron positron 
storage rings which has been very successful in the past is heading for a 
severe “collision” as the energy is increased with our concern on energy 
consumption as well as the cost to supply that energy. This comes from the 
fourth power dependence of the synchrotron radiation power with the particles 
energy. In contrast the energy required for a colliding linac beam system 
increases only linear with the beam energy since the synchrotron radiation 
is eliminated. For both kinds of colliding beam facilities the luminosity 
is given by 

N2v y= rep > 
4lla2 

(1) 

where N is the number of particles per bunch (N+ = N- = N), v 
rep 

is the num- 
ber of collisions per unit time and G is the beam radius. Here we assume 
for simplicity a round beam. We also assume in both cases a gaussian or at 
least bell shaped density distribution up to about 20. 

In general we find that the number of particles per bunch is about 2 to 
3 orders of magnitude larger in a storage ring than in present day linear 
accelerators. This is specially true for positrons. The repetition rate in 
a storage ring is very high (larger than lo4 set“) and it will be difficult 
and costly to raise the pulse rates of linear accelerators to the order of 
lo4 pps or more. 
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In order to still get a useful luminosity a very small beam size u 
is required. The beam size is given by CT = (B*E) 4 with @* the betatron 

function at the interaction point and E the beam emittance. The betatron 
function $* can be reduced by not more than about one order of magnitude 
below values in storage rings because of limitations in the focussing system. 
This lea;s us with the beam emittance which has to be made much smaller 
than in storage rings. Fortunately this is possible in principle and we 
will discuss in this paper the limitations associated with the production 
of small emittance beams. 

Electrons and more so positrons are produced with a beam emittance much 
larger than required for the use in colliding linac beams. Therefore, it 
was suggested to “cool” the beams in specially designed storage rings. The 
cooling is achieved by the synchrotron radiation and the way the lost energy 
is replenished by the rf accelerating system. Particles radiate synchrotron 
radiation photons along their trajectories and therefore loose transverse 
momenta as they emit a photon. In the accelerating cavity, however, the 
lost momentum is replaced only along the longitudinal axis. Therefore the 
net effect on the particle due to photon emission and rf acceleration is a 
reduction in transverse momentum or a damping of the transverse beam size. 
There is however also an excitation effect due to the quantized emission of 
photons. This causes an increase in the energy spread of the beam which in 
turn together with the focussing properties of the lattice causes quantum 
fluctuations of the transverse momenta of the particles and therefore an in- 
crease in beam size. Both damping and quantum excitation lead to an equi- 
librium beam size. By proper choice of the storage ring parameters the beam 
size or beam emittance can be made very small. This choice of parameters is 
possible only in a dedicated storage ring. In a storage ring for high energy 
physics the demand for high luminosity requires large beam sizes in order 
not to exceed the destructive forces when the beams collide. 

DAMPING RING PARAMETERS 

The normalized beam emittance in a storage ring is given by 

I) = $, (l-emzn) + I/J 
0 

emzn (21 

Here we define il, = EE where E’TI is the area of the beam in the phase plane 
as given by particles with amplitude and angles of value o and u’.or less. 
+, is the equilibrium beam emittance in the storage ring and $. the beam 
emittance of the injected beam. n = t/r where t is the total time the par- 
ticles are in the damping ring and 7 the transverse damping time. The 
equilibrium emittance of the damping ring is given by5): 

1 Ccl 
$D 2 

z--E; 
(mc*)’ a/3;> 

(3) 
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where ED is the energy and pD the bending radius of the damping ring. The 
factor l/2 appears because we assume full coupling of the horizontal and 
vertical betatron motion. The quantity z#' is determined by the lattice of 
the ring. For a great variety of strong focussing lattices it was found6) 
that .-reaches a minimum for a betatron phase advance per cell of 120 to 
160'. Since we are interested in the minimum beam emittance we take from 
Ref. 6 

<.X> = H l L;/p; (4) 

with Hmin = 1.25. Lm is the length of the bending magnets. With Fm the 
magnet filling factor we have <l/pi> = Fm/oi and with B the magnetic field 
in the bending magnet we get: 

ED/pD = .29975 B (5) 

Here and for the rest of this report we measure the energy in GeV, lengths 
in meter and magnetic fields in tesla. Equation (3) then becomes: 

Cq H 0.2997S3 (B Lm)3 
$, = = c 

(B Lm) 3 

2(mc2)' Fm ' F 
(3a) 

m 

with C 
$ 

= 1.26~10~" Tesla-"me2. 

The total damping time n is determined by 

n - NB NS 
'repr 

(6) 

where NB is the number of bunches being damped in a damping ring at any one 
time and NS the number of damping rings involved. From storage ring theory 
we have t(sec) = 2111-FmE~/o~ and together with Eq. (5) we get: 

n = 56.86 Fm B30D NB NS (6a) 

We have tacitly assumed so far that we can always achieve a betatron phase 
advance per cell of 120 to 160' independent of the energy of the damping 
ring. There are however limits on the strength of the quadrupoles. We 
assume a simple FODO lattice with a quadrupole length of just half the length 
of the bending magnets. We have then with '2~ the betatron phase per cell 7): 

1 4 Fm 4 Fm ED 4 Fm BPD 
--=- = 
sin u k Li L; . 29975 g L; g 

(7) 
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where k is the quadrupole strength and g the quadrupole gradient in Tesla/m. 
If we insert Eq. (7) into Eq. (6a) we get: 

- 
n _ 14.21 g NB NS . (B L )z 

sinn v m = + ;i(B Lm)’ 

rep 

(8) 

From Eq. (8) we see that the quadrupole gradient should be as large as pos- 
sible to maximize n, e.g., the damping effect. 

Using BLm = X we get from Eqs. (8), (3a) and (2): 

q) = + X3(1-e-fiXZ) + q), ,-6X2 
m 

It is obvious that there is a minimum beam emittance J, between X = 0 and very 
large values of X. 

Having chosen values for g, 1-1, Q. and F, we can find an optimum value 
for X = BL, as a function of the repetition rate v rep’NBNS ’ Consequently we 
find pD from Eq. (7). We still have to make a choice on B since only BL, is 
determined. From Eq. (7) we find that for economic reasons a large value 
for the magnetic field should be chosen to reduce the size of the damping 
ring (pD rl, Bm3) and because of Eq. (5) to reduce also the energy (ED s Be*). 

NUMERICAL RESULTS 

Numerical computations have been performed along the lines discussed in 
the previous section. 

The following free parameters have been chosen: 

B = 2 Tesla g = 100 Tesla/m 

Fm = 0.5 21-1 = 130° 

f3” = 0.01 m N = 5.10” 

$0 
= 5*10-6m GeV 

The parameters of the damping ring depend very sensitive on the choice of 
the emittance of the injected beam. In this report it is assumed.that parti- 
cles are not recycled after the collision. Therefore $, is given by the 
emittance of the positrons as determined by the positron target and the ini- 
tial focussing system. Studies performed at SLAC on the limitations in 
target design and parameters on the initial focussing system show that the 
required number of positrons can be obtained only if the positron emittance 
is as large as about: 

$0 
= 5~10-~ m GeV (10) 
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Various recycling methods have been proposed to regain the energy of 
the colliding beams after collision and/or the positrons which are not easy 
to produce in large numbers and small emittance 298) . 

For a realistic colliding linac beam facility, however, recycling the 
beams d^oes not seem to be feasible. In order to get a useful luminosity a 
substantial amount of beam strahlung has to be tolerated which leads to an 
energy spread of the beam in the order of a percent. This energy spread is 
increased according to the deceleration in the recycling process. Apart 
from the inability of a storage ring to accept that large an energy spread 
it is very unlikely that an intense beam reaches the low energy end of the 
linear accelerator. To avoid beam break up a strong focussing system is 
required along the linear accelerator. For increasing energy spread in the 
beam this focussing system gets less effective and will cause loss of the 
beam. We therefore assume in this paper that the positrons have to be gen- 
erated from a target for each colliding pulse. 

For the above mentioned free parameters we now get for each value of 
the repetition rate v rep/NBNS a minimum beam emittance. IJsing this emittance 
we can calculate an optimum normalized luminosity as a function of v 
The result is shown in Fig. 1. 

rep’NBNS’ 

At very large repetition rates we find a steep increase in luminosity. 
This is the regime where a damping ring is not useful because the minimum 
equilibrium beam emittance obtainable for these pulse repetition rates is 
larger than I),. This however, is also the regime where it is very expensive 
to run a colliding linac beam facility because the operating power increases 
linear with the pulse repetition rate. At lower repetition rates we find 
the surprising result that the luminosity decreases as v 

rep 
is increased. 

This result reflects the fact that for increasing repetition rate there is 
less and less time for the beam to damp and therefore the ratio of v rep’+ 
and with it the luminosity decreases. 

From Fig. 1 we therefore find that high luminosity is reached where the 
operating costs are low. There is however 

i r---- 
another limit. r--------- As the repetition rate is 

t ‘: I\\\,,,, 

1 
i 

reduced the beam emittance and therefore 

1 

the beam spot size is reduced too. A 
practical lower limit will be reached due 

% 3 .d 
2 1 

to either stability tolerances, or beam 

%~$ 
, Tpc:nco :Jl%i?&f or excessive beam strah- 
1 L’T 111lWS ~ 

beam disruption, 

‘L i..-lm.---.._m -3 lung or emittance growth in the final 
190 !d lC2 IO3 lC4 105 

. Vrep/!qgwS ( set-’ ) 
focussing system or some other reason. 

a~.. 
As an example we get for E = 350 GeV 

Fig. 1 Optimum luminosity for and v rep’NBNS = 200 set-’ the following 
linear colliding beam 
facilities. parameters: 
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N 5.1O'O 101' 

oz (mm) 

~/NBNs(mm~~~~ml) .17 .17 .:8 ?28 

6 .084 .024 .096 .048 

D .38 .76 .76 1.52 

Here fi is the energy spread due to beam strahlung, D the disruption 
parameter and oz the bunch length.4) 

The actual luminosity may be enhanced due to the beam beam pinch effect. 
For the disruption parameters listed an increase in the luminosity by a fac- 
tor 2 to 6 can be expected. Beyond that the luminosity can be further in- 

I -L-Iml -1 

I00 IO’ 102 I03 IO4 I05 

h 8, L;ep/ NBNS ( W-’ ) ,a*.. 

Fig. 2 Energy and radius of 
damping rings. 

creased only by increasing the number of 
bunches NB and/or the number of damping 
rings NS involved. In either case the 
actual pulse rate scales like NB*NS and 
so does the electric power required to 
run the facility. 

In Fig. 2 we show the -optimum bend- 
ing radius pD and the energy ED of the 
damping ring. We observe that the damp- 
ing rings get rather sizable as the repe- 
tition rate goes up. The beam emittance 
is shown in Fig. 3 and the length of the 
bending magnet in Fig. 4. The length of 

the bending magnets and the quadrupoles 

(Ls 
= L,/Z) are rather short but should 

not create any technical difficulty. 

Fig. 3 Minimum beam emittance 
in damping rings. 

Fig. 4 Magnet length for 
damping rings. 

1.4 r---- 7-r---- 
1.2 Bendmg Magnet: LM 

I.0 ‘- 

- 0.8 

Guadrupole: L,,,,‘Z 
Fodo-Cell: 4x L,,, 

IO0 IO’ IO’ 103 to4 :05 

+ * urep/’ W’S ( set-’ 1 ,(.._ 
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CONCLUSION 

Optimum parameters for damping rings in co1 .liding linac beam faci .lit ies 
have been calculated. It was found that small pulse repetition rates should 
be chosen for maximum luminosity. This is because for high repetition rates 
there ?s not time enough in the damping ring to get a small beam emittance. 
Clearly at very low repetition rates there must be other limitations like 
the spot size at the collision point, the small size of the damping ring 
which makes injection and ejection impossible, emittance growth in linac and 
final focus system and the beam strahlung to name only a few. Still the 
parameters for repetition rates in the order of v rep'NBNS sz lo2 to lo3 set-' 
seem to be feasible. Since, however, the electrical power required to oper- 
ate a colliding linac beam facility increases proportional to the pulse rate 
every effort should be made to design systems with low repetition rate. 
From Fig. 1 we find that for any value of v 

rep 
we can get high luminosity 

if we choose large values for the number of bunches NB and/or for the number 
of damping rings. Both choices however have their problems depending on the 
size of the damping rings and have to be decided on for a specific facility. 

* * * 
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