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ABSTRACT 

Beam behavior in a single-pass collision device has been investi- 

gated using a cloud-in-cells plasma simulation code. The intense 

electromagnetic fields of the beams produce mutual focusing effects 

whose strength is determined by the disruption parameter D. The 

consequent decrease in the beam radii causes an increase in the lumino- 

sity of a single collision. The dependences of the beam behavior on 

beam profiles and current density are described. The beam behavior 

is stable for several plasma oscillations and indicates that high 

luminosity can be achieved in single-pass collision devices by using 

intense beams. 
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I. ' Introduction 

TJe idea of using two linear accelerators firing beams of particles 

at each other for the study of high energy interactions has been suggested 

by several authors. 1) This type of device is called a linear collider and 

is of particular importance in the area of high energy electron-positron 

physics where the energy loss in a circular machine has become a dominant 

consideration in the design of new storage rings. For circular machines, 

modest increases in beam energy are accompanied by large increases in 

either the power required to run the machine, the size of the machine, or 

both. Linear colliders can reduce these problems if the beams can be made 

sufficiently dense at the collision point. 

The small emittance of linear accelerator beams allows the beam to 

be focused to a very small spot (several square microns). For a linear 

collider, one would like to decrease the spot size as much as possible 

to increase the luminosity or rate at which interesting interactions 

occur. However, when two such beams collide, the intense electromagnetic 

fields of the two beams will cause the beams to be disrupted. If this 

disruption destroys the beam focus, the luminosity will be decreased. 

If the beams consist of short pulses, and each pulse is discarded 

after a collision (single-pass collision device), then the growth of 

instabilities due to this beam-beam interaction will be limited by the 

short duration of the interaction. The limitations on beam intensity in 

a single-pass collision device will be determined by the plasma effects 

which occur during the short collision time. 

This paper presents the results of investigations into the behavior 

of the two beams in a single-pass collision device. There are two issues 
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which must be addressed in considering the beam-beam interaction in such 

a device. The first is, how large can the transverse density of the beams 

be before plasma instabilities increase the size of the beams during the 

collision and thereby reduce the luminosity? The second question is, 

what is the effect of the beam-beam dynamics without instabilities on the 

average luminosity of a collision? 

The beam-beam dynamics have been investigated using a modified three- 

dimensional cloud-in-cells (CIC) plasma simulation program. These studies 

indicate that the number of plasma oscillations during beam passage is of 

order 

nw$fi (1) 

where D is the dimensionless disruption factor (discussed later) which is 

related to the initial beam density. Typical instability growth rates are 

such that n values of one or two can be achieved allowing quite large 

values of D. 

The second result of these studies is that the pinch effect due to the 

attraction of the oppositely charged beams enhances the luminosity. 

Figure 1 shows the changes which occur in two such beams as they collide. 

The luminosity is related to an overlap integral of the density distribution 

of the two beams. The behavior of the luminosity as a function of initial 

beam density and beam profile can be studied with plasma simulation tech- 

niques and can be reliably calculated for small numbers of plasma oscil- 

lations. 

The definition of the disruption factor is discussed in Section II 

and its relation to the plasma frequency and bunch instabilities in 

Section III. Section IV discusses the computer simulation of the beam- 
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beam interaction. Section V gives the results of the simulations for the 

enhancement of the luminosity due to beam pinch. Section VI discusses 

the case where the beams are offset or have uniform transverse profiles. 

The conclusions are summarized in Section VII. 

II. Beam-Beam Disruption Factor 

To investigate the interaction of the two beams as they collide, one 

must start by looking at the electrodynamics of two relativistic particles 

traveling in opposite directions. In the rest frame of particle 1, particle 

2 approaches with 

Y ' = 2y2 . (2) 

The fields at the position of particle 1 can be calculated by transforming 

the Coulomb field of particle 2 in its rest frame to the frame moving with 

fj’ = (1 -2p . 
Y 

(3) 

If particle 2 travels along the z axis and has a minimum displacement from 

particle 1 of b in the x direction (see fig. 2), the electric and magnetic 

fields are2) 

Ex = y'qb 

( b2 + Y 
12~2~23312 

EZ = -q&t 

( b2 + pv2 t2)3/2 
(4) 

By = S'Ex 

The time dependence of the fields is shown in fig. 3. Note that, as y 

increases, Ex increases and At decreases in such a way that the total 

impulse given to particle 1 is proportional to l/v. For electrons with 

E = 50 GeV, y = lo5 so that at high energies an impulse approximation for 

the effect of the transverse fields is justified. The impulse is just 
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e2 FAt - - bc (5) 

h 

The total impulse in the longitudinal direction (due to Ez) is zero. 

Consider now a test particle with displacement b from the collision 

axis incident on a charge distribution as shown in fig. 4. For simplicity, 

let the distribution be a uniform density cylinder with 

N = number of particles of charge e 

R= radius of the bunch 

L= length of the bunch 

Then the incident particle sees a magnetic field H due to the current 
@ 

caused by the passage of the other beam. The current enclosed by a 

H = 2Neb 
9 LR2 

For oppositely charged beams the force is radial and directed inwards 

2Ne2b 
Fr=-p LR2 

(7) 

(8) 

and is experienced for a time At = $ . 

The effect of the electric field of the passing relativistic bunch 

is equal to that of the magnetic field (E 
X 

= i BY> hence the total de- 

flection is given by 

*p1 Ar' E-Z 
2Fr At 2Nreb 

= a 
P PC YR2 

(9) 
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A similar analysis applied to a bi-Gaussian distribution gives 3) 

Ax' = - 
2Nrex 

yuxPx + ay> 

Ay’ = - 2Nrey 
yuyPx + uyi- 

for displacements x << ux and y << o . 
Y 

The focal length of a thin lens is given by 

Ax’ = -+x 

(10) 

(11) 

and comparing this to eqs. (9), (lo), one can define a dimensionless param- 

eter, called the disruption factor, which is the ratio of the length of the 

bunch to the focal length near the center. For a Gaussian distribution, 

cr 
D=+. (12) 

If the charge distribution is uniform, then it is easy to see that test 

particles incident on the bunch with b < R will be focused to the axis 

after traveling a distance aZ/D. As will be discussed in Section III, the 

behavior of the test particles is actually periodic with a wavelength 

A N 4f which is related to the bunch plasma frequency. For small values 

of D, however, viewing the collision in terms of a thin lense with a 

fixed focal length gives a good physical picture of the test particle 

dynamics. 

A test particle traveling through a non-uniform charge distribution 

sees a focal length which may change as a function of time due to the 

variation of the charge density along the collision axis. The effective 

focal length can also depend on the initial position and angle of the 

test particle trajectory. If the charge distribution does not differ too 
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much from a uniform one, this represents a lens with small aberrations, 

and thenpoint focus of the uniform lens becomes a line focus or a diffuse 

focus. The disruption factor can still be defined in terms of the focal 

length for small displacements from the collision axis or equivalently 

the focal length determined by the central density. For a Gaussian 

distribution in x, y, and z one has 

Dx = 
2Nrecrz 

(13) 

D 
2Nreuz 

Y = yoy(~x + ay> 

Note that if the aspect ratio of the beam is not one, the focal lengths 

in the x and y directions are not equal and one must define two disruption 

parameters. For the Gaussian case with aspect ratio ox/o 
Y 

= 1, the dis- 

ruption parameter is simply 

D= Nreaz 

vJ,2 
(14) 

The problem becomes much more complex when one considers the collision 

of two charge distributions. The complication arises because each distri- 

bution will be modified during the collision by its interaction with the 

other one. The disruption factors of the two beams can still be defined 

in terms of their initial density distributions and the results discussed 

previously for test particles are obtained when one of the beams is weak 

and its disruption of the strong beam can be neglected. For the general 

case however, the focal strength experienced by particles varies with 

time both because of the variation of charge density along the collision 

axis and because of the variation in density due to the time dependence of 

the charge distribution. 
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The object of colliding intense relativistic beams of positrons and 

electras is, of course, to study the fundamental interactions of these 

particles. When an individual positron and electron annihilate or have 

a close collision, new particles are produced with a rate that is given 

by the interaction cross section times the incoming flux. The rate of 

particle production per unit interaction cross section is called the 

luminosity and is the quantity which together with the energy determines 

the usefulness of the machine for the experimenters. The total luminosity 

is the luminosity per collision multiplied by the number of collisions per 

second. Hence 

2% f / +,y,z,t) p2(x,y,z',t) dxdydzdt (15) 

where z' = z - ct and f = collision frequency. Neglecting the dynamic 

changes in the beam density distributions, one can define-a luminosity for 

the limit in which the disruption parameters are zero which is 

~2'~ = f Pl(x,Y,z,t=o) p2(x,y,z',t=O) dxdydzdt 
I 

(16) 

For two Gaussian distributions with ox1 = ox2, ayl = oy2, ozl = oz2 we get 

the well known result 

N2f 
ql = 4lT u u 

XY 
(17) 

The factor 1/4~r 0 0 
x Y 

comes only from the x and y integration. 

In order to calculate the effects of beam dynamics for 'arbitrary 

initial density distributions and investigate any shape dependence, one 

needs to define the collision strength in a shape independent way. If the 

charge distribution is characterized by the scale parameters Xx, X , and 
Y 

xZ’ 
the variables in the problem can be scaled since we are dealing 

essentially with a collisionless plasma (point-like scattering). If the 

variables are now scaled such that 
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5, = x/xx 

h sy = YIXy 

5, = Z/AZ 

and a shape distribution p 
5 

is defined using 

/ 
p5 GxdSy dS, = 1 , 

the luminosity becomes 

fNlN2 
9==,, IO 

x Y 

(18) 

(19) 

(20) 

where I 0 is the overlap integral in x and y and the convolution in z of 

ps 
with itself. For a Gaussian distribution 

Ps = 
(2n:3/2 

e- + 532 + 532) 

and X = ox, and IO = 1/41~. 
X 

We now must consider the way in which the dynamics scales. For a 

unit charge, the scattering angle per unit length is given by 

dx' -re 
-J 

y ;r 
-= 
dz Y 

P(X,Y,Z> - dxdy 
b2 

cm 

(22) 

where b is the impact parameter of the test charge relative to the element 

dxdy. This equation can be rewritten in terms of the scale independent 

variables and the shape distribution as 

2 dx -r N x x e x 
/ 

cb l 2 

-=- 
dz2 y xxxyxz Ab 

's - 2 XxdSy 

'b 

and 

d2E 
X 

-re N X 
Z 

cb ' 2 

- = y Ax Ab 
dS 2 

ps -2 dS, dEy 

Z 'b 

(23) 

(24) 



10 

where 

Lb = (‘x - bx> /Xx , (Y - byI hy) 

which is in the form of a dimensionless constant times a shape dependent 

function. For a Gaussian distribution this has the simple form 

d25 
X - = -DC, e 

-5;/2 

dSZ2 

for 5 x << 1 and 5 
Y 

<< 1, or 

d25 
X - = -De 

dS 2 
X 

Z 

near the bunch center. D is now defined to be 

r NA 

Dx=$ 7-F x b 

The unperturbed luminosity is related to D by 

e z 

(25) 

(26) 

(27) 

where P is the power required to accelerate the beam 

P = fNymc2 

and R is the aspect ratio 

u 
R=-$ . 

Y 

Expressing the luminosity as a function of D in this way is only approxi- 

mate because the effect of the beam dynamics on the overlap integral 

(i.e., the difference between PO and 2') has been neglected in calculating 

the luminosity, but it does point out that if the amount of beam power 

available is fixed, one must increase the severity of the collision in 

order to achieve higher luminosities. Note that increasing D by increasing 
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0 z without affecting the transverse dimensions has no effect on 9? except 

through beam dynamics. h 

For the Gaussian shape, the numerical value of the disruption parameter 

is 
14.4Na 

D= Z 

Ea o (28) 
x Y 

where 

N= number of particles in units of 10 10 

0 
Z 

= bunch length in mm 

E = beam energy in GeV 

CT5 = transverse dimensions in microns. 
XY 

For oppositely charged beams, the first order effect of the beam 

dynamics is to decrease the transverse dimensions of the beam. Since 6r/r 

is proportional to D and the luminosity is proportional to- 1/(r)2 we expect 

the luminosity to be modified by a factor 

2 
L? '0 ---- 

9O (rj2 

After a distance R, &r/r = - DR/oZ for DR/o < 1. The dimensions of the 
Z 

opposite beam are also changing so that D(t) z Do(ro/r)L. We have 

r"-ri(l -c), F< 1 
Z 

and if L is the total length, 

(r) = i LL r. (1 - e)l'2dz 

(30) 

(31) 

=r o l-i?). 
( Z 

Hence for D - l/2, L/oz - 2, and DL/oZ - 1, the luminosity is enhanced by 
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From eq. (lo), the scattering angle distribution for ox = oy and 

impact parameter b is h 

Nreb N(b) N(B) = -- =----- N(b) 
N R DN 

Z 

(32) 

which has a maximum near b x Ax since for larger impact parameters N(b)/N 

is decreasing and the scattering angle is less than D/AZ due to the non- 

uniformity of the current density. The scattered beam will have a maximum 

opening angle near Xx/AZ D. This opening angle is not a scaling parameter, 

and its value will depend on the way in which D is increased. If D is 

increased by increasing AZ, then emax will remain roughly constant. If D 

is increased by increasing the current or decreasing the transverse scale, 

then 8 max will increase proportional to N or 1/Xx, respectively. Further- 

more, if the value of D is larger than one, the particle trajectories are 

oscillatory and the distribution of scattering angles must be found by 

simulation. 

III. Relation of D to the Plasma Frequency and Instabilities 

It is interesting to compare D to the relativistic transverse plasma 

frequency of the bunch w which is defined as 
P 

u2 = 4~ p rec2 

P Y 
(33) 

For a three-dimensional Gaussian distribution with charge Ne, p varies 

with position and so does w . 
P Using pmax and comparing to D defined in 

terms of the central density (for simplicity ox = or). 

P = 
max (2a)3'2 0 CI CJ 

XYZ 

2 4x p max rec2 

WPmax = Y 

(34) 
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(35) 

The number of plasma oscillations which occur while traveling a distance 

L is n = L/hp and using L - d%oz and eq. (35) yields 

D - 8n2 . (36) 

Thus, X/F is a measure of the number of plasma:oscillations which occur 

during the collision. This conclusion could also have been reached from 

the form of the scaled equation of motion, eq. (25). 

The results of a full simulation (see Section V) indicate that the 

effective phase shift for particles near the axis of a Gaussian beam is 

actually related to D by 

D = 10.4 n2 . (37) 

If the beam behavior was stable for two full plasma oscillations, then D 

could be as large as 32 for Gaussian beams. Beam growth due to plasma 

instabilities typically requires several plasma oscillations so that values 

of D less than 10 are certainly stable. The value of numerical coefficient 

is somewhat shape dependent. 

The collision strength parameter used for storage ring machines is 

the linear tune shift 3) 

* 

Av N 'Y - re 
Y 2lT y ay (ox + ay) (38) 

* 
where 8 is the betatron function at the collision point. Using eq. (4) 

one finds 

22 
Av = 4X 5 Y 

Z 

Maximum luminosity is achieved when $* - oz and the observed limitation 

for the tune shift of Av - 0.06 corresponds roughly to a disruption 
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parameter of one. This low value is probably a consequence of the fact 

that there are many collisions in a storage ring per damping time. For 

this case, Uhm and Liu 4) have derived a dispersion relation for the 

linearized Vlasov-Maxwell equations which predicts a maximum growth rate 

of 0.6 w . As pointed out by B. Zotter, 5) 
P 

this value agrees well with 

the observed limitation of Au using an effective bunch length L = 2*& oz 

but does not explain the fact that the limit is independent of 8*. 

The growth of the kink (or hose) instability for the linear collider 

case has been analyzed by Fawley and Lee 6) who find that the growth 

factor is limited by the finite length of the interaction to 

1 % R 
g < 1+ a'2 2c (40) 

where c1 = 0.18 is a term used to model phase mix damping, R is the 

effective length and w a is the effective betatron frequency of the collision. 

Since wSR/~C = 2?rn, we can use n m&/3.22 to get (for the Gaussian) 

g < 1.8&i (41) 

For a given fractional transverse offset 6, the condition g6 < 1 places 

a limit on D which is 

(42) 

For a 10% offset this requires that D be less than 31, and for a 25% offset, 

D must be less than 5. 

The effect of the beam emittance on the collision depends on the 

ratio of the beam envelope size to the Debye length. The Debye length XD 

is the average distance which a particle travels in the transverse dimension 

during a time l/w 
P' 2 1'2 

( > vl 
'D= w 

(43) 

P 
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Hence, if the transverse size of the beam is comparable to xD and the 

collision time is of order l/w 
P' 

particles will traverse the beam due to 

emittance effects during the collision, and this will damp any change in 

the beam envelope due to the coherent focusing effect of the beams. The 

emittance is the area of the phase space ellipse IT(x)(x') and hence 

2 
c2 = ( j PI Tr T2 1: - = 

2 of (vG j 

P2 2c2 
(44) 

The velocity distribution also defines an effective temperature for the 

beam which is 

2 22 
kT 

pl E Ymc 
eff =---= 2-rm 2n2A2 

X 

(45) 

The temperature and the rms velocity actually vary with position within the 

beam since they depend on the phase space distribution function. Usually 

the temperature falls to zero on the edges of the beam envelope (where 

(VJ X 0) and reaches a maximum on the beam axis. For a uniform radial 

dependence of the temperature 

(kT)- E2ymc2 = 1/2ym(v:) 
41T2x2 

X 
(46) 

( 2)1'2 = g-L-- 
VI. Tr ax 

The relationship between the beam size and the Debye length for a fixed 

2 2 2 disruption parameter is found using D = 1'4~ w AZ/c and eq. (43) 
P 

'D E xZ 

"=Y (47) 

When AD is much smaller than Ax the emittance of the beam can be ignored. 
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IV. Computer Simulation 

The computer simulation of the beam-beam effect in a single pass 

collider is considerably simplified by the fact that the beams are highly 

relativistic and that the collision occurs only once. For the relativistic 

beam, the effect of the longitudinal excitation is unimportant, and the 

transverse motion is given by integrating the effect of the kicks defined 

by eq. (24). In contrast, the computer investigation of beam-beam effects 

in a storage ring requires that one follow the evolution of the bunches for 

a time comparable to the damping time. This time is typically much longer 

than the time between collisions, and in this case, small perturbations 

in the initial configuration of the bunches can grow with time and eventu- 

ally become important. This is difficult to study with a computer because 

numerical approximations and truncation errors lead to a cumulative loss 

of information about the beam behavior. The long-time scale also means 

that longitudinal modes in the beam can be important. The single pass 

beam-beam effect at high energy can be reliably calculated because of the 

validity of the impulse approximation and the small number of plasma 

oscillations for reasonable collision strengths. 

The computer simulation used here starts by distributing the charge 

on a three-dimensional lattice which defines typically 8000 cells for each 

beam. The central position and trajectory of each cell is advanced using 

time symmetric difference equations derived from eq. (24). The advantages 

of time symmetric equations have been discussed by Buneman. 7). In this 

application, they allow one to verify that the code is reversible and 

increase the accuracy of the simulation. Any irreversibility is due to 

round-off errors and coarse binning of the density or time step. 
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The cells are advanced longitudinally at a uniform velocity equal 

to thespeed of light. For each time step, the transverse kick given to 

each cell of one beam is calculated from the charge in the cells of the 

other beam which are at the same longitudinal position. The charge 

distribution of each beam is modified due to the cumulative effect of 

all the transverse kicks which have been applied previously. 

To further increase the accuracy of the simulation, the charge in 

each cell is treated as a cloud of charge rather than as a point charge. 

Simulations in plasma physics often use the particle-in-cell 'method 8) 

which simulates the motion of the plasma by having many particles within 

the cell which share the charge. The number of such particles must be 

large enough to reduce the particle or shot noise introduced by statistical 

fluctuations. Real plasmas contain large numbers of particles, and such 

fluctuations are unphysical. The major advantage of such an approach is 

that the simulation of temperature effects is simplified since the parti- 

cles can be given an initial velocity distribution within the cell. The 

cell is used in these calculations to bin continuous quantities like 

pressure, density and electromagnetic fields. The density distribution, 

for example, is calculated by simply counting the number of particles which 

are found in a given cell at each time step. 

The shot noise contributions of the particle-in-cell model can be 

eliminated by treating each particle as a cloud of charge. As pointed out 

by Birdsall and Fuss, 9) this cloud-in-cells method also reduces many 

fictitious effects which come about because of the finite cell size. 

Errors in time due to the early or late arrival of a particle in a cell 

and errors in the forces due to the uncertainty of the particle's position 
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within the cell are smoothed. The finite size cloud also smooths the 

interaeions between particles and eliminates the necessity of cutting 

off the singularity in the interaction which occurs when point particles 

approach zero separations. 

The cloud size does not have to be equal to the cell size. If it 

is larger than a cell size or if the cloud is not centered on a cell, 

the charge is spread out over several cells in proportion to the fraction 

of the total cloud's area which falls in that cell. If the cloud is 

smaller than a cell, the model is very similar to the particle-in-cell 

model with a particular choice for the cutoff distance for the interaction 

of the charges. 

In this simulation, the cloud size is changed as the interaction 

progresses. The size of a cloud at any given time is determined by the 

distance to adjacent clouds on a lattice. Using the nearest neighbors to 

determine the cloud size is equivalent to a first order Taylor series 

expansion of the motion about the center of the cloud. A fixed cell size 

is used to calculate the density distribution and the luminosity overlap 

integral. The cloud's charge is apportioned to the cells using an area 

weighting scheme. 

By dividing each cell into four subcells, the gradient of the density 

distribution within a cell can be adjusted to match the local gradient 

measured by the positions of the nearest neighbor clouds. This increases 

the number of effective cells in the calculations for the purpose of 

calculating density distributions and overlap integrals of the type given 

by eq. (15) without increasing the number of clouds which must be followed 

in the simulation of the dynamics. At the expense of increased computing 
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time, several clouds can be superimposed at the same positions but with 

differing velocities to simulate temperature effects, but we concentrate 

here on the cold beam limit. The cell size is usually equal to the original 

cloud size since the behavior of the beam is not followed on a scale smaller 

than a subcell. A cell size larger than the original cloud size would 

decrease the accuracy of the luminosity calculation. 

V. Results of the Simulations 

Consider the collision of two beams with Gaussian profiles and scale 

factors ox, CT , and oz. 
Y 

One can begin studying the effect of the collision 

by looking at the motion of a test charge in one beam whose position (x,y,z) 

relative to the center of the beam is (ax, 0, 0). The trajectories in the 

x,z projection for increasing values of the collision strength are shown 

in fig. 5. As can be seen in fig. 5 for the case D = 1, the effect of 

beam 2 on this test charge is well represented by a focal length which is 

equal to the bunch length oz. For large values of D, it is best to think 

in terms of the number of betatron oscillations which a particle executes 

as it passes through the other beam. 

The case D = 1 corresponds roughly to a quarter betatron oscillation 

and D = 10 is slightly more than one full oscillation. Because of the 

form of eq. (24), the equation of motion for small offsets from the beam 

center is given by 

(48) 

so that the betatron wave length will be proportional to the square root 

of D. The observed values for the phase shift of the test particle at 

x=a x are shown in fig. 6 and the phase shift is found to be A$ 'v 0.62~6. 
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This relationship for the focal strength of the beam works well up to 

quite lzarge values of the collision strength and agrees reasonably with 

the rough calculation of Section III, eq. (36). The corrections due to 

the changes which occur in the other beam are small. The exit angle versus 

position of the test charge for D between 0 and 32 is shown in fig. 7. The 

position is that which occurs when the longitudinal separation between the 

two beams is 2.5 oz. This corresponds to a position for beam 1 of z/a = z 

1.25 in fig. 5. As D increases from 0 to 1, the exit angle increases. The 

maximum exit angle occurs when D is between 1 and 2. The values of test charge 

exit angle and position for increasing values of D form an approximate ellipse 

similar to a phase ellipse. The rotation of the ellipse is related to the 

effective thickness of the lens. The positions of the points for D = 16 and 

D = 32 are close to those for D = 3 and D = 8 respectively and indicate 

that the nonlinearities of the interaction are not very important. 

Due to the fact that the charge distributions of the beams change 

during the collision, the dynamics of the leading and trailing parts of 

the beam are not quite the same as those of the central part. Figure 8 

shows a superposition of the trajectories in the xz plane of all the 

lattice points with y = 0 for the case where D = 2.4. The lattice is 

10 x 20 in this projection and the distance between lattice points is 

0.5 0 2' The trajectories should be compared to fig. 5 for the case D = 2. 

Particles within 1 o of the beam center are scattered through the maximum 

angle. The particles scattered through small angles come predominantly 

from the trailing part of the beam which scatters off a partially disrupted 

charge distribution and therefore sees a smaller charge density. 
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Figures 9a-c show the density in the y = 0 plane of one of the beams 

for th&case D = 1, 3, and 5. The times shown are in arbitrary units 

corresponding to a beam center-to-center separation of 10 oz at T = 0 and 

T = 40. The longitudinal positions of the beam centers coincide when 

T = 20 and the luminosity overlap integral (eq. (15)) receives most of 

its contributions from 15 < T < 25. 

By comparing fig. 9a, 9b, and 9c, one can see that as D is increased 

from 1 to 5, the focal point of the beam moves toward smaller times. For 

D = 1, 3 and 5, the focus occurs near T = 26, T = 18, and T = 16 re- 

spectively. In all cases the focus is diffuse because of the non-uniform 

charge distribution. As expected, the transverse tails have longer focal 

lengths. 

The luminosity will reach a maximum when the focal spots of the two 

beams overlap most completely, i.e., when the central focus occurs near 

T = 20. This happens near D = 2.4. The harmonic motion of particles 

near the center for D > 2 (see fig. 5) can yield several diffuse foci 

during beam collisions (see fig. 9c, T = 25). 

As discussed in Section II, the luminosity overlap integral will be 

a function of D because of the time dependence of the density distribution 

caused by the beam disruption. For oppositely charged beams which are not 

too severely disrupted, the dynamics lead to an enhancement of the lumi- 

nosity. Using the time dependent density distributions found by the 

simulation, this enchancement can be studied as a function of the collision 

strength. The enhancement is defined as the ratio between the actual 

luminosity (eq. (15)) and the unperturbed luminosity (eq. (16)) and is 
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shown in fig. 10. In order to accurately calculate the overlap integral, 

the number of lattice points used in the simulation must be large enough 

to follow the density variations during the collision. The integral is 

calculated directly from the density distribution of the two beams at 

each step. The dependence of the enhancement factor on the cell size 

was investigated and the number of cells was increased until no further 

effect of the cell size could be seen. 

VI. Offset Beams and Uniform Transverse Profiles 

For the case where the density distributions do not change (the 

limit as D goes to zero), one can calculate the effect of an initial 

offset of no in the transverse plane on the luminosity. The overlap 

integral (eq. (16)) gives a luminosity 

-n2/4 2 
L@== 

4n 
= PO emn '4 (49) 

for Gaussian beams. The luminosity as a function of D for n = 2 is shown 

in fig. 11. From eq. (49) one can see that for a two sigma offset the 

D = 0 luminosity is reduced by a factor of 0.37. However, the enhancement 

still occurs and the ratio of maximum luminosity to D = 0 luminosity is 

almost the same as in the zero offset case. The enhancement drops off 

more rapidly with D however. 

Similar results have been obtained for the case where the beam has 

a uniform density profile in the transverse direction and a Gaussian 

profile in the longitudinal direction. The collision strength is from 

eq. (26) 

D= 
reNo z 

YX2 
(50) 
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and the,unperturbed luminosity is 9 
0 

= 1. The trajectories for test 

particles are shown in fig. 12 and the enhancement is shown in fig. 13. 

Fzr the uniform profile, the enhancement falls off rapidly as the col- 

lision strength is increased leading to a net loss of luminosity for D 

greater than 16. The local peaks in the enhancement correspond to values 

of the collision strength yielding trajectories which tend to focus the two 

beams when the maximum charges overlap. (This is the point Z = 0 in fig. 12.) 

The more rapid fall-off of luminosity with collision strength for the 

uniform case can be understood in terms of the plasma properties of the 

charge distributions. In the leading and trailing parts of a Gaussian beam 

and in the transverse tails, the charge density is less than the density in 

the central part of the beam. Since the plasma frequency squared is pro- 

portional to the density, this means that the corresponding plasma wave- 

length X 
P 

is longer in the tails and that the tails are more stable than the 

beam core. When beam dynamics are neglected, the tails of the beam con- 

tribute little to the luminosity of the collision. The luminosity is pro- 

portional to the integral of the density squared and in the Gaussian case, 

for example, it receives very little contribution from those parts of the 

beam which are more than one sigma from the center or times when the beams 

are separated longitudinally by more than one sigma. 

When beam dynamics are included, one expects that the cumulative 

focusing effect of the head of the beam on the central core will be im- 

portant in determining the approximate transverse dimensions of the beam 

core and its profile when it overlaps with the core of the other beam. 

Thus, the charge distribution in the head of the beam is an important 

fact,or in determining the enhancement factor or ratio of the actual lumi- 

nosity to the luminosity expected for undisturbed beam profiles. The 



24 

Gaussian transverse profile has a larger enhancement for D > 10 than the 

uniform-profile because the non-uniform density distribution leads to a 

spread in the plasma frequencies and this together with the longer plasma 

wavelength in the tails helps stabilize the enhancement factor. 

VII. Conclusions 

The energy lost per turn by a particle stored in a magnetic ring grows 

as the fourth power of the particle's energy and this power loss has become 

a significant constraint in the design of machines to produce high energy 

electron-positron collisions. This problem has led to the consideration 

of the properties of alternative systems which collide linearly accelerated 

beams of electrons with similar beams of positrons. The required luminosity 

is achieved in a linear system by having very tight focusing at the beam 

collision point. Spot sizes of several square microns can be achieved. 

The beam-beam effect which limits the current which can be stored in 

a circular machine is still expected to be the limiting factor in linear 

systems. However, the limitation comes not from the cumulative effect of 

many small perturbations but from the disruptive nature of a single collision. 

Particle densities several orders of magnitude higher can be achieved in 

the single collision case. In addition, the strong disruption of the beams 

leads to an enhancement of the luminosity due to the net focusing effect 

which the two oppositely charged beams have on each other (see fig. 1). 

The strength of the interaction between the beams 6, is related to 

the number of plasma oscillations which occur during the collision. The 

plasma frequency however grows only as the square root of the incoming 

current, and this means that very high beam densities can be tolerated. 
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Typical instability growth rates would allow several plasma oscillations. 

For Gaussian beam profiles, two full plasma oscillations occur for D x 32. 
h 

The interaction of two such beams for small numbers of plasma oscil- 

lations can be reliably calculated using plasma simulation techniques. 

The magnitude of the luminosity enhancement and the relation between beam 

density and effective plasma wavelength have been investigated using a 

computer simulation. The luminosity enhancement grows proportional to D2 

and reaches a maximum value when the focal spots of the two beams overlap 

most completely. This occurs after one-quarter plasma oscillation. For 

Gaussian bunches, the enhancement reaches a maximum for D n. 2.4 and remains 

constant to large values of D (D * 20). The value of the enhancement is 

approximately 6 for a Gaussian beam which is mismatched at insertion, and 

2.5 for a matched beam (i.e., emittance dominated minimum waist). The non- 

uniformity of the Gaussian charge density helps stabilize the beam dynamics. 

For more uniform shapes, the enhancement drops off more rapidly with D. 

Suggestions for linear colliding beam machines have been limited to 

small values of the disruption parameter. lO,ll> In future designs it 

should be possible to greatly increase the design luminosity by increasing 

the collision strength and taking advantage of the luminosity enhancement. 

A disruption limit D = 32 with a luminosity enhancement LZ?/LZ'~ = 6 yields 

an increase in luminosity of 

D2 .%. = 
go 

6 x lo3 

if the current is increased or 

D2 vii?- = 2 x 10 2 

9O 

if the beam spot is decreased compared to a design with D = 1 and S/B0 = 1. 
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Figure Captions 

1, Computer simulated collision of intense relativistic beams illustrating 

the pinch effect. 

2. 

3. 

4. 

In the rest frame of particle 1, particle 2 travels along the z axis 

and has a minimum displacement from particle 1 of b in the x direction. 

Time dependence of the electric and magnetic fields due to the passage 

of particle 2 as seen at the position of particle 1. 

Test particle incident with displacement b from the axis of a charge 

distribution. 

5. 

6. 

7. 

Trajectory of a test charge incident on a Gaussian bunch with dis- 

placement ox from the axis for the case D=.5, 1, 2, 5, 10, 32. 

The test charge is within a Gaussian charge distribution. 

Phase shift of the test particle versus disruption parameter. 

Exit angle versus position of the test charge incident at (a,,O,O) 

for values of D between 0 and 32. 

8. Trajectories of the lattice points in the yz plane for the case 

D=2.4. 

9. 

10. 

11. 

12. 

(a),(b),(c) Simulation of the density distributions during the 

collision of two Gaussian beams for D=l, 3, and 5. 

Luminosity enhancement versus disruption factor. 

Luminosity versus disruption factor for two Gaussian beams colliding 

with an initial offset of 20,. 

Trajectory of a test charge incident on a uniform transverse profile, 

Gaussian longitudinal profile beam. The test charge is initially at 

the boundary of the transverse distributions and is within a uniform 

transverse profile beam. 
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13. Luminosity enhancement versus disruption factor for uniform trans- 

I verse profile beam collisions. 
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