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ABSTRACT 

Cosmological considerations imply that the Weinberg-Salam Higgs 

boson mass mH ) 9 GeV. If this bound were violated, the symmetry 

breaking phase transition would occur only after extreme supercooling, 

resulting in too high a ratio of entropy to baryon number. 
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The Weinberg-Salam theory of weak and electromagnetic interactions 

contains one parameter which is not yet experimentally determined--the 

mass of the Higgs boson. Some time ago it was noted that when this 

mass is sufficiently small the scalar self-coupling is weak enough for 

the radiative corrections to the effective potential to have a signifi- 

cant effect. 1 In the one-loop approximation the effective potential 

takes the form2 

where 

v=122 5 IJ 4 + -$i $4 + B04 . (1) 

(2) 

and M is an arbitrary mass related to A by 

* 

a4, =A 
a44 

. (3) 

(P=M 

The first term in B represents the contribution of gauge boson loops, 

while the second arises from loops involving fermions with Yukawa couplings 

f . . 1 Since the Yukawa coupling is proportional to the fermion mass, the 

latter term is non-negligible only if there are quarks or leptons much more 

massive than those so far discovered. The contribution from scalar loops 

is negligible for the case in which we are interested and has been omitted. 

Assuming that there are no heavy fermions and taking sin20W = 0.23, one 

finds B = 1.74~10 -4 . 

For sufficiently small X, V has a minimum at a non-zero value of 4, 

which we denote by cr. (Experimently, cr = (&?G) -l/2 = 246 GeV.) By 

choosing M=a, we may rewrite Eq. (1) in the form 



-3- 

V=B (a + 2)04 + $4!Ln($2/02)} . (4) 

The Higgs mass is then given by < = (4 - a)(2Ba2). If a > 0, the 

effective potential has an additional minimum at 4 = 0. In order that 

the symmetry breaking state $=o be the absolute minimum, we must 

require that c1 < 2; this gives the lower bound on mU obtained by S. 

Weinberg. 1 In this paper we will consider the case (0 < c1 < 2) in 

which there is a metastable SU2 x Ul symmetric vacuum, and show that 

cosmological considerations can be used to obtain a more stringent 

lower bound. 

We assume that the universe was at one time very hot (T77a). At 

such temperatures V must be modified 394 by the addition of a term 

'T = 2r2 -?- T4(21(g$/2T) + I(dm@,2T)}- 9 (5) 

where 

I(y) = . (6) 
0 

(The contribution from scalar loops is again negligible and has been 

omitted. We have also neglected all fermion loop contributions.) 

From the approximation 

2 

vT=-L 10 
T4 +$ (gq2 + 3g2)T292 + @ (T$3) (7) 

valid for T>>$, it is clear that at T>> c the minimum at 4 = u disap- 

pears. Thus, a hot universe would begin in an SU2 X Ul symmetric 
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phase. As it cooled, there would be a transition to the spontaneously 

brokenphase, with the critical temperature T 
C 

being that at which the 

values of the effective potential at the two minima are equal. One 

finds Tc = k(a)(2 -a> l/4 u, where k(a) varies monotonically from .081 

to .087 as c1 varies from 2 to 0. The phase transition is first-order 

and would proceed by the formation and growth of bubbles of the new 

phase. During this process the expansion of the universe would cause 

the temperature to continue to fall, eventually rising again with the 

release of the latent heat of the phase transition. 

The formation of bubbles of true vacuum is a tunneling process. 

Callan and Coleman5 have shown that its rate at zero temperature can 

be obtained by solving the Euclidean equation 

a2 o= - ( 1 +v2 $I av 
at2 -qi (8) 

2 2 with the boundary condition that 0 approach 0 as x +t goes to infin- 

ity. The probability per unit time per unit volume of bubble nuclea- 

tion is given by f 0 = Cexp(- Ao), where A0 is the four-dimensional 

Euclidean action corresponding to the tunneling solution of Eq. (8) 

with the least action, which we assume to be O(4) symmetric. The 

determination of C requires calculation of radiative corrections; it 

is of the form ya 4 , with y a dimensionless number expected to be of 

order unity. 6 Solving Eq. (8) by computer gives the values of A 0 shown 

in Fig. 1. 

The extension of this calculation to finite temperature requires 

some modifications. First, V must be replaced by the finite 
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temperature effective potential. Second, the Euclidean problem 

become2 one with periodicity l/T in imaginary time, so we can only 

require O(3) rather than O(4) symmetry. For large T we expect the 

dominant solution to be independent of t with an exponent of the form 

A(T) = E(T)/T, where E is the energy calculated using the finite 

temperature effective potential. 7 
The behavior of E(T)/T as a func- 

tion of T and a is shown in Fig. 2. For sufficiently small T solu- 

tions with approximate O(4) symmetry and A z A0 will dominate. 

We see that nearly all choices of c1 in the range we are consider- 

ing lead to extremely small bubble nucleation rates and thus to a 

rather long lifetime for the metastable symmetric state. It has been 

argued8 that this lifetime must be short compared to 10 
10 years (the 

generally accepted age of the universe), but this reasoning seems 

rather imprecise. The figure of -10 10 years is obtained by assuming 

adiabatic expansion throughout the history of the universe and so can- 

not be used to place a limit on how long the universe could have 

remained in a metastable state. 9 However, the continued expansion of 

the universe would lead to a supercooling which could have observable 

consequences. Current theories show that the present baryon number to 

entropy ratio of -10 -8 can be explained as a relic of CP- and baryon 

number-violating processes at energies of the order of 10 
14 GeV.l' If 

at some time after the baryon number excess was produced the universe 

supercooled to a temperature T and then rose to T SC ret (Of order Tc) 

after the release of the latent heat, the baryon number to entropy 

3 
ratio would have been reduced by a factor of (Trec/Tsc) . Thus the 

observed baryon number excess puts a bound on how much supercooling 
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is acceptable; certainly Tsc cannot be more than two or three orders 

of magtitude below T . 
C 

We shall see that such extreme supercooling is 

quite possible in a rapidly expanding universe. 

The extent of supercooling depends on the rate of expansion of 

the universe. With a Robertson-Walker metric (in comoving coordi- 

nates) dT2 = dt2 - R2(t>dz2, the expansion is governed by the equation 11 

i2 8~r 0 ii =-7p 

3% 
(9) 

where MP = 1.2 x 101' GeV is the Planck mass. The energy density may 

be written as p = p. + (a2/30)&'T4. HereA'is the number of effectively 

massless degrees of freedom, with fennion degrees of freedom each 

counting 7/8; for three families of leptons and quarks,&-= 106.75. 

The vacuum energy density has the same effect as a cosmological con- 

stant; to agree with observation we must take p. = 0 for the spontane- 

ously broken minimum and therefore p 0 = + (2-a)Ba4 for the symmetric 

state. Note that for small temperatures (T < .033 (2-a) l/4 a) the 

energy density is dominated by the vacuum energy, leading to an R 

which grows exponentially with time. 

If f(t) is the rate of bubble nucleation per unit time per unit 

(physical) volume,the fraction of space remaining in the symmetric 

phase at time t is 12 

t 
p(t) = exp - I 

tO 

dtlf(tl)R3(tl)V(tl,t) (JO) 
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where 3 

v(t,,t) = 2 (11) 

is the coordinate volume at time t of a bubble formed at time t 1' 

(The bubbles are formed with a negligible initial radius and expand 

with a speed which rapidly approaches that of light.) It is conven- 

ient to convert from time to temperature. If we assume adiabatic 

expansion (RT = constant), then Eq. (9) leads to 

+= - x%(T) 

where g(T) z 1 for small T. This gives 

P(T) = exp 

C -ACT+ 

dT1 e - 
g (T1) T; 

. T1 
I dT2 

T g (T2) 

(12) 

3 

I 

(13) 

with b = (4~~/3>(ycr~/x~). Numerically, b ~10~~/(2-cc) 
2 . As T falls 

from T c, A(T) decreases to a minimum at a temperature T* and then 

rises, leveling off at Ao. The potentially dominant contributions to 

the Tl integral in Eq. (13) come from the regions T1 z T* and T1z 0. 

Approximating the integral by the sum of these gives (for T < T*) 

(14) 
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where h is a correction factor of order unity, Thus, if A(T*) < Rn b, 

p(T) dasreases rapidly to 0 and supercooling ceases by T zT*. On the 

other hand, if A(T*) > Rn b, the bubbles formed at high temperature 

are not sufficient to complete the phase transition and supercooling 

ceases only when the effect of the low temperature bubbles becomes 

large; since this effect grows only logarithmically, supercooling will 

continue to exceedingly small temperatures. 

Therefore, to avoid excessive supercooling we must require (1) 

that A(T) < Rn b for some T and (2) that the temperature at which this 

happens be not too far below the critical temperature (certainly no 

less than 10 -3 Tc). The first condition alone excludes essentially 

the entire range of parameters in which we are interested; even for c1 

as small as 0.01, A(T*) is too large by a factor of seven. The second 

13 requirement eliminates even the theoretically attractive case a = O;- 

the universe would supercool to T N" 3x 10 -8 Tc before A(T) M Rnb. 

We have implicitly assumed that the effective potential (1) with 

its finite temperature corrections continues to give a good descrip- 

tion of the relevant physics as the temperature decreases several 

orders of magnitude below the critical temperature. Witten14 has sug- 

gested that this may not be the case if in this temperature range the 

universe undergoes a phase transition from unbroken to broken chiral 

symmetry. He argues that the effect of the broken chiral symmetry 

would be to facilitate the Weinberg-Salam phase transition, and that 

c1= 0 may not in fact be ruled out. Except for very small a (no more 

than O.Ol>, our arguments and conclusions concerning positive cx would 

not be affected. 
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Although the data shown in Figs. 1 and 2 were obtained using 

2 sin 0-== W 0.23, variation of ew well beyond the present experimental 

uncertainty has little effect. For 0.13 < sin2eW < 0.91, the qualita- 

tive conclusions are unchanged. Also, it is easy to show that the 

effect of heavy fermion loops, which we have omitted, would be to fur- 

ther inhibit bubble formation. 

We thus have a lower bound for the Higgs mass 

4 2 8Bu2 (15) 

with B given by Eq. (2). For sin2eW = 0.23 and no heavy fermions, 

this gives % 2 9 GeV. 

We thank Edward Witten for discussing his work prior to publica- ._ 

tion, and Marc Sher for pointing out an error in the original manu- 

script. This work was supported by the Department of Energy under 

contract DE-AC03-76SF00515. 
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FIGURE CAPTIONS 

Fig. 1. A0 as a function of a. 

Fig. 2. (a) E(T)/T as a function of temperature for several 

values of a. 

(b) E CT*) /T* as a function of a. T* is the temperature 

at which E(T)/T reaches its minimum value. 
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