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1. Introduction 

she neutral kaon system has played an important role in elementary 

particle physics. The small measured value of the KL-KS mass difference 

and the near absence of a strangeness changing neutral current in kaon 

decays led Glashow, Iliopoulos and Maiani to propose a fourth charmed 

quark.I Later Gaillard and Lee estimated the mass of the charm quark2 by 

comparing the experimental value of the KL-KS mass difference with the 

value calculated in the four-quark Weinberg-Salam model.3 This estimate 

gave a value for the charm quark mass close to the value later obtained 

from charmonium spectroscopy. 

The K"-xo system is the only place where CP violation has been 

observed. In the Weinberg-Salam model with four quark flavors and one 

Higgs doublet there is no CP violation.4 However, as was first pointed 

out by Kobayashi and Maskawa,' CP violation is possible in the six-quark 

model. At present there is experimental evidence for five quark flavors, 

the fifth b-quark, with charge -l/3, and its antiparticle are the con- 

stituents of the T family of particles. A sixth quark t, with charge 

2/3, is required in the Weinberg-Salam model if the left-handed fields 

are to be assigned to the standard weak SU(2) doublets 

The right-handed fields are assigned to SU(2) singlets. The primed 

fields in Eq. (1) are not mass eigenstates but are related to them by 

a unitary transformation. With the standard choice of quark fields 

this transformation has the form5 
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c1 +Y3 

i6 
Y2 '1'2'3 - s2S3e (2) 

i6 
YS2 'lsZc3 - C2S3e 

Here si = sin Bi and ci = cos ei where is {1,2,3). By adjusting the phases 

of the quark fields, the phase 6 can be moved from one location in the 

matrix to another; however, 6 cannot be completely eliminated from the 

matrix. It follows that a non-zero value for the phase 6 will result in 

CP violation. The Cabibbo-type angles 61, e2 and 13~ are chosen to lie in 

the first quadrant. With this convention the quadrant of the phase 6 has 

physical significance and cannot be specified by convention. Experimental 

information from beta decay give 
2 

s 1 = 0.05. This combined with measure- 

ments of hyperon decays give the limit s3 ,< 0.5 on violations of uni- 

versality.6,7 

The phenomenological ?mpllcations of the six-quark model for CP vio- 

lation in the neutral kaon system and elsewhere have been studied by Ellis, 

Gaillard and Nanopoulos* and were found to be compatible with experiments. 

The constraints imposed by the measured value of the %-KS mass difference 

and the CP violation parameter E on the parameters 8 2, e3 and 6 of the six- 

quark model have also been studied.g,lo In these calculations the K"-? 

mass matrix is derived from the lowest order box diagram in Fig. 1, 

neglecting strong interaction corrections. 

The effective Hamiltonian for AS = 1 weak nonleptonic decays is com- 

puted in the six-quark model by successively treating the W-boson, t, b and 

and c quarks as heavy and removing their fields from explicitly appearing 

in the theory.11~12 Strong interaction effects, as described by quantum 
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chromodynamics (QCD), are taken into account by summing the leading loga- 

rithms in these large masses using renormalization groupI techniques. 

The resulting effective Hamiltonian is a sum of Wilson coefficientsI 

multiplied by renormalized local four-quark operators. Diagrams with heavy 

quark loops, so-called Penguin-type diagrams, induce local four-quark oper- 

ators with a chiral structure (V-A)@(V+A) into the effective Hami1tonian.l' 

Although the magnitude of the coefficients of these operators is small com- 

pared with those of the (V-A)@(V-A) operators, it has been suggested that 

these operators have matrix elements for nonleptonic decays of kaons and 

hyperons which are greatly enhanced and that these (V-A)@(V+A) matrix ele- 

ments make important contributions to nonleptonic decay amplitudes.15 If 

this is the case, then an understanding of the AI = % rule is possible 

because the (V-A)@(V+A) operators are purely isospin one half. The phase 8 

enters the weak current through couplings of the heavy quarks. Conse- 

quently if the (V-A)@JV+A) operators are important for the AI = $ rule 

they can contribute significantly to CP violating K -f IT~F decay amplitudes.16 

In fact, if most of the magnitude of the K -t w (I=O) amplitude is due to 

the contribution of the (V-A)@(V+A) operators, then through a redefinition 

of kaon phases to comply with the phase convention that the K + 2n (1~0) 

amplitude be real, these operators make a contribution to the CP violation 

parameter s' which may be large enough for upcoming experiments to detect.I' 

In addition, through the redefinition of the kaon phases, the (V-A)@(V+A) 

operators can make a contribution to the CP violation parameter e which is 

somewhat smaller, but still comparable to that coming from the box diagram 

of Fig. 1. Strong interaction corrections to the box diagram have recently 

been calculatedl* in the six-quark model using similar techniques. These 
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corrections are significant for both the real and the imaginary parts of 

the kaon mass matrix. 

"In this paper we discuss the restrictions the neutral kaon system 

imposes on the parameters of the six-quark model, including the recently 

calculated strong interaction corrections to the effective Hamiltonian 

for AS = 1 weak nonleptonic decays and the effective AS = 2 Hamiltonian 

for K"-? mixing. Particular attention is given to the effects of the 

strong interaction corrections. We review the uncertainties associated 

with the theoretical predictions for E and the KL -KS mass difference. 

The effects of these uncertainties on the angular constraints are also 

discussed. In addition, we examine how the CP violation parameter E' 

and the b-quark lifetime depend on the six-quark model parameters. 

Upcoming experiments will attempt to measure these quantities and are 

likely to play an important role in testing the six-quark-model as well 

as determining the values of its parameters. 
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rr. The Neutral Kaon System in the Six-Quark Model 

xo leading order in the large W-boson t-quark, b-quark and c-quark 

masses the effective [AS/ = 2 Hamiltonian for K"-? mixing-has the for-ml' 

2 22 2 
X 

nlmc slc2 (c1c2c3 
-i6 

- s2s3e > 

222 -ig 2 

+ T72mts1s2 (c s c 123 + c2s3e > (3) 

2 
+ 2 2 n3mcRn 0 mt 2 

2 sls2c2 
(clc2c3 -is - 

s2s3e 
-Y ( 

'1'2'3 
+ 

c2s3e > 

c I 

+ h.c. . 

The coefficients nl, ~2 and r\3 have been calculatedI* in the leading 

logarithmic approximation and depend on the running strong interaction 

coupling constant a 
S 

evaluated at the heavy mass scales and at the renor- 

malization point mass. The matrix elements of this effective Hamiltonian 

are evaluated in an effective theory of strong interactionsI with three 

light quark flavors u, d and s. The t, b and c quarks have been treated 

from explicitly appearing in the theory. as heavy and their fields removed 

The kaon mass matrix element is 

Ml2 = (K' [HlA4=2 
eff 

I? > . (4) 
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The real part of this matrix element is 

( K" 1 (da~~)~-~ (x fj B V_Alxo' (243 s ) 

- s2s3c&) 
2 222 

- '2'3% 

+ c*s3c6) 
2 222 

- '2'3% (5) 

2 m2 2 t 
+ 2r13mch ---7j s1c2s2 

0 

(ccc - 123 m { S2S3C6) (c1s2c3 + c2s3c*) 

C 

22 -!- C2S2S3Sb . 
}I 

This is related to the difference between the KS and 5 masses by 

mS - “L = 2ReM12 . (6) 

The experimental value of this mass difference,20 mS - 5 = -3.52 x 10 -12 

MeV, imposes a constraint on the six-quark model parameters through 

Eqs. (5) and (6). To proceed further we must evaluate the matrix element 

of the renormalized local four-quark operator (doe~e)~-~ (;i8~~)~ A between 

K" and x0 states. This matrix element has a dependence on the renor- 

malization point mass p which is cancelled by the u dependence of the 

coefficients n 1' n2 and n3 (at least when they are computed exactly). 

We wish to pick P near the typical light hadronic mass scale, where 

simple quark-model-type estimates of the K"-K" matrix element may have 

some validity. But we also want p large enough so that a leading 

logarithmic computation of the coefficients nl, r-t2 and n3 is sensible. 
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Xt is instructive to note that the relation 

= c 
complete 

<K"I(~a~,)V-AIn) <n[(d s ) 6 0 V-*I- (7) 

set'in] 

is invalid because the operator (~u(x)~u(x))~-A (~g(x)sg(x))V A- where 

the space-time dependence has been made explicit - requires additional 

subtractions to make its matrix elements finite, while 

(xu(~)s~(x))~-A (zg(y)sg(y))V-A, with x # y, does not.21 At order a 
S 

in the strong interactions these additional subtractions arise because 

of diagrams like that in Fig. 2. However, there does exist a systematic 

approximation procedure for the matrix element (K“\(Z~S~)~-A (dgsB)V-AIx") 

within which Eq. (7) has some significance. In the large NC limit,** 

where NC is the number of colors, the diagram in Fig. 2 is suppressed by 

a factor of (l/N,)* compared to the free field (no strong interactions) 

diagram shown in Fig. 3. Generalizing this to an arbitrary order in us 

we find that Eq. (7) is valid for the leading term in the l/NC expansion 

for the matrix element (K'l(zu~u)~-A (Z6~B)V-AIKo) , Each of the 

matrix elements 'n[(ZBsB)V A _ I?) appearing on the right-hand side of 

Eq. (7), can be written as the sum of two terms. One arises from connected 

diagrams and the other arises from possible disconnected diagrams. To 

leading order in l/NC the connected piece only gets a contribution from 

the vacuum state In> = IO), while the disconnected piece only gets a 

contribution from the two particle state In> = IK'?). Therefore, to 

leading order in l/N 
C’ 

the sum on the right-hand side of Eq. (7) truncates 

to just two terms 



+ ( o[ (d,s,),_,IK”) ( K’=l@ s > B B V-Al') 

= 2<K”j(;ia~a)V-A(O> <O((;i pB)V-*I~o > 

2 
fKmK = 
(21T>3 * 

(8) 

It is convenient to parameterize the K"-Ko matrix element in terms of 

a quantity B, in the following fashion: 

2 

{K"j(&Jv-A (2 s > B B V-A 
(it') fK "K. = B($) - 

(2a)3 ' 
(9) 

We have just seen that in the large NC limit B is independent of LI and 

has the value B = 314. If the naive valence quark model or the vacuum 

insertion approximation is used to evaluate the matrix element 

<K"( (aasa)V-A (;? s ) B B V-A 
Ii?'>, then B = 1. Shrock and Treiman per- 

formed a bag model computation of the matrix element and found B ~0.4.'~ 

All the above approximations neglect the renormalization point dependence 

of the matrix element. However, if one of these approximations for the 

matrix element is used in Eq. (5), the resulting expression for the 

KL- KS mass difference will not be very sensitive to the value of the 

renormalization point, u.24 This is because nl, n2 and n3 are propor- 

tional, in the leading logarithmic approximation,18 to [as (P*)] -*I9 and 

thus depend only weakly on the value of the renormalization point mass. 
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The imaginary part of the mass matrix element is 

- -GF2 
ntlM12 = - 

1&T* 
( K” 1 (;iolsJveA C;i 

22 x [rims 2 
(-c1c2’3 

22 2 
lcl + s2C*s3C~) + n2mts1 (c1s*C3 + s2c2s3C6) (10) 

+ n3rntJ?n (m:/mE) sf (clcic3 - 2 
'1'2'3 - 2S2C2S3C6)1 * 

Let 

ImM12 E =- 
m ReM ' 

12 
(11) 

with ReM12 given by Eq. (5) and ImM12 by Eq. (10). Note that &m is 

independent of the matrix elementCK"I(Zosa)V-A (X'~S~)~-~IX~) because 

it is cancelled in the ratio given by Eq. (11). Within the standard 

phase convention, where the K + 2~r (I=O) amplitude is chosen to be real 

(apart from final state TX interactions), the imaginary part of the width 

transition matrix element, ImP12, is negligible compared with ImM12.25 

The CP violation parameter E, defined by26 

iImP 

E f (r, 
12 - ImMl2 

- rL)/2 -t i(mS - Er? ' 

then simplifies to 

ImM12 
E 2 2 ReM12 eiTj4 , t ) 

(12) 

(13) 
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The phase, n/4, originates from the experimental relation 2o between the 

mass and width differences m s - mL = -(I', - TL)/2. Equation (6) has been 

used t"o relate the mass difference between kaon eigenstates to ReM 
\12' 

In Eq. (13) ImM12/ReM12 cannot simply be replaced by &m because the 

choice of quark fields in Eq. (2) does not give a real K -+ 2~ (I=O) 

, amplitude. The effective Hamiltonian for AS = 1 weak nonleptonic decays 

has been calculatedll'l* in the six-quark model by successively treating 

the W-boson, t-quark, b-quark and c-quark as heavy and removing their 

fields from explicitly appearing in the theory. The resulting effective 

Hamiltonian density,X' 't;; = c 'CiQi, is a sum of Wilson coefficients. 
i 

Ci times local four quark operators Qi constructed out of the light u, d 

and s quark fields. The leading logarithms of the W-boson and heavy 

quark masses were summed using renormalization group techniques and 

contribute to the Wilson coefficients C.. 1 The isospin 4 operator Q, 

arises from Penguin-type diagrams and has the (V-A)@(V+A) chiral 

structure which may lead to enhanced matrix elements.'l Let f be the 

fraction of the K + 2~r (1~0) amplitude that comes from the matrix ele- 

ments of Q 6' If f is large, then the K + 27r (I=O) amplitude has a non- 

negligible CP violating phase, e $5 , where 11 

f ImC6 

' c1 ReC6 l 

The K -+ 2n (I=O) amplitude would be real if the strange quark field is 

redefined by s -+ e iS s, in Eq. (2). At the same time 

(14) 

(15) 
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so that11 

h P--l--(E m + 25) e 
iv/4 

. 
26 

The experimental value20 E = (2.3 x 10a3) e i7r/4 places a further con- 

straint on the values of the parameters e2, 6 and 6 of the six-quark 
3 

model. This constraint, unlike that imposed by the 
5 -KS mass differ- 

ence, does not depend on the value of the matrix element 

The CP violation parameter E' is defined by26 

. 
c' &Le 

i(J2-So) linA2 

fi Ao- ' 

(16) 

(17) 

where A0 and A2 are the isospin zero and isospin two K + 2~ amplitudes 

respectively; 6* and 6. are the I = 2 and I = 0 TT phase shifts. The 

matrix elements of the I = % operator Q 
6 cannot contribute to the I = 2 

amplitude A2. However, by redefining the phase of the strange quark field 

to make the amplitude A 0 real, A2 picks up an imaginary part. The experi- 

mental valuesz5 for the phase shifts 6. and 6* along with ReA2/A0 z l/20 

yieldsI 

1 E’ p: I_ eia'4 (-g) . 
2ofi 

(18) 

Experimentally25 IE'IEI 5 l/50; however, upcoming experiments17 should be 

capable of detecting a non-zero value for E'/E at the fraction of a 

percent level. 
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In principle the experimental value of the %-KS mass difference 

can be-used in Eqs. (6) and (7) to determine the angle 8 2 as a function 

of d and 0 
3' The measured value of E can then be used (cf. Eqs. (16), 

(14), (10, (10) and (5)) to determine 6 as a function of 0 3' The net 

result is that the angles e2 and 6 can be expressed as functions (perhaps 

multivalued) of the angle 0 3' In practice, there are a number of uncer- 

tainties introduced by the dependence of the theoretical expressions for 

mS - mb and E on additional parameters besides the angles 0 1' B2, e3 

and S. We need the heavy W-boson, t-quark, b-quark and c-quark masses. 

For the c-quark and b-quark masses27 we use the values 1.5 GeV and 4.5 GeV 

derived from charmonium and upsilon spectroscopy. Since the value of the 

t-quark mass is presently unknown, it is treated as an additional param- 

eter. The mass of the W-boson is taken to be 78 GeV. The QCD corrections 

depend on the strong interaction running coupling constant evaluated at 

the large W-boson, t-quark, b-quark and c-quark masses. In the leading 

logarithmic approximation 

as(Q2) = 33 
12lT 1 

- 2Nf an(Q2/A2) ' 
(19) 

We use A2 = 0.1 GeV* and A2 = 0.01 GeV2 , which are consistent with 

results from deep inelastic scattering.28 When the leading logarithmic 

approximation is valid, the results should not be very sensitive to the 

precise value of In Eq. (19), Nf is the number of quark flavors 

being equal to 6, 5 and 4 at the mass scales of the t, b and c-quarks 

respectively. The constraints imposed by the %-KS mass difference 

depend on the value of the matrix element (K"l(~u~e)~-~ (d8~8)~-~(?) 

or equivalently, if Eq. (9) is used, on the parameter B.2g 
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In 'Fig. 4, s2, s6 and E'/E are plotted as functions of s 3 for s6 > 0. 

Solutions for sb < 0 also exist30 and will be discussed later. For 
h 

Figs. 4 we use mt = 30 GeV, B = 1 and f = 0.75. The values of the quanti- 

ties n 
1' n2' n3 and C6 are taken from Refs. 18 and 11,31 with the renor- 

malization point chosen so that as(,12) = 1. Some features of these graphs 

can be understood from the expressions for ReM 
12 and ImM 12 given in 

Eqs. (5) and (10). While Eqs. (5) and (10) are quite complicated, a 

considerable simplification occurs for s 
3 near zero. Treating s3 and s1 

as small quantities we have 

24 24 2 22 22 'llmcc2 + n2mts2 + 2r13mch (mt/mc) c2s2 , (20a> 

and 

. (20b) 

The constant of proportionality in Eqs. (20) is independent of e2, B3 and 

6. For small s3 the constraints imposed by the S-KS mass difference 

and E depend on 6 only through its sine. Thus the sign of c6 is irrele- 

vant at small s 3' Note also that the KL -KS mass difference constraint 

gives a simple quadratic equation for sz. This quadratic equation has 

at most one positive solution for 2 s 
2' Therefore, s6 is a single valued 

hyperbolic function of s3 in the region of small s 3 
. The measured value 

of the phase of E implies that s 6 is positiveI for small s 3' Away from 

s3 = 0 the solutions for s6 and s2 become double valued and depend on the 

sign of c 6' For c6 < 0, there is a cancellationbetween the terms which 
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form the'coefficient of rn: in Eq, (5). The mass difference constraint 

then implies that for fixed s 3' s2 should be larger for the case c 6 < 0 

than for cs > 0. From Eq. (10) we see that ImM 12 is proportional to 

s2s3s6' The E constraint gives rise to the opposite behavior for ss, 

. I.e., larger values of sb occurring for cb > 0. 

The general dependence of s2 and s6 on A2 can also be inferred from 

the expressions for ReM 12 and ImM 12 (cf. Eqs. (5) and (10)). Recall 

from Ref. 18 that n2 and n3 do not depend significantly on A2; however, 

nl becomes smaller as A2 decreases from 0.1 GeV2 to 0.01 GeV2. Thus the 

smaller value of A2 widens the gap between the four-quark model predic- 

tion for m S-3 and its experimental value. This results in larger 

values of s 2' Therefore, at a given value of s 3' s2 increases while s6 

decreases as A2 is changed from 0.1 GeV2 to 0.01 GeV2. 

The quantity E'/E plotted in Fig. 4c does not depend'strongly on s3. 

This is because both E' and E are proportional to s s s 236 
so this factor 

cancels out in their ratio. The principal AL dependence of E'/E arises 

from the A2 dependence of ReC6. The Wilson coefficient ReC6 increases 

significantlyll (i.e., by more than a factor of two) when A2 decreases 

from 0.1 GeV2 to 0.01 GeV2. This results in a corresponding decrease in 

El/E. Note that E'/E is virtually independent of the sign of c6. This 

is because both E: and E' are proportional to the factor s s s 2 3 6' 

The plots in Figs. 4 were calculated using B = 1 which corresponds 

to the valence quark model or the vacuum insertion approximation for the 

matrix element (K'j(~~~u)~-~ (~B~B)V-AI~o). In Figs. 5 we show s2, s6 

and E'/E as functions of s 3 for the same parameters as used in Figs. 4, 

except that here B = 0.4. This B value corresponds to a bag model 
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evaluation23 of the matrix element (K'/(zu~u)~-~ (dB~B)V-AI?). 

The smaller value of B increases the discrepancy between the four-quark 

model prediction and the measured value of m s - "La This leads to 

generally larger values of s2 and a diminished sensitivity to A2. 

Results32 from PETRA indicate that the t-quark mass must be greater 

than 15 GeV. For t-quark masses less than 30 GeV, larger values of s2 

than those shown in Figs. 4 and 6 will be needed to fulfill the mass 

difference constraint. In turn, the measured value of E then gives 

smaller values for s 6' If the mass of the t-quark is much larger than 

30 GeV, it will be necessary to include higher order terms in rn:/G which 

have been neglected in our analysis. 

In Figs. 6 we plot s2, (s6/ and E'/E as a function of s3 for d in 

the lower half plane. These solutions exist if the expression within the 

square brackets of Eq. (10) is negative. This occurs only for c6 < 0, 

when s 
2 

3 is so large that the term proportional to m t is negative and 

dominates the square brackets in Eq. (10). Note that s2 and s6 are double 

valued functions of s 3' At fixed s3, the larger value of s 2 in Fig. 6a 

corresponds to the smaller value of Is,] in Fig. 6b. This is in conso- 

nance with E being proportional to s s s 2 3 6' 

Allowed regions ot s2 and s6 are confined to a limited range in s 3 

whens ~0. 6 The size of this region depends on A*. Decreasing A2 will 

increase the magnitude of the terms not proportional to m 
2 
t in the 

expression for ImM 12 (cf. Eq. (10)) and will also decrease the magnitude 

of the corresponding terms in the expression for ReM12 (cf. Eq. (5)). 

This causes the allowed region to begin at larger values of s3. The size 

of the allowed range of angles also depends on B and mt. In order that 
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the mass difference constraint be satisfied, a smaller value for B will 

requirz that the coefficient of rn: in the square brackets of Eq. (5) be 

larger. Hence, regions with 6 in the lower half plane will be moved to 

larger values of s3 as B is decreased. For B = 0.4, there are no regions 

with s 6 < 0 that are compatible with the universality bound, s3 c 0.5. 

Similarly, smaller values of m t result in smaller allowed regions than 

those shown in Figs. 6. This is because the coefficient of rn: in the 

square brackets of Eqs. (5) and (10) must increase as m t decreases, 

pushing these regions to larger values of s3. 

When 6 lies in the upper half plane, E'/E is positive. As shown in 

Fig. 6c, E'/E is negative when 6 lies in the lower half plane. Informa- 

tion on the quadrant of 6 will thus be obtained if upcoming experiments 

measure E'/s. For 6 in the lower half plane, only a small region of 

allowed values of s 2 and s 6 
exists. The measurement of a negative value 

for E'/E would be extremely fortuitous, providing very stringent con- 

straints on the parameters of the six-quark model. 

In Figs. 4, 5 and 6 we use the value f = 0.75 for the fraction of 

the K -+ 2n (I=O) amplitude arising from the matrix elements of Q,. The 

constraints imposed on the parameters of the six-quark model by the 

experimental values of the Kb -KS mass difference and the CP violation 

parameter E are not very sensitive to the value of f chosen. However, 

the predicted value of E'/E depends crucially on f, being proportional 

to it. The parameter f is strongly dependent on the renormalization 

point. This renormalization point dependence arises because the operator 

Q6 is induced only through QCD corrections and because its Wilson coef- 

ficient receives contributions mainly from integrations over virtual 
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2 momenta in the limited range n < p2 5 rnt. We use a large value of f 

since this allows an understanding of the AI = $ rule. We do not know 

exactly what choice of renormalization point, if any, corresponds to this 

value of f. It is, therefore, necessary to examine the sensitivity of 

our results to the value of as(u2) used. As mentioned above, nl, n2 

and n3 depend weakly on the value of (rs(u2). However, the quantities ImC 6 

and ReC6 both depend on as(u2) and, for ReC6 the dependence is very strong. 

Since our constraints on the angles e2, 03 and 6 do not depend strongly 

on the value of 5, the renormalization point dependence of ReC 6 does 

not introduce a great uncertainty in these angles. However E' is pro- 

portional to 5 and so our predictions for E'/E must be interpreted 

very qualitatively. Several authors12'33'34 adopt another approach to 

calculating E'/E which does not use a leading logarithmic calculation of 

ReC6. Rather, they rely on an estimate of the matrix element 

( 28(I=0)1Q61Ko) which is combined with the experimental value of the 

isospin zero amplitude A 0 and the calculated value of ImC 6 
to make a 

prediction for 5.35 This approach also involves an implicit choice of u, 

namely that for which the estimate of the matrix element ( 2r(I=0)\Q6/K") 

is valid. Predictions for E'/E are, however, now not as sensitive to 

the value of es(u2) used to compute C 6' since ImC 6 
is much less sensitive 

to variations of as(u2) than ReC6. This approach generally leads to 

somewhat smaller values of E'/E than we have found. 

Finally, it is instructive to compare the QCD corrected values of 

s2 and s6 (cf. Figs. 4 and 6) with the uncorrected values. In Figs. 7 

and 8, s 2 and s 6 are plotted as functions of s 3 for mt = 30 GeV, B = 1, 

and f = 0 for the case of no QCD corrections. 36 In the absence of QCD 
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corrections, the quantities nl, n2 and n3 are all equal to one, Since 

the QCD+corrected values of nl, n2, and n3 are smaller than one, the 

mass difference constraint gives rise to smaller values of s 2 fn Fig. 7a 

than in Fig. 4a. The E constraint then gives rise to generally larger 

values of s d in Fig. 7b than in Fig. 4b. The allowed region of angles, 

for which 6 lies in the lower half plane, are shown in Figs, 8. This 

region is about the same size as the negative s 6 region in Figs. 6 cor- 

responding to A2 = 0.1 GeV2 but considerably larger than the' A2 = 0.01 

GeV2 region of negative s6. 
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III. B Meson Decays 

The observation of B meson decays should soon be possible at CESR. 

The rates for these weak decays depend on the parameters of the six-quark 

model. If we view inclusive B meson decays as arising from b-quark decay, 

in which the light quark constituent of the meson acts only as a spec- 

tator, then the dependence of the B meson lifetime on the six-quark model 

parameters is easily calculated.37 The total width for b-quark decay can 

be written as the sum of two terms 

rb = I'(b -+ c) + I'(b -f u) 

The first term arises from the diagrams in Fig. 9 and is given by 

r(b -+- c) = - k1c2s3 + S2C3C6) 
2 222 

+ '2'3% 
I 

(21) 

X 

( 

2f 2 
( 1 ?I 

+ @bc,mTi% > + 3nf(;){c; + +;} (22) 

+ 3rl$bc,mc, '%) { s:c; + (c1c2c3 - s2s3c6)2 + s;s;s; 
0 

. 

The second term in Eq. (21) arises from the diagrams in Fig. 10 and is 

given by 

Gx p;](~2+f(;)+3n{c;+s;c;} r(b -+u) = ~ 
1921T3 

(23) 
m ( I{ 22 2 222 + 3nf.'c S1C2 + (ClC2C3 - s2s3c*) + s2s3s6 * 
% 0 
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The kinimatical functions f and + appearing in Eqs. (22) and (23) take 

into account the phase space suppression due to the non-negligible masses 

of the c-quark and the T-lepton.38 The function f(x) is given by 

f(x)=l-8x2+8x6-x8 - 24x4Rnx . (24) 

The other function $(ml,m2;mb) is quite complicated, but when ml = m2, 

it simplifies to 

where 

g (x3 = (1 - Ix2 _ $..“4 - &x6) (1 - 
+ 

x2) 

(25) 

(26) 

+3x4(l-$4)J?,n(1+y) . 

The factor T-I which appears in Eqs. (22) and (23) arises because of the 

strong interaction corrections to the effective Hamiltonian for non- 

leptonic b-quark decays. This Hamiltonian is derived by a two-step 

process in which the W-boson and the t-quark are removed from explicitly 

appearing. The mechanism which gives an enhancement of the matrix 

elements of the (V-A)@(V+A) four-quark operators over the matrix 

elements of the (V-A)@(V-A) operators in the nonleptonic kaon and 

hyperon decays is expected to be absent in B-meson decays.3g Neglecting 

Penguin-type diagrams and using the leading logarithmic approximation 

we have40 



where 
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n = $ (2f+2 + l/f+4) (27) 

(28) 

In the preceding section the experimental values for the KI-KS mass 

difference and the CP violation parameter E were used to write s6 and s2 

as functions of s 3' Using these results T(b + u) and T(b -t c) can also 

be expressed as functions of s3.41 In Figs. 11 and 12 the ratio 

r(b -t u)/T(b -t c) and the b-quark lifetime 'c b = l/Tb are plotted as a 

function of s3. 

The plots in Figs. 11 correspond to allowed values of.6 in the upper 

half plane. When 6 lies in the lower half plane it is a double-valued 

function of s3. Figures 12 exhibit the same plots for this case. In 

Figs. 11 and 12 we use solutions for s2 and s6 shown in Figs. 4 and 6. 

Recall that the previous calculation used as parameters mt = 30 GeV, 

B = 1 and f = 0.75. As in Section II, we choose mc and mb to be equal 

to 1.5 GeV and 4.5 GeV respectively. The partial decay widths P(b -t u) 

and T(b -f c) also depend on the r-lepton mass which has the experimental 

value m T = 1.8 GeV. However, we use rnT = mc since the kinematical 

function $(m,,mc;ml) simplifies for this case. This approximation has 

no significant effect on any of our predictions. The general features 

of the graphs in Figs. 11 and 12 are largely determined by the expressions 

in the square brackets of Eqs. (22) and (23). Taking the limit s3 -t 0 
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in these equations reveals that for very small s3 r(b + u) is negligible 

and T(b -f c) is roughly proportional to s The constant of proportion- -cI 

ality is independent of 6 so that in the small s 3 limit the b-quark life- 

time is independent of the sign of c . 6 
Since s2 is larger for A2 = 0.01 

GeV2 than for A2 = 0.1 GeV2 (-see Fig. 4a) the b-quark lifetime is smaller 

for A2 = 0.01 than for A2 = 0.1, in the region of small s3. Away from 

small s 3 the b-quark lifetime, .r b, and the ratio I'(b + u)/T(b -+ c) both 

depend on the quadrant of 6. For c6 > 0 there is no cancellation between 

the two terms in the square brackets of Eq. (-22) so r(b + c) grows with s 

Note also that I'(b -+ u) grows as s3 increases so that the b-quark life- 

time decreases as s 3 increases. However, Fig. lla shows that for c6 < 0 

and 6 in the upper half plane the b-quark lifetime is not as sensitive 

to the value of s 3' This is because the two terms in the square brackets 

3' 

of Eq. (22) cancel against each other, yielding a smaller r(b -f c) than 

whenc >O. 6 Note that T(b + u) still grows with s3 and when s3 is near 

the universality bound 0.5 the ratio I'(b -t u)/T(b -t c) becomes larger 

than one. So far we have been considering d in the upper half plane. 

The only allowed regions when 6 lies in the lower half plane is for 

% < 0 (cf. Figs. 6). Since s2 and s6 are double valued functions of 

s3 in this region, the b-quark lifetime and r(b + u)/I'(b + c) are also 

double valued functions of s3. The upper branches in Fig. 6a correspond 

to the upper branches in Figs. 12a and 12b. This is because the values 

of s 2 and s 3 are closer to each other in the upper branches of Fig. 6a, 

yielding a stronger cancellation between the two terms in the square 

brackets of Eq. (22) and hence smaller values for I'(b + c) than the lower 

branches of Fig. 6a give. 



In l+i.gs. 1 3 we plot 'c~ and T(b -+ u)/T(b -t c) as functions of s 3 for 

the same choice of parameters as in Figs. 5 (i.e., mt = 30 GeV, B = 0.4, 
-cI 

f = 0.75). For a given s3, s2 is generally larger in Fig. 5a than in 

Fig. 4a; therefore the b-quark lifetime is smaller in Fig. 13a than in 

Fig. 10a. The general dependence of the b-quark lifetime on the mass of 

the t-quark can be deduced in a similar fashion. At fixed s3, a value 

of m t smaller than 30 GeV gives rise to a larger value of s 2 than is 

shown in Fig. 4a. Therefore, when mt is less than 30 GeV, the b-quark 

lifetime will generally be smaller than shown in Fig. lla. 

It is interesting to compare the predictions shown in Figs. 11 and 

12 with those of the free quark model shown in Figs. 14 (for 6 in the 

upper half plane), where strong interaction effects are neglected. The 

parameter n defined in Eq. (27) is equal to one in the free quark model; 

the QCD corrections cause n to increase slightly. Most of' the effects of 

the QCD corrections on the b-quark lifetime, T b' and the ratio of u-quark 

to c-quark production, T(b -+ u)/T(b -t c), is due to the QCD corrections 

to the allowed values of the six-quark model parameters 0 2, e3 and 6. 

For 6 in the upper half plane, the QCD corrections tend to increase the 

value of s2 (at f ixed s3) so the b-quark lifetime in Fig. 14a is generally 

larger than in Fig. lla. When 6 is in the lower half plane the b-quark 

lifetime and the ratio I'(b -+ u)/T(b -t c) in the free quark model 

(i.e., no strong interactions) resemble those shown in Figs.-12 with 

A2 = 0.1 GeV2. 

- 24 - 
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IV. Summary 

In-this paper we examined the constraints on parameters of the six- 

quark model imposed by the experimental values of the KI-KS mass differ- 

ence and the CP violation parameter E. Unlike previous work in which 

QCD effects were neglected, we have made use of calculations 11,18 where 

strong interaction effects are taken into account by summing the large 

logarithms in the W-boson, t-quark, b-quark and c-quark masses using 

renormalization group techniques. For the W-boson, t-quark and b-quark 

we have confidence in this procedure; however, treating the c-quark mass 

as large and using it as an expansion parameter is dubious at best. For 

example, in calculating the \-KS mass difference, dispersive contribu- 

tions were neglected42 because they do not contribute to leading order 

in m 2 
C’ 

Such contributions arise when the two u-quarks in-the loop of 

Fig. 1 bind to form a low mass hadronic state. Nevertheless, we have 

included strong interaction effects in a systematic way and in principle 

some of the higher order effects could be calculated. This is an improve- 

ment over the use of the free quark model. 

The presence of many additional parameters (e?g., mt, the matrix 

element (K"l(dS)V-A (2~)~~~ IK'), and A 5 whose values are not pre- 

cisely known introduce further uncertainties in the constraints on the 

parameters 02, S3 and 6 of the six-quark model. We have explored the 

effects of varying these ancillary parameters. 

Using the allowed values of the six-quark model parameters e2, e3 

and 6 we then calculated the CP violation parameter E', the b-quark 

lifetime and the ratio of u-quark production to c-quark production in 
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b-quark'decays. There exists a small region of e2-e3-&space for 

which 6 lies in the lower half plane and E’/E is negative. Since this 

region for s 6 < 0 is much more restrictive than for s 
6 > 0, a measured 

negative value for E'/E in upcoming experiments would provide very 

stringent limits on the six-quark model parameters.43 Within the picture 

where B meson decay results from a b-quark decaying into free quarks, 

with the final state quarks dressing themselves into hadrons with unit 

probability, the b-quark lifetime is equal to the B meson lifetime. We 

found the b-quark lifetime to be typically from 10 -14 set to 3 X 10 -13 

sec. We also found that when c6 < 0 the ratio of u-quark to c-quark 

production can be greater than one at large s3. 
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FIGURE CAPTIONS 

Fig. l? Box diagram contributing to K" -k" mixing in the six-quark model. 

Fig. 2: Order as correction to the matrix element (K'] (zu~u)~-~ (zB~B)V-AI?), 

which vanishes in the large NC limit. The black box denotes the action of 

the local four-quark operator (&)v-A (us),-,. 

Fig. 3: Lowest order contribution to the matrix element 

( K” 1 @as&A (dssB)v-A(~o ). The black box denotes the action of the local 

four-quark operator (d~)~-~ (&),-,. Here 01 and f3 denote the color quantum 

number carried by a quark line, where a,Be{1,2,3}, 

Fig. 4: Graphs of (a) s2, (b) s6 and (c) E'/E as functions of s 3 when 6 

lies in the upper half plane, The parameters mt = 30 GeV, B = 1 and 

f = 0.75 are used. Dashed lines are for A2 = 0.1 GeV2 and solid lines are 

for A2 = 0.01 GeV2. E'/E has almost the same value (to within 10%) for 

% <Oandc PO. 6 

Fig. 5: Graphs of (a) s2, (b) s6 and (c) E'/E as functions of s 3 when 

6 lies in the upper half plane. The parameters mt = 30 GeV, B = 0.4 and 

f = 0.75 are used. Dashed lines are for A2 = 0.1 GeV2 and solid lines 

are for A2 = 0.01 GeV2. E'/E has almost the same value (to within 10%) 

for c6 <Oandc >O. 6 

Fig. 6: Graphs of (a> s2, 6) I s6 I and (c) E'/E as functions of s 
3 when 

6 lies in the lower half plane. The parameters mt = 30 GeV, B = 1.0 and 

f = 0.75 are used. Dashed lines are for A2 = 0.1 GeV2 and solid lines 

are for A 2 = 0.01 GeV2. Note these regions exist only for c6 < 0. 
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Fig. 7: Graphs of (a) s2 and (b) s6 as functions of $3, for 6 in the 

upper half plane, in the free quark model (i.e., no strong interactions). 

The parameters mt = 30 GeV and B = 1.0 are used. In the absence of 

strong interactions f = 0 and E'/E = 0. 

Fig. 8: Graphs of (a) s2 and (b) ]ssl as functions of s3, for 6 in the 

lower half plane, in the free quark model (i.e., no strong interactions). 

The parameters mt = 30 GeV and B. = 1.0 and f = 0 are used. 

Fig. 9: Diagram illustrating decays which contribute to the partial 

decay width T(b -+ c). The unlabeled final state fermions are: e ye, 

1-1 v 
- - 

1-1' 
T -, d Y, s Y, d c, and s c. The black box represents a local 

four-fermion vertex. 

Fig. 10: Diagram illustrating decays which contribute to..the 

decay width I'(b + u). The unlabeled final state fermions are 

pJ TYT, 
1-I' 

d u, s Y, d c, and s c. The black box represents 

partial 
- 

e v e' 

a local 

four-fermion vertex. 

Fig. 11: Plot of (a) the b-quark lifetime ~~ (in seconds) and (b) the 

ratio of u-quark production to c-quark production I'(b -f u)/I'(b -+ c) for 

the allowed valves of the six-quark model parameters shown in Figs. 4a 

and 4b. Dashed lines are for A2 = .l GeV2 and solid lines are for 

A2 = .Ol GeV2. 
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Fig. 12:' Plot of (a) the b-quark lifetime T 
b( 

in seconds) and (b) the ratio 

of u-quzrk production to c-quark production lY(b + u)/T(b + c) for the 

allowed values of the six-quark model parameters shown in Figs. 6a and 6b. 

Dashed lines are for A2 = .l GeV2 and solid lines are for A2 = .Ol GeV2. 

Fig. 13: Plot of (a) the b-quark lifetime rb (.in seconds) and (b) the ratio 

of u-quark production to c-quark production lY(b + u)/I'(b -f c) for the 

allowed values of the six-quark model parameters shown in Figs. 5a and 56. 

Dashed lines are for A2 = .l GeV2 and solid lines are for A2 = .Ol GeV2. 

Fig. 14: Plot of (a) the b-quark lifetime -cb (in seconds) and (b) the ratio 

of u-quark production to c-quark production I'(,b -+ u)/T(b -+ c) for the values 

of the six-quark model parameters shown in Figs. 7a and 7b. 



h 

u,c,t . 
b-80 3848Al 

Fig. 1 



K” 7 K 

6-80 3848A2 

Fig. 2 



a B 

6-80 a P . 
3848A3 

Fig 3 



0.8 

0.6 

0.4 

0.2 

0 

I 
IO-’ 

I I I I 
(0) costho _ 

coss>o - 

--- ---------- 
I I I I a 

t- 
(b) 

% 

iO-2 

lO-3 

0.0 I 5 

E///E 

0.0 I 0 

0.005 

0 

6-00 

---_ -- ‘2-N -- -- ---_ 
- I 

I I I I 

0 0.1 0.2 0.3 0.4 0.5 

S3 3848C4 

Fig. 4 



, 0.8 

0.6 

s2 0.4 

0.2 

0 

10-l 

lO-2 

lO-3 

0.0 I 0 
E //E 

0.005 

6-80 

0 
0 0.1 0.2 0.3 0.4 0.5 

s3 384885 

C 

(a> 

I I I I 

W 

(cl 

me-_- ____________- ----- _--- 

i 
- 

Fig. 5 



‘0.6 

0 

I I % 
lO-2 

lO-3 

- 0.005 

d/c 
-0.010 

-0.0 I5 

6-80 

- 

(b) 

f 
--- 

-\ 
\ 

< ‘. 

( > C 

L-L- 

O 0.1 0.2 0.3 0.4 

s3 

\ 
- 

- 

0.5 

304006 

Fig. 6 



0.8’ 

0.6 
s2 Oo4 

0.2 

0 

I o- 

% 

I 

I I I I 
( 1 0 

- 
toss < 0 

- 

- 

toss > 0 
I I I 

6 - 80 384887 

Fig. 7 



I I % 

6- 80 

0.6 

0.4 

0.2 

0 

lO-2 

lo-3 

- 
( 1 cl 

(b) 

s3 

0.5 

384888 

Fig. 8 



C 

b 

6-80 3848A9 

Fig. 9 



b 

6-80 3848AlO 

Fig. 10 



lo-l2 

IO-l3 

IO-l4 

lo-3 

I o-4 

r -1 
\ \ \ COS8<0 \ \ \ 11 \ \ toss >o - 

I I I I 
- 

0 0.1 0.2 0.3 0.4 0 . 5 
s3 3848811 

Fig. 11 



lOTI 

I o-l4 

-- 30 
t 1 

44 IO0 -- 
ILL 

10-l 

6-80 

I I I 
(a> 

- 

(b) 

I 
/- 

/ 

/ 
/ 

/ 
I 
I 
\ 
‘A 

0 0.1 0.2 0.3 0.4 0.5 
s3 3848812 

Fig. 12 



I o-4 

6-80 

t (b) 

- 

0 0.1 0.2 03 . 04 . 05 . 
“3 3848813 

Fig. 13 



2 

t 
4 - 
L-l 

=b 

0 

f 
4 

L 

IO-‘* 

I O-l3 

iCi’4 

IO0 

IO-’ 

I o-* 

I o-3 

I I I I 

(b) 

I I 

0 0.1 0.2 0.3 0.4 0.5 
6 - 80 s3 

Fig. 14 

3848814 


