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ABSTRACT 

%e consider a simple one-dimensional theory in which a colored 

spinless quark and antiquark are bound together by a confining, color- 

dependent potential. Our purpose is to investigate in more detail the 

dynamics underlying Lipkin's mechanism of hidden charge, and how his 

conclusions are modified in the presence of symmetry breaking. 

We consider the case of "frozen color", i.e. where global color 

symmetry remains exact, but where colored states have a mass large 

compared to color-singlet mesons. Using semiclassical WJB formalism, 

we construct the spectrum of bound states. In order to determine the 

charge of the constituents , we then consider deep-inelastic scattering 

of an external probe (e.g. lepton) from our one-dimensional meson. We 

calculate explicitly the structure function, W, in the WKB limit and 

show how Lipkin's mechanism is manifested, as well as how scaling be- 

havior comes about. The dominant physical process is one of excitation 

of a semiclassical state by the hard collision of the probe with the 

quark or antiquark. 

We generalize these considerations to the case of broken color 

symmetry - but where the breaking is not so strong as to allow low- 

lying states to have a large amount of mixing with the colored states. 

In this case, the degeneracy of excited colored states can-be broken. 

The WKB approximation again suffices to provide a description of the 

spectra. Again deep-inelastic scattering can be used to measure the 

charges of the constituents, and there will again be a distinct con- 

tribution from each type of "classical" state which can be excited by 
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the external probe. However, in the general case, the charge measured 

via zxcitation of a given state can be energy-dependent. 

We find that local excitation of color guarantees global excita- 

tion of color; i.e. if at a given energy colored semiclassical states 

can be constructed with size comparable to that of the ground state 

wave function, colored states of that energy will also exist in the 

spectrum of the full theory and will be observed. However, global 

existence of color does not guarantee the excitation of colored-states 

via deep-inelastic processes: there may be no overlap of the wave 

functions of these colored states with the ground state wave 

function. 

Finally, even in the absence of a direct physical application, we 

have examined how to implement the WKB method for bound-state problems 

in the presence of internal degrees of freedom. The methodology we 

have given may be of use in other semiclassical problems which have 

internal degrees of freedom. 
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1. INTRODUCTION 

It is now generally believed that strongly interacting matter is 

composed of fractionally charged constituents. Alternatives to this 

view, notably those based on the Han-Nambu three-triplet model with 

integer charge quarks[l,2], have run into difficulty. As a conse- 

quence of the presumed integer charge of the constituent partons, a 

naive form of the three-triplet model predicted a ratio of the deep- 

inelastic electroproduction cross section to the corresponding neutrino 

induced cross section that is nearly a factor of two larger than that 

predicted by the fractional charge model. Experimental results con- 

form the predictions of the latter.[3] 

However, Lipkin[4] pointed out that, provided all presently ob- 

served hadron states are pure color singlets, the ratio.'predicted by 

the three-triplet theory reverts to that predicted by the fractionally 

charged model. This happens because the color-octet portion of the 

electromagnetic current (which distinguishes the two models in electro- 

magnetic reactions) has zero matrix elements between such physical 

states. Subsequently Pati and Salam[5], as well as Rajasekharan and 

Roy[6], pointed out that if the Han-Nambu model were cast in the form 

of a (spontaneously broken) gauge theory, the color symmetry could be 

broken without effecting a large change in the electroproduction cross 

section. The contribution to the cross section from the electropro- 

duction of colored states by virtual photon exchange destructively 

interferes with that from the exchange of a colored gauge boson (which 

mixes with the bare photon and therefore has a nonvanishing coupling to 
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the electron). These contributions give complete cancellation in the 

- limfi of momentum transfer large compared to the colored gauge-boson- 

mass. However, this means that this colored gauge boson z must not be 

too massive, and that it have a predictable leptonic width - in fact a 

rather large one. Electron-positron colliding-beam experiments rather 

decisively rule out this possibility.[7] Meanwhile, de Rujula, Giles, 

and Jaffe[8] suggested that the color symmetry of the fractional- 

charged quark model, as based on quantum chromodynamics (QCD), might 

be mildly broken, leading to unconfined, colored states of large mass. 

They argued, in fact, that as the symmetry-breaking (nonvanishing 

gluon mass, induced by some kind of Higgs mechanism) decreased, the 

mass and size of physical colored states would increase, tending to 

infinity as the symmetry was restored. Pati and Salam[.9] invoked this 

mechanism ("Archimedes effect") to argue that the colored gluon z could 

have a very large physical mass without disrupting the color-cancella- 

tion mechanism they had previously proposed. This argument has been 

challenged by Okun, Voloshin, and Zakharov[lO], who showed that if the 

color symmetry breaking is "soft" (important only in the infrared), 

then in the Han-Nambu integer charge quark scheme there will be obser- 

vable effects. This happens even in pure leptonic processes such as 
e+e- + - + p p , where at moderate energies modifications occur which are 

comparable in importance to the unacceptable % boson. 

In addition, Chanowitz[ll] has analyzed q and n' radiative decays, 

processes which are especially sensitive to the distinction between 

fractional and integer charge constituents. He concludes that frac- 

tional charge is rather strongly favored. 
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Thus the case for integer-charged quarks, whose full charge is 

hiddzn via the Lipkin mechanism of absence of colored states in the 

low-energy spectrum, looks very unlikely. Nevertheless, there remain 

large uncertainties surrounding the mechanism of quark confinement. 

For example, there is no general understanding of the nature of Higgs- 

broken QCD - even for fractionally charged quarks - when the Higgs- 

boson mass is less than or comparable to the confinement scale. Under 

such circumstances is confinement destroyed?[l2] If there exist 

colored states, do their masses become large, a al de Rujula, Giles, -- 

and Jaffe, as the symmetry-breaking tends to zero?[l3] 

Therefore, there may be some reason remaining for studying the 

questions of broken color symmetry and/or hidden color degrees of free- 

dom. And, even given that the likelihood of a direct application to 

the physics of quarks and hadrons is not large, it still remains the 

case that the quantum mechanics of the problem is interesting. 

In this paper, following Lipkin, we begin with a very simple 

example of a one-dimensional theory in which a colored spinless quark 

and antiquark are bound together by a confining, color-dependent 

potential into either a color singlet or a color octet state.[l4]. Our 

purpose is to investigate in more detail the dynamics underlying 

Lipkin's mechanism of hidden charge, and how his conclusions are modi- 

fied in the presence of symmetry-breaking. 

We consider in Section II the case of "frozen color", i.e. where 

global color symmetry remains exact, but where colored states have a 

mass large compared to color-singlet mesons. Using a semiclassical WKB 

formalism, we construct the spectrum of bound states. In order to 



-7- 

determine the charge of the constituents, we then consider deep- 

inela^stic scattering of an external probe (e.g. lepton) from our one- 

dimensional meson. We calculate explicitly the structure function W 

in the WIG3 limit and show how Lipkin's mechanism is manifested, as well 

as how scaling behavior comes about. The dominant physical process is 

one of excitation of a semiclassical state by the hard collision of 

the probe with the quark or antiquark. 

In Section III, we generalize these considerations to the case of 

broken color symmetry - but where the breaking is not so strong as to 

allow low-lying states to have a large amount of mixing with the 

colored states. In this case, the degeneracy of excited colored states 

can be broken. The WKB approximation again suffices to provide a des- 

cription of the spectra. Again deep-inelastic scattering can be used 

to measure the charges of the constituents, and there will again be a 

distinct contribution from each type of "classical" state which can be 

excited by the external probe. However, in the general case, the 

charge measured via excitation of a given state can be energy- 

dependent. 

In Section IV, we summarize our conclusions. We find that local 

excitation of color guarantees global excitation of color; i.e. if at 

a given energy colored semiclassical states can be constructed with 

size comparable to that of the ground state wave function, colored 

states of that energy will also exist in the spectrum of the full 

theory[l5] and will be observed. However, global existence of color 

does not guarantee the excitation of colored-states via deep-inelastic 



processes: there may be no overlap of the wave functions of these 
h 

colored states with the ground state wave function. 
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11. FROZEN COLOR 

We begin this section by introducing a simple example which will 

motivate, and later illustrate, our discussion of inelastic scattering 

from a target with frozen color degrees of freedom. The qualitative 

observations made for our simple example will then be made quantitative 

in a more general context. 

The target particle for our example will be a meson whose states 

may be characterized by solutions of an equation involving only a 

single spatial dimension. We assume that these mesons are bound states 

of integer charge quark and antiquark via a Hamiltonian which allows 

color nonsinglet as well as color singlet states. For our quark-anti- 

quark system, this implies color-octet as well as color-singlet states. 

We will here consider the simplest situation, where (global) SU(3) 

color symmetry is unbroken. 

+ For concreteness, consider the ordinary IT . We may write this 

using SU(3) states for flavor and color as -!- r flavor ' 'holor =- (Tr+,n'>. 

This color singlet state is now supplemented by a (presumably more 

massive) degenerate octet + (r ,g) as shown in Fig. 1. Other mesons will 

have a similar associated octet. Under our assumption that the 

Hamiltonian is invariant under rotations in color space, the CT',&) and 

(IT',~) type of states will each have its own (confining) Htimiltonian, 

Hl(P,x) and H8(P,x), (P - -ih -&). W e will then have a level structure 

which can be sketched as shown in Fig. 2. 

We can immediately qualitatively describe some factors which will 

determine the charge observed in deep inelastic scattering. The charge 
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observed will be determined by a matrix element of an operator, asso- 

ciate:with charge, between initial and final states. Our first ob- 

servation was made by Lipkin; if a piece of this operator transforms 

the initial state to one orthogonal (in internal space) to the final 

state, the corresponding charge will not be observed. Because of this, 

the Han-Nambu and fractional charge quark models will give the same 

charges for scattering from color-singlet to color-singlet states. We 

thus would not expect to see the charge associated with the octet 

states if we are exciting the target to an energy less than the mini- 

mum of the octet "potential." In addition to this energy, we would 

need an energy sufficient to excite the first level of the octet states. 

These statements describe what may be called color freezing. 

We can also slightly extend this picture to include situations 

where the octet potential might have, for example, a repulsive core. 

In that case the overlap between the spatial parts of the initial and 

final wave functions may be so small that those octet states will con- 

tribute little to the observed charge, even well above the kinematic 

threshold. 

We will now proceed to discuss these statements in a more quanti- 

tative way. In doing so, we will also describe scaling properties of 

the scattering cross section. Our discussion so far has indicated the 

need to find the spectrum of states and transition matrix elements of 

the target system. We will use a WJCB approximation to determine these 

in terms of properties of the classical Hamiltonian corresponding to 

the quantum target Hamiltonian. Since it costs nothing, we will set up 
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the problem in an abstract setting. We assume the target consists of 

a pair of charged particles, whose physics can be described (by factor- 

ing out the center of mass) by an equivalent one-body wave function of 

a single variable.. This Y(x) is vector valued with respect to the 

internal coordinates of the target. 

We assume the binding of the target is described by a general 

diagonal matrix Hamiltonian: 

E(p,x) = 

. 
. 0 

. 
. 

'H(L)(p,x) 
- 

(2.1) 

where for all N, H (N)(P,x) is a "monotonic" infinite well with respect 

to p and x. Inserting the momentum operator P = -i%-& we may write 

the Schroedinger equation for x(x): 

~(P,x)$x) = EY_(x) l (2.2) 

We emphasize that, except for the "well-like" restriction on 

g(P,x), it is completely general, e.g. not being restricted to the form 

(p2/2m>I + _V<x>. 
The solution of this equation trivially reduces to the solution 

of the scalar equation 

H(N)(P,x)~(N)(x> = Ej~(~)(x) l (2.3) 

We hereafter drop the superscripts as superfluous until needed. 
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We have, in a companion paper[l6], determined a semiclassical 

approximation for the solutions of this equation. They will be some 

linear combination (to be determined by turning point conditions) of 

solutions given as follows: p+(x,B) Z p,(x) (p- c p,) are solutions of 

the classical equation H(p+(x),x) = E. Also, v+ 3 (I!IH/~~)]~=~ . 
2 

Then our approximate solutions are 

(2.4) 

As we shall show in our appendix, the full WKB solution will be 

A+ + 

ejk~~~Jx')dx' i.6 
'4(x> = 

e~j~p+W)dx’ 
A 

q3- Jq3- - 
A- Z e "A+ (2.5) 

. 
where the right-hand turning point (at x=B) condition tells us 

-i$il,"p (x')dx'e$zp+(x')dx' 
A=e e - 

A+ 

and the left-hand turning point (at x=-B') condition tells us 

+is +JoB tp-W)dx' 
A=e e 

p+WW 
A+ l 

(2.6) 

(2.7) 

Equating the expressions from the right and left turning points, we 

obtain the Bohr-Sommerfeld formula 

-B'p+(x')dx' +'&B'p-(x')dx'] = (2n+l)r . (2.8) 

This gives us the WJLB approximation for the bound state energies. 
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Having obtained the bound state spectrum, we can obtain condi- 

'tions?'for colored states to be excited. First, we must be at an energy 

above the minimum of H (N)(P,x). This, however, is not sufficient - if 

the well is very narrow, so that 6N E +$tB,p+(x')dx' + &B'p-(x')dxj 

slowly depends on energy, we might have to go up quite a bit higher than 

H(N) min(P,x) t o excite the first colored state. Of course, both these ob- 

servations come from misusing the WJLB approximation to apply to the 

ground state of the colored channel. However, they do identify quali- 

tative features we would expect to see, and can be used quantitatively 

for rough estimates. 

With this formalism, we may now describe the bound-state spectrum 

for the colored "mesons" discussed earlier. For definiteness, we will 

+ again consider the flavor ?r . We can now consider the spectrum in . 

terms of the areas enclosed by classical orbits in phase space. We 

will have a nondegenerate singlet orbit and a degenerate octet orbit 

for a fixed energy. For a linear potential and relativistic kine- 

matics, the orbit will be diamond shaped (Fig. 3a) while for a linear 

potential and nonrelativistic kinematics, we have a concatenation of 

two parabolas (Fig. 3b). In these figures, we have assumed the simplest 

mechanism for color freezing - that while the ranges of the potentials 

are comparable (e.g. "strings" of gluon field), the minimum of the 

octet Hamiltonian is much greater than the minimum of the singlet 

Hamiltonian (perhaps this is due to the extra self-energy associated 

with sources). 

We may also consider the case where the color octet potential is 

of very short range. We could even have the minimum of the octet 
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Hamiltonian approximately that of the singlet Hamiltonian, in which 

case the absence of low-lying colored states is only a consequence of 

the additional zero-point energy. In such a case, the level density of 

colored states would be low. The color octet orbits would then enclose 

much less phase-space than color singlet orbits, even though they will 

have a similar extent in momentum space (Fig. 4). 

Having gleaned what we can from the spectrum, we will consider 

excitation of these states using our WKB approximation. A direct way 

of exploring the internal structure of a bound system of the type we 

have been studying is to scatter a weakly interacting probe from it[l7]. 

Determining the structure of the system means localizing the charge in 

space and time ("in time" means to measure the instantaneous charge 

distribution). Space localization requires the interaction of target 

and probe to have high momentum (hence high energy), while time 

localization requires poor energy resolution. 

The classic example of such scattering is that of electron scat- 

tering from atoms, nuclei or nucleons. The most important component of 

this interaction is the instantaneous Coulomb force. If we use the 

Born approximation, with plane waves for incident and scattered probe 

wave functions, we may reduce the expression for the differential 

cross-section to a product of kinematic terms, independent-of the in- 

ternal dynamics of the target, and the structure function W, which con- 

tains the whole message the target can communicate to us via this type 

of inelastic scattering. The structure functionis defined to be 
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-ci 

WGh =c 
f 

I <f Ic Qne' 
n 

“1 i> 1 26 (v-(Ef-Ei)) , (2.9) 

where cand v are the momentum and energy transferred from probe to 

target; Q, and zn are the charge and coordinate of the n th target con- 

stituent, and Ei and Ef are the energies of the initial and excited 

target states. 

We may extend this structure function formulation to more general 

interactions, replacing the scalar electromagnetic charges, Qi, by 

matrix (over internal space) "charges" Ai. Examples of this already 

exist in neutrino interactions, which involve transition operators in 

flavor space. It is conceivable that future examples might be pro- 

vided by broken color, where external probes might couple to non- 

diagonal color degrees of freedom. Thus we shall proceed with the 

generalized structure function 

W(<,v) 4 c l<fl ~_hne'q'x"~i>~2s(v-aE) , 
f n 

(AE = Ef-Ei) . 

(2.10) 

Before passing on to evaluate W, we can use its general form, 

along with the completeness sum over states If>, to establish a sum 

rule: 
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jdvW&v) = c 
f 

(2.11) 

We note that the cross terms are proportional to nontrivial Fourier 

transforms of the ground state wave function, hence they vanish as 

q + m. We thus obtain the sum rule 

IdvW(q,v)-<i[ ~~~&.,'i> . 
9-f" n 

(2.12) 

We now assume that we can use our one-dimensional meson results 

in the above form for W. This is not unreasonable if we.can factor the 

center of mass target wave function out of W into another kinematic 

factor and if the wave functions and exponentials (from e U-hi);-&) 

that are left will be parametrized by a single coordinate x. Thus we 

will be looking at 
. . 
+ w(q,v) = c ‘<f I.&f + Lf 

- ;+x 
'i>'26(~-AE) l 

f 
(2.13) 

It is obvious that to evaluate this, it will be necessary to cal- 

culate the excited state wave function in the region where the ground 

state wave function is non-negligible. 

We have seen that, in the WKB limit, solutions of the wave equa- 

tion must be of the form 
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.&jXp(N) (x’)dx’ 

+ 
$o- ib (N> 

e 

I- 

.(N) > 

(2.14) 

0 

where ecN) = ' 

- I! 

@) = (N)) 
- % 

ii 
Nth place . 

. . . 

6 

We assume that the region in space where the ground state is non- 

negligible is microscopic; that is, classical quantities may be taken 

as constant. 

We obtain the following plane wave approximation for the excited . 

state wave function: 

y(W ,icj (N) (N) 1 E 

(2.15) 

To find&(N) we demand that Y (N be normalized properly. We 

assume that x @O is non-negligible only in the classically accessible 

regionwherethe WKl3 approximation holds. We have (excising super- 

fluous superscripts) 
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(p+-p-)dx'-is + ei/ (p--p+> dx'+ib (2.16) 
. 

The rapidly oscillating phase factors guarantee that the cross terms 

vanish, and 

(2.17) 

where 'L: is the classical period of the motion. Thus, 

(2.18) 

We have now calculated the excited state wave function in the 

region where the ground state wave function is non-negligible. We may 

take this (and integrate it against the ground state wave function over 

the whole region x = -00 to x = m with impunity)to find the matrix 

element 

$lx 
dr <flAle + -x2” 

-$F 
I i> . (2.19) 

Earring a phase (which disappears when we find l~j~), 

-s> 

(2.20) 

+ emiscN)L {A-l~o(p~)-q) + _h2zo(pf)+q) . 

I- (N) 9- 3- 
vO,- 
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i,(P) 
Here - is the momentum space representation of the ground state 

-tcs 
wave function: 

E,(p) E fdx e 
- $px 

X,(x) l 
(2.21) 

z. (W 
Because - 

m 
is the ground state wave function, it is reasonable 

to expect it to have the same form we assumed for 'Y,(x); that is, to 

have bell shaped behavior around some ground state region. We shall 

assume that we have set things up so that this region is "centered" 

about p=O. So io(p) will be significant only when its arguments ~20. 

Now the classical orbits in phase space associated with H (N)(p(N),x) =E 

are really quite arbitrary, we could have, for instance, any of the 

situations shown in Fig. 5. For the sake of simplicity, we shall 

assume that the second case holds. Since q > 0, we see that the only 

non-negligible contribution to&! can come from the &l~o(p~~-q) or 
, 

(N) ~2~o(~o 3- + 4) t-m the other two terms in the matrix element may be 

safely neglected. Thus 

I 

. 

(2.22) 

We also note that there will be a qualitative difference between the 

case where p, # -p+ and the case where p, = -p+. In the former, for 

(N) es (N) a fixed q, either the &Yo(po,+-q) or the L2xo(po,- +q> term - but not 

both - will contribute; hence, the structure function can be separated 

into a W+ and W-. On the other hand,in the p- = -p+ case, both terms 

will contribute and the structure function, given as the square of .A , 



-2o- 

will contain cross terms. Let us call these cases Case I and Case II 

respe-ctively. 

Then for Case I: 

(2.23) 

- AiEO(PO,+ (N)?q)6 (~42) . 

Letting PcN) 3 efN)ecN)+, I% - 

-t (N)- + (N) 
$N)i(N) xO(pO,++q)-&p 

- kilo (P~~'q)' (v-AE), 
O,? 

(2.24) 

(N) where we choose i=l for p. + and i=2 for p (N) 
, 0,-' 

For Case II, we may extract an expression similar to those above 

plus some cross terms. We can write W (N) = W(N) + WW 
w 

cr where W 

contains the two parts of the previous case while W (N\q,v) contains cr 
cross terms which rapidly vary with energy, 

wbf) (q,v) =c 1 
[ i', (p~~-q)&~P(N)e-i6 

W) 
f r(N)&w ' , ¶- 

(N) t iS(N)p(N) 
+ ~o(Po,-+9) k2e 

- 
LIXo (pr;-s) 6 (v-AE) 

' 1 (2.25) 

=T.i!& [gi~(ii)O(N)*t eis(N),(N)]6(v-AE) . 
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We shall now proceed with our discussion by transforming the 
-ci 

structure function into something more useful. The structure func- 

tion we have is a sum of modulated &functions representing the exci- 

tation of individual states. If the spread of excitation energy, AU, 

includes many states so that we may talk of a high level density, then 

we can "smooth out" the 6-functions by defining a coarse grained 

average of the structure function 

v+Av 

/ 
dv'W(q,v') . 

V 

From our original definition of W, we see 

. . 

W(w) = & c 
f(v+Av) 
f(v) l<f]&le'x+A2e- 'xli>12... 

(2.26) 

(2.27) 

We may pull all slowly varying (over the range Au) quanitites out 

of the integral in Eq. (2.26). Clearly this can be done for the con- 

stants L's and E'S as well as those quantities given in purely clas- 

sical terms, the T'S and v's. Given the bell shaped nature of x0, even 

though it has % dependence, it too may be taken as constant. So, the 

only quantities that cannot be pulled out will be the WKB phase shifts 

in the cross-term piece of the Case II structure function.. Letting 

Af zc f(v+Av) 
f(v) 

1 = the number of states in the energy range (v,v+Av), 

we obtain: 
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For zase I: 

EP)(q,v) = $ (N) 
Af(N) 

p9 
4(N) 

vo,+ Au + 

For Case II: 

yj(W = i(N) 
sq 

+ $0 
cr 

,(N> 
sq 

= I + W(N) 
+ - 

(2.28) 

#Q 
cr 

(N)* 
r 

f(v+Av) 
.-i& (N)+ o (N) 

7 
f (v+Av> i6 (N) 

df (VI 
4 f(v)' e l I 

We note that the cross term can be neglected if 

tN) cf (v+Av)ei6 (N) 
f(v) 1 << Af (N+ (N) 2 ’ (2.29) 

Letting 

0 

pF)(,t)dx' + p(N) 
B - 

(x')dx' 

(2.30) 

(N 
AL (x')dx' + ; py)(x')dx' , 

-B' 

and using our Bohr-Sommerfeld formula, we see 
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(2.31) 

Because the A's don't vary much over our small range Au, we see 

f(v+Av)e$) f+Af. 

c 
in.rrX(N) I e 

f(v) n=f 

(2.32) 

.i'rrX (N)(f +A f-l)- ei.rrX(N)(f,+A.f ) i*X(N) 
= 

where we have defined 

X(N) z 

2Ap 

(W 

AR 
+ A.p -hT l 

We see that there is no way Wcr 2 W 
sq 

unless 

l-cos(:Xq 
E AfcN) >> 1 . (2.33) 

Thus there will be no problem unless the potential is extremely 

asymmetric. We shall assume that such an asymmetry does not occur and 

hence are justified in taking 

hv) = ~sq(s,v) l (2.34) 

To complete our final form of the coarse-grained structure func- 

00 
tion, we shall evalute Au'f/ /Av and show that %(q,v) is independent of 

the size of the energy range Au we use. 

Using the Bohr-Sommerfeld rule, and the fact that 
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p?)(x)= pJN) (x) at the classical turning point, we obtain 

A kN) c 
AE 

aE;;;(N) = ik T(N) l 

-1 

(2.35) 

Using this, and noting that once we have banished the cross terms, the 

distinction between the two cases vanishes; we obtain: 

I 

(2.36) 

+ (N; 
1+ (p(N> 
-0 0,_(v)+q),h:P(N)~2~O(P~)(v)+q) . 

v,,-(v) Y-- 

We may now turn to the physics embodied in these w's. Let us 

first take up scaling. Treating the W -(N) , . 
s as functions of v with q 

-00 1 held fixed, we see that the W s will only be significant for those 

values of v such that p. + (y)(v) or -pr) 
9- 

(v) are close to q. Using this 

observation, we may derive a scaling variable as follows. We recall that 

P?;(v) was defined by v = H , (N)(P$M% Letting 

w:::(q) E H(N)(~,O) I,=, and u:::(q) g F3H(N)(p 0) 
aP ' Ipzq (2.37) 

and expanding v(p) in a Taylor series about p=q, we see that 

(2.38) 

Thus 
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(N) (N)(q,v)Z PO,+-q = Y+ 
v-w~~~(s) 

(2.39) 

and hence 

v~~wq%,v) = &~~(Y~)(q,v))~;P(?@O(y~)(q,v)). (2.40) 

(N) E Similarly, with y, P-w~1(4)/u(yW) 

v~)(v)ts(N)(q,v) = & ~;(Y<N)(q,v))_X;P(N)X2~*(Y- 
3- 

(N)(q,v)) . (2.41) 

We can thus see how the total coarse-grained structure function 

w(q,v) =cG(N)(q,v) behaves. It will be large only for branches in 
N 

q-v space characterized by the equation v = w+ (N)w, .. and the domain 

where it will be non-negligible can be described for each branch by a 

single variable y+ (N)(q,v>: the momentum spread of the ground state 

wave function. These curves v = H (N) (q,O) correspond to classical im- 

pulse scattering of either of the two constitutent in the corresponding 

classical channels. This must come, not from our use of the WKB 

approximation which only reduces the quantum to a classical problem, 

but from the use of the Born approximation. 

We close this section by evaluating the sum rule using our approxi- 

mation of the coarse-grained structure function. For simplicity, let 

us again concentrate on W+ (N) (4,v) l We are interested in'IdvW+ (N) (q,v) 3 

which an easy calculation shows is equal to' jdvW+ -(N)(q,v). Thus we 

are led to evaluate 
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P dv$W)(q,v) = -& (N; 
v+ (VI 

(2.42) 

Now yy)(q,v) = (v-wy)(q))/uy)(q) so 

(2.43) 

Also, because we are considering functions which are only significant 

for V = w+ (N) (9) , we may take 

uJyq) = VY’ (v) . (2.44) 

With similar reasoning for W- --(N) (q,v) , we obtain . 

dvW(N)(q,v) = 
(2.45) 

(y(N) > A?‘P (W - 
-1 x1:0 (Y (N)) + ~~(y(N))Xt2P(N)X2~O(y). 

I 

Since W =C, availableW(N) 
, , we see explicitly how each channel con- 

tributes to the charge, and that this contribution depends on the 

ground state wave function. This corresponds to local excitation of 

color. Finally we note that if q is large enough, all channels will be 

excited, so 

2 

(2.46) 
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This result, taken from our approximation for the courase-grained 

struZture function, is identical to the exact result derived earlier, 

which leads us to believe our approximation should not neglect any 

significant contributions to the structure function. 

In order to better understand this result, let us apply this 

formalism to our example of the (r+,n'). Factoring out the spatial 

parts of the wave function gives 

s dvW(N)(q,v) = < $,I ~&~P(~)_X~I$~ > = c Ie ~I(~)]&~II/J~ >I2 (2.47) 
i i 

where e Q~[ and e 9 (N) I evidently are internal wave functions only. 

The internal wave function of (r',n') is 

Jl(n+,n’) = * ‘l$XR + uyzy + lgB) .’ 

where the charges of the quarks are given in Table I. The color- 

Table I 

R Y B 

1 1 0 

0 0 -1 

0 0 -1 

(2.48) 
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singlet classical orbit will have the same internal wave function as 
- 

theground state; hence the matrix element of the piece of the charge 

operator acting on u-quarks will give a factor 

e ~r+,n~I~~ll;',n~ > = (1/6')2[1+1+01 = 2/3 (2.49) 

just as in the fractional-charge model. In a similar way the matrix 

element of the charge operator for the anti-down quark is 

e IT+,T-I++$~T+,~~ > = -(l/~)2[O+o+(-1)] = l/3 . (2.50) 

Upon summing over all states which contribute to the color-singlet 

(IT + ,n') classical orbit we see that we obtain 

J color- dvW(q,v) = (2/3)2 + (l/3)2 = 5/9 . (2.51) 
singlet 
orbits 

Another way of saying this is that the charge matrix Q exhibited in 

Table 1 is a sum of two pieces Q, and Q8, 

(RI (Y> (B) 

where Q, is color singlet and flavor octet, while Q 8 is flavor singlet 

and color octet. Q, has nonvanishing matrix elements only between the 

ground-state and color-singlet (7$,n') states, while Q, has non- 

vanishing matrix-elements only between the ground state and the (l;+,n> 
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states. (It is clear from Eq. (2.52) that Q, commutes with color- 

isospin and therefore cannot couple to (++,n") or (IT',K") states.) 

The internal wave function of the (r+,n) states is 

= l/a [uRxR + u 2 - 2u&31 
YY 

(2.53) 

and the transition-matrix elements of the (total) charge-operator are 

now 

e a+,nlQ, 1 Al’ > = l/CL l/G [1+1+0] = a/3 
(2.54) 

.I&$ > = -l/6 l/G [0+0-(2)(-l)] = -G/3 e r+,rllQ;i 

The resultant contribution to the structure function is 

J dvW(q,v) = (fi/3>2 + (-a/3)2 = 4/9 
color 
octet 
orbit 

(2.55) 

and the total sum is 

= C2/31u contribution + (1/3)-;i contribution = ’ 

(2.56) 

as must be the case for the integer-charge case. 
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III. BROKEN COLOR 

The example of the previous section considered the Hamiltonian as 

color conserving, i.e. invariant under rotations in color space giving 

pure color octet and singlet states. However, it is easy to envisage a 

more complicated situation , where the Hamiltonian is not invariant, and 

where the energy eigenstates will not be pure color singlet or octet 

states. Then we are forced to consider a nondiagonal matrix 

Schroedinger equation over the (color) internal variable. 

As in the previous case, we consider first the abstract problem, 

It is set up as before, with the target being described by a wave 

function z(x) satisfying 

~(P,x)$d = E’J(x) l 

. 

However, the matrix H(p,x) is no longer diagonal, rather 

~(P,X> = _R(p,x) i‘l;x)*..q);p,xJ g-l(p,x> 

(3.1) 

(3.2) 

where, for all N, e)(p,x) is a "monotonic" infinite well with re- 

spect to p and x. 

The main message of this section is that, in the semiclassical 

limit, all the results of the previous section survive; with modula- 

tions which are classical and not quantum mechanical. These modulations 

can be found from the classical matrix Hamiltonian. We proceed to 

demonstrate this. 



-31- 

'Jhe general solutions of our matrix Schroedinger equation will be 

some linear combination (to be determined by turning point conditions) 

of solutions x (N) (x) g ' lven as follows: the momenta p+ (N)(x,E) E p?)(x) 

cp(N> < (N)) 
P+ 

are now solutions of 

Also, 

%I (pt (N) (N)(x),x) = E . 

v(N) _ ae' 
r = 

ap 
p=p!N) l 

Then it can be shown[l6] that 

iJ:pp’ (x’ )dx' 

Yp (x) = s!"'(x) e 

(RCN)(x) (N) 
-2 2 $p+ ,d> 

0 . . 

f. (P, (N) ,x' 

0 - . 
. . 
6 

(3.3) 

(3.4) 

(3.5) 

where c(py),x) - ,!N) is a vector over the "classically degenerate" - - 
<N) -(W subspace upon which s (p,x) acts. The vector $ satisfies the equation 

R-1 3 (N) 
ap (%+?I LjR 

-1 aR 
5% 

(3.6) 

where ?? is the projection of the matrix 5 over the "classically 

degenerate" subspace. 



-32- 

As advertised earlier, the form of our semiclassical wave function 
- 

shows us that it may be split into two distinct parts, the scalar 

piece 

$pF)(x')dx' 
$(N) = e 

SC 

that we saw before and the vector piece: 

@ 
-2 

0 - . . 
$N) 
--+ 
0 . . 

i 

. 

(3.7) 

(3.8) 

The vector piece, which describes how the wave function.irector rotates 

in internal space as a function of position, is given only in terms of 

classical quantities and so must be slowly varying over microscopic 

distances. 

Now that we have the pieces that compose the target state wave 

function, we must find turning point conditions which will enable us to 

find the bound states. For simplicity, we will treat the first "clas- 

sically degenerate" subspace and see what a general solution Y (l}(x) 

must be. 

We can write 
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- 

where 

p(x) = 

Here x~o~(~') denotes the convergent Dyson series: .. 

X 

%oz_(x') = J + o s dx&xl) +/dx&xl)['dx2Z(x2) + -0. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Solving the turning point problem, generalizing the corresponding 

--Cl) scalar problem, will give us B -411 in terms of A . 

Let's look closely at the right-handed turning point region as 

shown in Fig. 6. Region I is a microscopic region (of the order of a 

few wavelengths (where h(B-d) is considered as a wavelength) inside 

which the WKB approximation begins to fail. 

Thus, in Region AX', the WRB approximation is good. 

We pick A to be microscopic, i.e. I$(p,x) and g(p,x) may be con- 

sidered constant across A. (For example we could take A = 76, we 

know 6 will be microscopic in the semiclassical limit.) 
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in wrf;ing 

We can therefore see that we are completely justified, in region G, 

?+l’ (B) 
0 . 

(3.13) 

UC1 -- 
I 

$;p~"(x')dx' 

(x) = R+B) e 2- 

where 

?+l'(B) f . 
(3.14) 

2-'}(B) 3 B"op (x')ip . 

We further note that since p+ (N)(B) = p- (N)(B) (thus 5?)(B) = IJLN)(B)e 

RCN)(B)) we may write 

$1) (x) = $'(x) + Y"+x) = R(l) -- 
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This suggests the conjecture that throughout region A we may 

expr% the functional dependence of Y +X) on x as: 

(3.16) 

where l?il'(x) are scalar functions, which satisfy the equation 

(3.17) 

= E F~l+~)c$$lly(N)(B) + F~l+x)r$~l"(N)(B)] 
[ 

where the $i11'(N)' ----El) s are the components of I$ -+ . 
. 

In accordance with our theme advertized earlier, we have "factored 

out" the scalar part of the turning point problem, now we only need to 

solve the scalar turning point problem for 

Hy(TLx)p(x) = Elp(x) . (3.18) 

Using the same result we used in the previous section, we see that 

-JElE (B) = e iS'13-{l) 
c- t+ (B) = 

(3.19) 

+[I:pill(xl)dxf+ $pll'(x')dx']- i+ -(11 
=e. i+ (B) 
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or 

+ ~~p~"(x')dx']-i ; B 

We may express this in an aesthetic form by noting that 

pogxq-1 = ?-2&x’) l 

(3.20) 

(3.21) 

Then 

$11 = 
-i$ iJO,pC"(x')dx' $tpJ13(x')dx' 

e e e 

(3.22) 

A similar expression for the left-handed turning point (at -B') 

is seen, by inspection, to be: 

.x i 0 
,{lj = ,+=2$ -B"- -I {l+x')dx' i -B' {l)(x')dx' 

edo p+ 

(3.23) 
413 on-B,J4f (x’)-B’n Fi o-i11 (x’ )p . 

Equating the expressions from the right and left handed turning 

points allows us to proceed towards the matrix analogue of the Bohr- 

Sommerfeld formula. Let us define the following scattering functions: 
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'II. %~op{l'(X')dx' 
- s;lI Z e-=2e?+ B - 

+J;pf13(X')dx' 
e 

$11 = 
-R - OQBip (x' lBQog+l} (x' > 

(3.24) 

0, 
-Jj ‘$ -~l+X’)-B’noip(x’) . 

Then equating the turning point conditions gives 

(3.25) 

so . 

(3.26) 

Before going on to characterize this more complicated version of 

the Bohr-Sommerfeld condition, it might be timely to make a few ob- 

servations. In line with our theme, we have factored the scalar and 

matrix parts of the problem. We note that s's carry all the quantum 

contributions which vary quickly with respect to energy contributions; 

while the x's carry only classical, slowly varying quantities. We 
- 

further note that 'LJLR, the matrix which we will use to diagonalize 
-- 
zLsR will also be a classical, slowly varying quantity. Finally we 

may note that our last equation may be written in the suggestive way: 

TI1l = ,-ineti %+l)(x’)dX ~~~}(x’)x-13 . (3.27) 
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In words, we have a matrix analogue of De Broglie's formulation, 
- 

evolving the wave function about a complete orbit must bring it back 

to the value it had originally. (We ignore the e -Ia factor.) 

Returning to Eq. (3.26), we note that both-$ll and 2R1' are 

unitary 1413 - because p+ -- is hermitian, the ‘s ‘1 

products of Qi.($E) must be unitary. Hence 

s.which involve 
-413 there is a unitary IJLR 

-Cl3 = which diagonalizes zSLR - 

,111 411 
-LR = 'LR 

Letting 

$13 E +pIl~ , 
-LR - 

we obtain 

This equation can only have solutions 

when 
(11 C1lSD(N) = e2nai 

'L 'R LR . 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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D(N) 3 eiAN we find Letting SLR 
- 

e 
-IT e% B - 

*IT ~~op{l~(X’)dx’ +/;p~ll(x’)dx’ 

e (3.33) 

,i$ e- g -B 'Jo Ip~ll(x')dx'e- &B'pJ1l(x')dx'eiAN I e2nni , 

thus 

' (11 + 1" p, (x')dx' 1 + AN 2 6N =,(Zn+l)r . (3.34) 

This is the matrix version of the Bohr-Sommerfeld rule, which gives us 

the bound state energies. 

Before discussing the implications of this formulation for the 

bound state spectrum , we should make one observation concerning de- 

generacy. We have called the Hamiltonian H(P,x) "classically degenerate" 

if some of the eigenvalues of H(p,x), the HD (N) (P,X> ‘s, are identical. 

This does not imply that the associated Y (N) (x) ' s are degenerate in the 

familiar sense of having the same eigenvalues. In fact, we have seen 

that that sort of degeneracy depends on whether the matrix SLSR is 

degenerate. +(N) We have assumed, in writing A = JNyN) E jyj$-- 
cL 

was not degenerate; i.e. that the AN's were distinct. We shall continue 

to do so. 

Having obtained the bound state spectrum, we can obtain con- 

ditions for colored channels to be excited. These are identical in 

form to those presented in the last section. First we must be at an 

energy above the minimum of s (N)(P,x) l This, however, is not suf- 

ficient-if the well is very narrow, so that 6N slowly depends on 
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energy, we might have to go up quite a bit higher than IY$ (N) to ,min 

excite the colored state. Again, both these observations come from 

misusing the WKB approximation to apply to the ground state of the 

colored channel; but they do identify qualitative features we would 

expect to see and can be used quantatively for rough estimates. 

As in the previous section + , we can now look at our ?T example 

from the perspective of classical orbitsinphase space. The results 

of the previous section survive with the modification that the (IT +,g 

orbits now split. For example, color breaking terms which, at the 

quark level, cc> depend on the color matrix A8 or invariantly couple 

color to flavor X -t(c).x(f) (thereby allowing explicit flavor breaking 

interactions such as strange quark mass to also break color) will leave 
. 

only color-isospin as a good symmetry. The (IT+,s) splits from (a+,n) 

and (IT',K). The quadruple degeneracy of (1r',8) orbits with charge 

Q=l will be broken into a doublet [(IT+,K") and (IT',?)] and two singlets 

CT 
+ ,IT') and (r+,n) as shown in Fig. 7. Notice that, provided that 

symmetry-breaking is not as large as the octet-singlet splitting, we 

may expect that there will remain a distinct low-energy orbit, the 

remnant of the singlet orbit, despite the existence of mixing of octet 

with singlet configurations. This single low-energy orbit will give a 

similar set of levels as in the unbroken theory. 

Before leaving our orbits , we must note that there is, in principle, 

an additional complication possible in describing the semiclassical 

limit of this, or other, matrix problems. The problem is that clas- 

sically nondegenerate orbits may approach each other at high energy. 
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For example, for nonrelativistic octet and singlet orbits described by 
- 

the classical equations 

2 2 
$g -I- V1(x) = E + V&d = E , (3.35) 

The difference Ap E pl-p8 in the momenta at a given x is 

0 (AV Z yvl) ; (3.36) 

and hence, at sufficiently high E, large segments of the orbits will be 

degenerate; i.e. have negligible different action J. For a fixed 

interval (x1,x2> far from the turning points, 

AJ x2 
-- = 
Ii ;,LIAp(x) dxAV(x)- 0 :- (3.37) 

E+ 

The perturbing terms nixing the orbits became important. [Note that 

this phenomenon does not occur if the nonrelativistic kinetic energy 

p2/2m is replaced by the relativistic IpI.1 The orbits (with non- 

relativistic kinematics) at high energy are shown in Fig. 8. 

Returning to our general discussion , we have so far determined 

that 

y(N) (x) = JdN) s+(x) + 
(3.38) 
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The Q(x>'s and S's are block diagonal concatenations of their degen- -h 

erate space counterparts. A rewriting of our semiclassical probability 

arguments of the previous section gives the same result for the nor- 

malizing factor: 

lc/v(N)12 =-$ - (3.39) 

We may proceed, as in the previous section, to evaluate the 

structure function. We have to carry along the extra luggage of s's, 

S's and g's, but they appear as classical quantities and may be taken 

as constant in microscopic regions. We obtain, retracing our previous 

footsteps, with our previous observations, 

G(N) (q,v) = 1 

1 

1 
2nli vfyc > V 

~o~P~~~u)-q)~~P~)~v)_xl~o~~~~~v~-q~ 
, 

, (3.40) 

.+ (N; 
v. (VI 3- 

(V)+q>X+P(N) -2 - 

However, here 

00 = R(N) 
p+ -0 -f&R% 

W 
% 

WtU+ R(N)+ 
, -LR-O,+ 

and 

(3.41) 

These are the projection operators into the diagonal channel bases of 
(N) 

the classical Hamiltonian at the origin with momentum p. 
W 

, + and p. ¶- 

respectively. 
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We may see this more concretely by returning to our example of 

the previous section. Let us assume that the ground state of the target 

is pure color singlet (Tr+,n' ), but that the excited (IT',~') and (IT',~) 

classical orbits mix with mixing angle 0. (In other words, we need a 

two-by-two orthogonal matrix R(B) to diagonalize the classical 

Hamiltonian in the (IT',~')-(s+,n) sector.) Then the matrix elements 

of Q, and Q-d from the ground state to the mixed orbits are given by 

Table II where 

(Tr+,I) = (*+,n')cos8 + (?r+,q)si& 

(aS,VIII) = <7l+, 11) case - (7r+,n')sin0 
(3.42) 

are the internal wave functions for the "eigenorbits." 

Table II 

(f,I) 

QU 
fi f case + 3 sine 

1 Jz 
Q;i 3 c0se - 3 sine 

(7;t,VIII) 

g c0se - 2 sine 3 3 

- g c0se ’ 3 - 7j sine 
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Now 

obtain a 

get 

when we measure the charges via the structure functions W we 

different result. For the contribution from the I orbit we 

&dvW(v,q) = ($ case + $ sin6)2 + [i case - $ sin)z2 

(3.43) 

= 2 c0s2e + - 2Jz 
9 9 c0se sin6 + 4 g sin28 

and from the VIII orbit we find 

s vIII dvW(v,q) = - f sin6 - f sine 2 

(3.44) 
4 = p c0s2e 2fi - 9 c0se sin6 + g 2 sin28 . 

Again, of course, we recover the general sum rule, Eq. .(2.56) upon 

summing over both orbits. However, the contribution of orbit I can 

vary greatly depending upon the mixing angle 8. For example, for 6=0, 

'IIdvW(v,q) = 3 = 0.56 while for 6=-45: it is L - I@ 2 9 z 0.34. We again 

remindthereader that this piece can as well be energy-dependent, even 

without inclusion of the contribution of the "octet" VIII orbit. 

It is obvious from the form of the structure function that our 

discussion of scaling and sum rules survives intact. There is, however, 

one modificatin in our scaling discussion. Because of the-possible v 

dependence of g(p(v)) and _U(V) the projection operators can be functions 

of energy. Then the individual channel contributions to the coarse- 

grained structure functions, v (N)W(N) will contain an explicit energy 

dependence. 
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IV. CONCLUSIONS 
- 
In the introduction, it was emphasized that the existing evidence 

does not at all favor an interpretation of hadron structure in terms of 

integer-charge quarks as underlying constituents. Nor is there 

theoretical motivationforintroduction of even a slightly broken 

color symmetry; such an introduction creates difficult theoretical 

issues to overcome. 

Nevertheless, it does not seem prudent to accept too readly exact 

color symmetry as an absolute law of nature. And if color symmetry is 

for some reason not exact, the Han-Nambu integer-charge scheme (or 

some similar variant) might conveivably be, despite the difficulties, 

a viable alternative. Given this possibility, it would seen worth- 

while to explore to some extent the consequences of su& a scenario. 

In this spirit, we investigated (in one spatial dimension) the 

properties of a Han-Nambu IT+ meson built of an integer-charge quark and 

antiquark, which possesses "hidden" color, i.e. low-lying excited states 

are (up to a small amount of impurity) color singlets. The spectrum of 

such a meson was examined in the WKB limit, and the "deep-inelastic" 

excitation of the gound-state meson by weakly interacting external 

probes was studied. The main results which we found are as follows: 

(1) The low-lying spectrum, even when color-symmetry breaking is 

introduced, has essentially the same properties as in the simple un- 

broken case: the classifications of the levels are unmodified, and 

only small admixtures of color-octet states will be found in the low- 

energy spectrum. (However, this does not mean such admixtures are un- 

observable; see point (4) below.) 
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(2) In deep-inelastic processes, what matters for the structure 

func;on W are the properties of the excited-state wavefunction in 

only the small region of space where the ground-state wavefunction is 

nonvanishing. (In the WKB limit these wavefunctions are in fact just 

free plane-wave ("parton") states.) We showed that in this potential- 

scattering model, a sufficient condition for global excitation of color 

was local excitation of color. That is, if color-octet states could 

be excited with an external probe of energy v within a small region of 

order of the size occupied by the ground-state wavefunction, then 

these color states would be found in the spectrum of the full Hamilton- 

ian at excitation energies of the same energy v. That is, they would 

be observable. However, we pointed out that the converse need not be 

true; there may be low-lying color states in the spectrum which are not 

excited by deep=inelastic scattering (until extremely high energies). 

This can happen if the color-octet potential is strongly repulsive at 

short distances, thereby excluding the excited state color wave- 

functions from the spatial region occupied by the ground state wave- 

function. 

(3) The way all this is implemented mathematically is that in the 

presence of L internal color degrees of freedom, the WKB solution to the 

corresponding time-independent Schroedinger equation has L channels 

corresponding to L different classical orbits. These orbits can be ex- 

cited by deep inelastic probes, and they each can contribute significant 

fractions to the sum-rules satisfied by the structure functions W. For 
-I- 

example, in our example of IT , two distinct orbits contribute to the 
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familiar sum rule for the charges 
- 

L * 
dvW(v,q2) = CQ; 

i 
(4.1) 

of the constituents, as determined via deep-inelastic electromagnetic 

scattering. The first is the (essentially) color-singlet(n+,n') and 

the second the (essentially) color-octet (IT',~). 

In the absence of color-symmetry breaking, the (IT+,~'> orbit con- 

tributes the same amount to the sum rule as the fractional charge quark 

model, while the other .(x',n) color octet contributes the remainder 

necessary to count the integer charges of the Han-Nambu quarks. 

(4) In the presence of color-symmetry breaking, the sum rule still 

holds. Furthermore, just as before the sum is saturated by the two 
. 

distinct contributions from the two orbits. However, because color- 

symmetry is no longer exact, the relative balance between these two 

contributions can be different, and in particular can be energy de- 

pendent. That is, the excited local ("parton") plane-wave states can 

be mixed, and this mixing can depend upon the excitation energy V. 

Hence even before the color threshold is reached, the charge as mea- 

sured by excitation of ostensibly color singlet states could be de- 

pendent upon excitation energy v. 

While these conclusions have been obtained within the context of 

a very simplified dynamical system, we are optimistic that they hold 

under more general circumstances, in particular in higher dimensions 

and for many-particle systems. Our reasoning is that once one makes 

coarse-grained averages over the deep-inelastic structure-functions, 
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the detailed properties of the spectrum of the full Hamiltonian do not 
- 

seem to matter. Only those of the local Hamiltonian are relevant, and 

those are well-approximated by an essentially free-particle system. 

However, there are probably more essential complications in a 

field theory context, especially in connection with pair creation and 

vacuum polarization, which are beyond the scope of the discussion in 

this paper. However, one may anticipate that if one excludes light 

quarks u, d, s from the discussion (thereby largely suppressing pair- 

creation and polarization effects), the dynamical picture we have 

sketched may not be completely unrealistic. 

Finally, even in the absence of a direct physical application, we 

have examined how to implement the WKB method for bound-state problems 

in the presence of internal degrees of freedom. The methodology we 

have given may be of use in other semiclassical problems which have 

internal degrees of freedom. 
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APPENDIX - THE GENERALIZED SCALAR WRB TURNING POINT PROBLEM 
- 
Our scalar equation is 

H(P,x)Jlbd = W(x) . (A. 1) 

H(p,x) is a general well with respect to p and x, so, in phase space, 

a solution to the equation H(p,x) = E might look like Fig. 9. 

The solution to the turning point problem stems from the obser- 

vation that this curve, n&r x = B, looks just like the horizontal para- 

bola we would get from the ordinary nonrelativistic Hamiltonian. And 

we know the connection formulae for that problem. We proceed in more 

detail as follows: we think that we may generally write 

H(P,x) = H(PC,XC) + c +a,(pC,xC) (P-p,)"(x-xC)R f h-c. (A. 2) 
M or R 

>O 

where 

(A.3) 

We assume that if we are close to the turning point (close with 

respect to macroscopic quantities), we may truncate H(P,x) to the first 

few terms (M + R < 2). Thus 

H(P,d = H'(P,x) 3 H(pO,xO) + ~aol(po,xo) 1*(x-x0)+(x-x0)*1 

+ klo (po9xo 
4 

P-po)*l+l* (P-p,) 
i 

+ k411(p0,xO) l (P-PO) (x-xo)+k-xo) (P-PO) 
> 

+ $a20(po,xO) (P-po)2*l+l*(P-Po)2 
> 

+ ho2 (PO s x0) 1.(x-xo)2+(x-xo)2*l . 
> 

(A-4) 
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-If we are expanding about the turning point x0 = B, p. = B, then 

= v(pB,B) = 0 . 

P'PB 

(A. 5) 

We may also associate a magnitude p(x)-p. to the operator P-p0 

(where p(x) is defined by H(p(x),x) = E). If we pick our region in 

phase space such that p(x)-p. w E and x-x0 - s2, it is reasonable to 

expect that, to 6(e2) 

H’ (P,d = H"(P,x) 2 H(pO,xO) + aOl(~O~xO)(x-xO) 

+ a20 (po,xo) (P-P,) 2 (A.61 

= $- (P-P~)~ + uB(x-B) + EB . 
-B 

We are almost in the familiar linear approximation for the turning 

point problem, we only have to make a trivial adjustment of the kinetic 

term: letting 

therefore qred(x) satisfies 

1 
c p2 + aB (X-B) + EB 

B 
$re&) = EB$red(d l 

(A.71 

(A. 8) 

(A. 9) 
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,We may now apply the familiar joining conditions; thus in region 

G (i.e. before we reach the turning point) 

J, red( cos $$Ip(x')dx'- ; 

(A.lO) 

AP(x’) 5 +~2~BaB(B-x') = p+(x')-p, 2 pB-p-(x') . 

Paralleling the usual method we can now derive the turning point 

phase shift. We have just seen that, in region G, 

i.l$zAp(x')dx'- t] 
,+ e 

-i[$iAp(x')dx'- $1 1 . 
(A.ll) 

Our WKB approximation, using phase shift notation is: 

(A.12) 

= (because, in region G p,(x') = pB k Ap(x')) = 
. . 

= e;JEP+(x')dx'e- tpB(B-x) - ;jiAp(x')dx' 

%p (B:x) + &JBAp(x')dx' 
+e 

i6+ iJ:p-(x')dx'- 
.td e?ix 

. 
- $pBB irS+ $p-(x')dx' (X ’ > dx’ 

e 

(A.13) 

+e 
-i6- iI:P-(x')dx' + iJtp+(x')dx'- $,>p(x')dx'] . 
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somparing this with our expression for Q(x) derived above 

I& e-i ") e$B(x)[e+~~Ap(x')dx'+ ei $e- $zAp(x')dx'], 

(A. 14) 

we obtain 

-ib- ij:p-(x')dx' + $tp+(x')dx' = i 5 (A.15) 

which leads to the obvious generalization of the usual WEB phase shift 

formula: 

+'I;p-(x')dx' - 5 . 1 (A.16) 
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FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Singlet and octet states for the -rr+ example. 

Singlet and octet "potentials" for the v+ example. 

Orbits in phase space for one scenario of frozen color: 

(a) relativistic kinetic energy and linear potential, 

(b) non-relativistic kinetic energy and linear potential, 

(c) states. 

Orbits in phase space for another scenario of frozen color: 

(a) relativistic kinetic energy and linear potential, 

(b) non-relativistic kinetic energy and linear potential, 

(c) states. 

Possible orbits in phase space. . 

The turning point region. 

Orbits in phase space for n+ with broken color. 

Quasi-degeneracy at high energy. 

Orbit in phase space for general scalar Hamiltonian. 
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